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Abstract— Many real-world tasks require fast planning
of highly dynamic movements for their execution in real-
time. The success often hinges on quickly finding one of
the few plans that can achieve the task at all. A further
challenge is to quickly find a plan which optimizes a desired
cost. In this paper, we will discuss this problem in the
context of catching small flying targets efficiently. This can
be formulated as a non-linear optimization problem where
the desired trajectory is encoded by an adequate parametric
representation. The optimizer generates an energy-optimal
trajectory by efficiently using the robot kinematic redundancy
while taking into account maximal joint motion, collision
avoidance and local minima. To enable the resulting method
to work in real-time, examples of the global planner are
generalized using nearest neighbour approaches, Support
Vector Machines and Gaussian process regression, which
are compared in this context. Evaluations indicate that the
presented method is highly efficient in complex tasks such as
ball-catching.

I. INTRODUCTION

The robot catching task can be seen as a simple point-

to-point control problem, solvable with inverse kinematics

and interpolation in real-time [1]. If the solutions want to

be in some way improved, then the task becomes a complex

optimal control problem. This paper presents a careful

analysis and empirical evaluation of the issues involved in

nonlinear optimization for solving the catching task in an

optimal way in real-time. A robot manipulator is considered

to accomplish the task and it is assumed that its end-

effector is always successful in grasping the target. Our

focus is on the motion needed to reach the grasping point

on the target trajectory.

There are several key issues of interest: firstly, optimal

solutions for the given problem can rarely be obtained

by running the optimization algorithm on line, as it is

computationally too expensive and, due to local minima,

it may not even converge to a good solution. Secondly, the

optimization method should allow for realistic problems to

be addressed, which requires treating important constraints

on the movement such as collision avoidance and maximal

velocities.

The optimal real-time planning problem is first for-

mulated as a parametric nonlinear optimization problem.

The joint positions are parameterized in time using a

representation such as B-splines or trapezoidal functions.

Inequality box constraints on joint position, velocity and

actuation torque, as well as collision avoidance constraints,
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are included. Two different catching strategies are realized:

the static catch, where the end-effector reaches the target

trajectory and stops, and the dynamic catch, where the end-

effector catches the target with some velocity in order to

minimize the impact. As an example for a cost function,

the energy is chosen, which brings the dynamics of the

system clearly into play.

As the task of catching a moving target implies hard time

constraints, a method is developed to obtain the optimal

solutions in real-time. To ensure that the local optimizer

starts with a good initial solution, globally optimal solu-

tions are pre-computed offline for different initial target

trajectories. In this paper, we evaluate several different

approaches to using these initial solutions as starting points

for the local search procedure. The first approach is to use

look-up tables for determining good starting parameters,

e.g., using different versions of k-nearest neighbours [18]

with k ∈ {1, ..., 4}, while non-parametric methods such as

Support Vector Regression (SVR) [19], [20] and Gaussian

process regression (GPR) [14], are evaluated as alternatives

with improved generalization. These approaches basically

provide mappings between the three parameters which de-

scribe the target trajectory and the optimization parameters

which describe the optimal solution.

The paper is then structured as follows: the rest of

Section I presents a literature survey and the problem

statement, while Section II describes the formulation of

the optimization problem and Section III the method for

solving the catching task in real-time. Section IV analyses

the results and Section V includes a discussion and the

conclusions. The adopted notation is such that all vector

quantities are written in bold and are expressed in the

inertial frame of reference.

A. Related Work

The minimum energy problem for a non-redundant

6 DoF manipulator executing point-to-point maneuvers in

configuration space was treated in [2], including collision

avoidance. The resulting constrained boundary value prob-

lem was solved with direct single shooting. In [3] similar

minimum energy problems were addressed, where direct

collocation and indirect optimization were used instead.

In [4], motion optimization was addressed for the kick

motion of a humanoid robot, while also minimizing the

energy. In [5], trajectory optimization was also used to

solve robot motion tasks, however defined in Cartesian

space rather than in configuration space.

Note however that in all of the works above, the real-

time issue is not addressed. Furthermore, the optimization

problem considered here is different from those formulated,
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Fig. 1. The DLR ball-catching scenario with the ball-trajectory prediction
trace, the LBR robot in catching configuration and a zoomed in picture
of the hand, with the inertial and end-effector frames shown.

for e.g. in [2] and [3], in that: firstly, the final robot config-

uration is not given; secondly, the final time is not fixed;

thirdly, there is a high kinematic redundancy resulting from

using a 7 DoF robot and for the given task. The first

point adds a set of nonlinear equality constraints, while

the second and third add complexity, due to a resulting

increase in local minima. These issues are also found in

the problem dealt with in [4], where however local minima

are not addressed. Collocation was not considered here as it

requires a larger number of optimization parameters and is

hence less suited for real-time application. In [7] a similar

formulation of the nonlinear optimization problem is solved

in a real-time setting, with a parallel multi start search and

a low-dimensional search space.

Despite all the work on robot catching, e.g., as reviewed

in [6], we have not found a methodological approach in

the literature as we present here. As comparison, it is worth

noting that humans perform catching movements as smooth

point-to-point trajectories with bell-shaped velocity profiles

and zero boundary velocities and accelerations [6].

In the learning literature, the generalization of trajecto-

ries has been suggested, for e.g., in [15], [16] and [17].

These approaches are complementary to the setup pre-

sented in this paper but differ significantly in scope and

functionality. Their aim was the generalization of trajec-

tories through regression which is only a necessary step

for our aim to make nonlinear optimal control approaches

feasible in real-time. They use artificial data [16] or kines-

thetically recorded data [15] [17] which cover only a small

space of the range of possible movements and cannot

generalize beyond these. Here, we try to find a large set of

globally optimal plans, generalize among them and ensure

continued optimality by local optimization.

B. Problem statement

The addressed problem is to develop a motion planner

for catching a flying target, whose rotational motion is

irrelevant (small, spherical, e.g., a ball), by means of a

7 DoF robot manipulator with rotational joints and rigid

links. The test-bed is a simulation model of the DLR light-

weight robot, shown in Fig. 1. It is assumed that the hand

closing movement is always successful in grasping the

target. Joint friction and elasticity are neglected. The target

trajectory is assumed to be determined by a vision system

(e.g., see [1]). The initial configuration of the robot is fixed.

Trajectories should be found which bring the end-effector

into an orientation suitable for grasping, i.e. such that the

target velocity vector is at some predefined angle to it. The

interception point is also determined by the motion planner.

These requirements result in three equality constraints on

the end-effector position and two equality constraints on

the end-effector orientation. Due to the fact that the LBR

robot has seven joints, a redundancy of degree two for

the end configuration follows. The trajectory’s duration and

final configuration are open parameters determined by the

optimizer.

The starting point of the target trajectory in Cartesian

space is fixed. Its distance from the robot base is approx. 5

meters. Hence, with the speed resulting from this distance

(and from limitations on throwing height due to the room

ceiling and throwing velocity), the flight time will be

approximately one second.

II. FORMULATION OF THE CONSTRAINED

OPTIMIZATION PROBLEM

The motion planning problem at hand contains a known

obstacle region O and a configuration space C of dimen-

sions C(θ) ⊆ ℜn, with n = 7 and where θ is the vector

of robot joint positions. The time interval is unbounded:

t = [0,∞). The robot system is fully actuated and therefore

subject to a bounded action τ ∈ ℜn, which is related to

the system state [θ, θ̇] by the state transition equation and

where τ is the vector of robot joint torques.

The nonlinear optimization problem can then be formu-

lated as follows:

min
tf ,θ(t)

Γ(θ(t), τ (t), tf ) (1)

subject to

M(θ) θ̈(t) + C(θ, θ̇) θ̇(t) + g(θ) = τ , (2)

h(tf ,θ(t)) ≤ 0, (3)

h coll(tf ,θ(t)) ≤ 0, (4)

g(re(tf ),φ
e(tf )) = 0, (5)

θ(0) = θin, θ̇(0) = 0, θ̇(tf ) = 0. (6)

for 0 ≤ t ≤ tf and where tf is the final time, Γ is a

predefined cost function, h are inequality box constraints

of type xmin ≤ x(t) ≤ xmax, for x = {θ, θ̇, τ} and

hcoll are collision avoidance constraints. Eqn. (2) express



the state transition equation of the robot. The functions

g(re(tf ),φ
e(tf )) are five equality constraints on the final

end-effector state [re,φe] (see Section II-C). Finally, Eq. (6)

expresses boundary conditions on position, where θin is the

given initial configuration, and on velocity. More details on

the boundary conditions on acceleration and jerk will be

given in Section III-A.

In the following sections we will address the formula-

tions of the cost function, of the inequality constraints and

of the equality constraints.

A. Cost function

The chosen cost function is the mechanical energy. This

is a classical choice to improve the energy consumption

of the given system (note that the LBR has a very high

efficiency in energy dissipation, therefore we neglected the

latter). It also adds a strong dynamics-dependent element

to the optimization problem, as opposed, for example, to

minimum distance.

The mechanical energy is computed here as follows

(similarly to [2] and [3]):

Γenergy(p) =

∫ tf

0

(τ T (t) θ̇(t))2 + ‖Jmotor θ̇(t)‖
2dt , (7)

where the first term is the integral of the power for a

robot model which neglects the joint motor inertias and the

second term represents the motor kinetic energy, which is

of comparable size to the first (not included in [2] and [3]).

The symbol Jmotor = diag(J1N1, ..., JnNn) expresses an

(n× n) diagonal matrix with elements whose ith diagonal

element is the ith motor inertia Ji multiplied by the ith gear

reduction ratio Ni.

B. Inequality constraints

The bounds of the box constraints are given by the robot

design specifications, e.g., due to joint limits and maximal

joint velocities. Further constraints arise from the collision

avoidance both with the environment and of the robot with

itself. To detect collision and to formulate the collision

avoidance problem within a nonlinear programming con-

text, bodies are represented here as convex polytopes. For

this purpose, these bodies consist of capsules to represent

the robot links and the end-effector, and of a box to

represent an obstacle in the robot workspace (Note that

a capsule is similar to a normal cylinder except that it has

half-sphere caps at its ends.). For these types of bodies,

it is possible to efficiently compute, in case of collision,

the penetration depth as the minimal length of translation

needed to separate them.

The collision avoidance problem can be formulated

straightforwardly as a set of inequality constraints in the

optimization problem:

D(i) > 0.0, 1 ≤ i ≤ mcoll, (8)

where the function D(i) constitutes a minimum distance

between two bodies or a penetration depth, if the two

bodies intersect. The scalar mcoll is the number of body

pairs in the given problem.

C. Equality constraints

Additional equality constraints are required on the final

end-effector position and orientation, in order for it to meet

the target at some point on the trajectory. A distinction is

introduced between the static and the dynamic catches.

1) Static catch: In this case, the end-effector arrives at

the grasping point with zero end velocity and the equality

constraint is formulated as follows:

re(tf ,p)− rtarget(tf ) = 0, (9)

φe(tf ,p)− φtarget(tf )) = 0, (10)

where re is the end-effector position vector, computed at

the final time tf = p(N), r target is the given target position

vector at the final time, φ e are the two angles which

describe the direction of the -z axis of the end-effector

(see Fig. 1) and φ target are the two angles which describe

the direction of the target velocity vector, also computed

at the final time. These constraints are nonlinear in the

parameters p and reduce the open DoFs from 7 to 2.

2) Dynamic catch: In this case, in order to reduce the

impact with the target, the end-effector moves in the same

direction as the target. This effect can be achieved by im-

posing extra equality constraints on the end-effector posi-

tion and orientation, of the type expressed in Eqs. (9),(10).

The first constraint was imposed at a time tmid = tf −∆t,
for ∆t < tf as

re(tmid,p)− rtarget(tinterceptTarget) = 0, (11)

θe(tmid,p)− φtarget(tinterceptTarget) = 0. (12)

The value of rtarget and φtarget in Eqs. (11), (12) is taken at a

time tinterceptTarget = tf−kmid∆t, for kmid < 1. Note that the

robot is often not able to travel as fast as the target due to

joint velocity limits. The second set of equality constraints

was imposed at a time tmid 2 = tf−∆t/2, half way between

the first extra constraint and the final constraint points.

III. EFFICIENT MOTION PLANNING IN REAL-TIME

In this section the methods to solve the optimization and

the learning problems described above are addressed.

A. Parameterization of the trajectories

Two parameterizations can be chosen for the joint states:

a classical trapezoidal function and an order-4 B-spline.

Both are described below. The order-4 B-spline was chosen

in order to allow for smoothness up to the third derivative.

The trapezoidal function was used to provide further means

of comparison between low and high dimensional param-

eterization spaces.

1) Order 4 B-spline: We choose periodic uniform B-

splines for their particularly compact matrix form. For

N vertices, nseg = N − 3 segments of length tseg =
tf/(N − 3) result. It follows that for the internal time

of the ith segment u(t) = t/tseg − (i − 1) tseg, such that

0 ≤ u < 1, the computation of the uniform B-spline and



derivatives is given by (as in [10])
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for 1 ≤ i ≤ nseg, (13)

where Bi represents the ith vertex, A is a constant matrix

and C(u) the matrix of basis functions. Furthermore, these

matrices are invertible, so that they can be used to satisfy

the boundary conditions. These are given by

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, (14)

where pj0 are the parameters for the jerk at time t = 0,

pθtf
are the parameters for the joint positions and pjtf

are the parameters for the jerk at time t = tf . Note that

of the 8 boundary conditions, 5 are predefined, including

zero velocities and accelerations. It was chosen not to set

the initial and final jerk to zero, as it would significantly

reduce the family of curves available to the optimization.

2) Classical trapezoidal velocity profile: The trape-

zoidal velocity profile [11], entails three phases: a constant

acceleration phase, a cruise velocity and constant deceler-

ation phase. The first and last phases have the same time

duration and the same gradient modulus, see Fig. (2).

Two parameters determine the profile: t1 and xtf =
x(tf ). It follows that t2 = tf − t1 and ẍ0 = −ẍ2 =
(x0−xtf )/(t

2
1− tf t1). Note that ẍ1 = 0. The computation

of the profile is thus straightforward. The optimization

problem contains 7×2 parameters for the n = 7 joint states

and 1 parameter for the end time tf , in all 15 parameters.

B. Search for the global optimum

The optimization problem presented in Section II is

strongly limited by local mimima (see Section IV-B for

examples). To overcome this problem, we run the opti-

mization for a given target trajectory for 100 times, using

different initial guesses for the starting parameters, chosen

with the following procedure: a robot configuration θ is

defined randomly, within the range of allowed values; a

trajectory is determined as a straight line between the

given initial and the randomly defined configuration, by

algebraic computations of the B-spline parameters; these

latter parameters are taken as initial guess. Subsequently,

the starting parameters which yield the best optimization

result of the 100 trials is taken as global optimium.

C. Offline method for the local constrained optimization

problem

The optimization problem described above is solved as a

nonlinear programming problem (NPL), by satisfying the

equality and inequality constraints at a finite number of

k via points. The proposed optimization method is based

on direct single shooting, with parameterization of the

system independent states in time, as for e.g. in [2], i.e.,

θ = θ(t,p) with p ⊆ ℜN , for N optimization parameters,

as described in Section III-A. The control forces are then

computed from the state transition Eq. (2). The NPL is

solved with the Sequential Quadratic Programming algo-

rithm from the MOPS library [9].

To compute the penetration depth between two bodies,

the ODE library was used [8]. The library allows represent-

ing objects as boxes or capsules. Each pair of intersecting

objects is treated separately and penetration depth can be

evaluated for each pair straightforwardly.

D. Efficient Initialization of the Local Planner

The optimization method presented in Section III-C

cannot be used on-line, since it takes a prohibitively long

time to converge (only 60 milliseconds are available on-

line for the computation) and is likely to get stuck into

local minima. It is therefore paramount to choose a good

initial guess of the N parameter values depending on

the estimated velocity of the moving object, and to do it

quickly. In order to do that, we generate offline a set of

(initial velocity, parameter values) pairs that we use as a

training set; several machine learning regression methods

are then compared in order to determine a map from

the estimated velocity to the optimization parameters: k-

Nearest Neighbours (k-NN) with k = 1, 2, 3, 41, Support

Vector Machines (SVM) and Gaussian Process Regression

(GPR). The input space has dimension 3 (the estimated

values of the object velocity) and the output space is N ,

the number of parameters.

1) k-Nearest Neighbour Regression: A k-NN [18] is a

simple local linear approximator of a function given a set

of known (sample,target) pairs (the training set):

k-NN(x) =
∑

i∈Ix

αiti

where Ix is the set of the indices of the k xis which have

minimum Euclidean distance from x in the chosen training

set, ti is the target value associated to xi and, in our case,

αi =
||x− xi||

−2

∑

i∈Ix
||x− xi||−2

.

(This particular choice of the αis is called Inverse-distance-

weighted k-NN.) Notice that 1-NN is equivalent to a look-

up table, that is, probably the simplest way of solving this

problem.

2) Support Vector Regression: Support Vector Regres-

sion [19], [20] builds a map between an input space and an

output space as a weighted sum of basic functions induced

by the a-priori choice of a kernel. In our case we have

chosen, as is rather customary, a Gaussian kernel, so that

the solution to the problem is

SVM(x) =

N
∑

i=1

αiG(xi, σ)

1We initially determined that no relevant advantage was obtained with
k > 4.
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Fig. 2. Robot joint velocity profiles for a static catch: B-spline
(solid/dashdot) and trapezoidal (dashed/dashdot) profiles shown. Velocity
limit shown for the 6

th and 7
th joints. A comparison between the cost

obtained with the two trajectory parameterizations is also given.

where N is the number of samples in the training set,

G(µ, σ) is a Gaussian function with mean value µ and

covariance σ2, and the αis are determined by solving

a regularised quadratic optimization problem in which a

quantity called C must be fixed a priori. C, σ have been

found in an initial round of experiments via cross-validation

and grid-search.

3) Gaussian Process Regression: Gaussian Process Re-

gression [14] is also a probabilistic method to approximate

a functional mapping. To predict a point x∗ we evaluate

the conditional mean of a Gaussian process model, given

by

f̄(x∗) = k∗

T (K+ σn2I)
−1

y = k∗

Tα , (15)

where k∗ is a kernel vector evaluated on the query point

and training inputs, K is the kernel matrix, y is the target

vector and σn2 is the noise variance. The open parameters

of a GP model are optimized using the available data.

To make GPR feasible for a real-time application, we

compute the prediction vector α off-line (this includes

an expensive matrix inversion) and then during prediction

only the covariance vector k∗ with the pre-computed α is

evaluated.

E. Real-time implementation

In the real-time setting, an initial guess for the optimized

robot trajectory parameters is first computed for the target

trajectory at hand, by means of the chosen learning method

(between those described in Section III-D). Subsequently,

based on this initial guess, the motion planner is run on-

line to compute a successful robot trajectory. For this on-

line version of the motion planner, no cost function is

optimized, and the number of via points is greatly reduced,

such that the computational time for its execution is suffi-

ciently short. The on-line planner however still satisfies the

equality and inequality constraints defined in Sections II-B

and II-C, thus adjusting any small discrepancy between

the trajectory which results from the initial guess and the

desired trajectory.

The issue of collision avoidance in real-time was how-

ever not addressed here. It may be assumed that training

points representing collision-free solutions would be gener-

ated with conservative sizes of the representative polytopes

in the problem at hand. This way, the likelihood of a

collision occurring due to on-line trajectory corrections is

minimal and the resulting inequality constraints may well

be handled in a sufficient computational run time (a colli-

sion detection function call was measured to last 8e10−7

seconds). In order to investigate this issue a relevant set of

training data must be generated for a case with potential

collisions, e.g. with an obstacle in the workspace.

IV. ANALYSIS OF RESULTS

The proposed method is applied in simulation for the ball

catching scenario, shown in Fig. 1. Following are detailed

examples to demonstrate its effectiveness.

A. Catching a flying target: static and dynamic catch

As also hinted by the theory (see [11]), the best energy

optimal solutions were found to be those with non-zero

accelerations at the boundaries. We however chose to set

them to zero, to avoid large jerk values.

When comparing the cost Γenergy, defined in Eq. (7), for

different number of parameters N , very little improvement

could be found. Parameterizations with N=43, 71 and 141

were compared, resulting in 6, 10 and 20 parameters per

state respectively. A sensible number for N was then taken

to be 43. A comparison with the trapezoidal parameteri-

zation reveals that, for the cost function Γenergy, the loss

can be very pronounced: for the example in Fig. 2 the

difference was found to be 48%.

For the off-line computations, the number of via points

was set to k = 500. All runs were first performed with an

accuracy of 10−8 and in a second iteration with accuracy

10−12 (a first iteration is completed when the optimization

is run once with a given initial guess; a second iteration is a

new run of the optimization with the initial guess given by

the result of the first iteration). No more than two iterations

were performed.

In the solutions for the static grasp, one can distinctively

see that the velocity constraints play an important role.

For example, in Fig. 2, the bottom curve evidently meets

a constraint at -1.75 rad/sec. Solutions often resemble the

parabolic profile described by the theory [11]. However,

due to the inequality constraints and the complex nonlinear

robot kinematics, the parabolic profiles are often distorted

and sometimes not even recognizable.

The implementation of the collision avoidance was ap-

plied to the self-collision of the robot and to the collision

with an obstacle in the robot workspace. The resulting

number of body pairs was optimized to mcoll = 16 for the

eight bodies. However self-collision was found to never

occur, after the minimization of the cost function and

for the given initial configuration. When introducing the
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obstacle of dimensions [0.2, 0.2, 4] meters at a position

xobst = (1.6,−1.1, 0), giving rise to collisions, the planner

successfully found collision-free trajectories, while mini-

mizing the energy cost function. In doing so, the capsule

representing the end-effector and the box representing the

obstacle may be in contact, but without overlapping, for a

substantial portion of the motion.

Fig. 2 shows an example of a static grasp, for which the

velocity at the time t = tf , when the end-effector meets

the target, is zero. Fig. 3 instead shows an example in

which the robot meets the target with a non-zero velocity.

The value of the parameters defined in Section II-C was

chosen by manual tuning to be ∆t = 0.45 and kmid =
0.08 respectively (these may be added as optimization

parameters at a later stage). The velocity of the end-effector

between times te1 and tf is 5% of the target velocity.

The reduction of the impact with the target was however

strongly limited by the joint velocity constraints, which

can be seen in the bottom graph to be met for most of the

motion. In the top figure, tb3 is approximately coincident

with tmid.

B. Global Optimality of Solutions

Fig. 4 shows two typical histograms, for two example

static catching problems. We repeated the runs 100 times

for each problem, as described in Section III-B. The

histograms include all the successful runs, for which all

equality and inequality constraints were satisfied. It is

evident that local minima exist, as shown by the different

found solutions in each problem. Also note that in both

cases, only a small percentage of the 100 runs converged

to a solution, which gives clear evidence of the strong

dependence of the convergence on a good initial guess (for

the dynamic catch this dependence is expected to be even

stronger).

After inspection, it was found that the highly nonlinear

robot kinematics is likely to cause the local minima, which
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Fig. 4. Histograms showing the found solutions for two examples of
a static catch, attempted each 100 times with a random bounded initial
guess: the different found solutions show the presence of local minima.

TABLE I

TWO END CONFIGURATIONS FOR A STATIC CATCH EXAMPLE SHOWING

TWO LOCAL MINIMA

θ(tf ) [deg] Γ[J]

-129 -24 152 -21 33 47 131 0.14

-56 93 68 59 -81 38 72 0.44

can be distinguished clearly due to their different final

configurations. As an example, two end configurations for

the top case of Fig. 4 are shown in table I.

C. Comparing machine learning methods

A training data set was first generated for the static catch

problem with the B-splines parameterization. The three

target velocity vector components were first sampled at

regular intervals from a range of values for which catching

solutions may exist. For each point, the global optimum

was sought, as described in Section III-B, to produce a

first coarse grid. The boundaries of this grid were then

expanded until no more solutions were found. More mid-

points of the grid were then also computed with the initial

guess taken from the coarse grid, to produce a finer grid, of

sufficient fineness for the subsequent learning process. The

resulting data set contains 1825 (sample, target) pairs, with

a spacing in the target velocity space of [0.17,0.25,0.125]

m/s in the range [-2,-6],[2,5],[2.5,5.5] m/s.

The total computation time of the data set on an Intel

Xeon CPU W3520 2.67GHz machine is in the order of

magnitude of 100 hours, which makes it unfeasible for

online optimization. It is also desirable to find a method

which works with fewer samples, at the same time keeping

a reasonable error rate. In order to analyze this trade-off

each method described in Section III-D is trained on 5
sets consisting of 900, 700, 500, 300, 100 pairs drawn from

the original dataset, chosen in order to be geometrically

uniformly spaced. Each method is then tested on the

samples not used for training.



TABLE II

AVERAGE COST INCREASE (%) W.R.T. GLOBAL MINIMUM COST FOR

EACH METHOD AND TRAINING SET SIZE.

98 302 504 700 900 1825

1-NN 187 113 112 103 93 46

2-NN 118 57 56 71 63 29

3-NN 105 55 52 58 53 23

4-NN 99 50 41 57 46 26

SVM 92 51 41 36 30 21

GPR 94 36 33 21 19 11

Figure 5 shows the results. The chosen error measure is

the ratio of the Mean-Squared-Error obtained for each test-

ing set and the variance of the target trajectory parameter

values for the same test set.

First of all, by considering all panels together, one can

see that the error rates are similar inter-joint. For example,

the joint parameters 31−36, corresponding to joint #6, are

consistently harder to guess than, say, parameters 25− 30,

corresponding to joint #5. This diversity depends on the

setup and the geometry of the catching movement. Sec-

ondly, notice that 1-NN consistently shows a worse error

rate than all other methods. Evidently, something slightly

more complex than a simple look-up table is required, if

smaller training sets want to be used. Overall, GPR is the

best method in most cases, and it is so consistently across

datasets for joints #2 (parameters 7-13), #4 (parameters 19-

25) and #7 (parameters 37-42).

D. Real-time implementation

Lastly, we implemented the methods described above in

the real-time simulation environment, for a more thorough

evaluation. (We also show the performance obtained by

each method trained on the full data set of 1825 samples;

this could not be done in the previous Section since no

testing set is available in this case.) For each method, we

firstly considered the optimizer convergence success rate

(solved NPL problems / total trials), randomly choosing

900 target velocities within the feasible range. Essentially

all methods performed equally well, with success rates be-

tween 95% and 98%. Surprisingly, decreasing the training

set size does not affect this performance index, indicating

that a relatively large error in prediction is tolerated.

A rather different scenario appears when we turn to

stricter performance measures. Tables II and III show, in

turn, the average percentual cost increase with respect to

the average global minimum cost, and the percentage of

runs below 60ms (again, 900 random target velocity values

were generated). Note that the number of via points was

set to k = 10 and the optimization accuracy to 10−3. Also

note that these run times are sufficient to accommodate

for multiple corrections of the target trajectory, which

may arise from new updates of the vision system (as

done in [7]). This was verified in the LBR ball-catching

simulation environment.

Consider Table II: clearly, as the training set is reduced,

TABLE III

RUNS BELOW 60MS (%) FOR EACH METHOD AND TRAINING SET SIZE.

98 302 504 700 900 1825

1-NN 91 95 94 94 95 96

2-NN 93 94 95 94 96 94

3-NN 94 95 95 95 96 95

4-NN 93 96 95 95 96 96

SVM 93 94 94 95 95 95

GPR 93 94 93 90 89 31

the energy consumption increases; also, k-NN perform

better as k is increased; SVM is better and GPR is the best.

If the main requirement is to spare energy then, GPR should

be used since it will increase the energy consumption

only by 11% with 1825 samples. When the training set is

reduced to 98 samples though, their performance becomes

similar to that of SVM.

Consider now Table III: all methods keep the required

time at an acceptably low value. Here however, GPR suffers

from a decrease in performance as the training set becomes

larger, keeping the pace in only 31% of the cases when the

set is full (1825 samples).

V. DISCUSSION AND CONCLUSION

In this section the results of this work are briefly discuss

and final conclusions are given.

A. Discussion

From the results presented in tables II and III it is evident

that for the on-line implementation a trade-off needs to be

made between average cost increase, computational time

and number of training points. Particularly for the ball

catching task and with the LBR robot (and its joint velocity

limits), the computational time sets a hard constraint which

must be fulfilled at the expense of average loss in cost

function. Noticeable improvement with respect to a 1 -NN

with 1825 training points can be seen, for e.g., with a 4-NN

and 500 points or a GPR and 300 points. The GPR also

gives the best performance in terms of parameter prediction

and cost increase, but at a higher computational cost. This

problem is however only critical for tasks for which the

computational time is very limited. The method may turn

ideal for tasks which allow more computational time during

real-time performance, for which some degree of on-line

optimization may even be possible.

The authors are aware of the fact that the presence of

nondiffentiable points in the penetration depth function,

may give rise to numerical problems for the gradient-

based optimization, which requires C2 smooth objective

and constraint functions in order to converge. However,

the results found by the authors with a preliminary analysis

in implementing the ODE collision detection function (as

described in section II-B) to a multitude of test cases with

static obstacles in 2D, were positive. More mathematically

sound methods can be found in the literature (see [12],

[13]). Particularly in [13], this problem is partially solved

by introducing a method to generate strictly convex hulls,
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Fig. 5. Comparison of Machine Learning methods for training sets of decreasing size.

for which the discontinuities only remain for the case of

deep penetrations.

As described in Section III-E, further work will aim at

establishing the speed of convergence of the on-line motion

planner in the presence of collisions. If this will introduce a

critical time factor, the size of the representative polytopes

will need to be made more conservative, clearly at the loss

of the cost function optimization (e.g., in order to avoid

collision, the ball will be caught at a less optimal point of

its trajectory).

B. Conclusion

The problem of catching a small flying object was

addressed using a nonlinear optimization framework. A

suitable parameterization was implemented with B-splines

and a comparison made to a more simple trapezoidal func-

tion. Evidence was given that much more efficient solutions

can be found with the former. The capability of handling

collision avoidance constraints was also demonstrated for

the off-line generation of optimal solutions. Subsequently, a

methodology was described for searching global solutions,

thus overcoming the problem of local minima.

Finally different methods to provide the computation-

ally expensive optimal solutions on-line were applied to

the ball-catching problem in simulation. Due to the hard

constraint on the final time, it was found that some perfor-

mance in the accuracy of the prediction has to be sacrificed.

A substantial improvement with respect to a look-up table

approach was shown.

The presented method clearly has the limitation of

working for a fixed initial robot configuration and a fixed

starting point of the target trajectory. Furthermore, grasping

of larger targets, for which the rotational motion is also

important, will necessarily require six parameters rather

than three to represent their trajectories. Future work will

concentrate on these difficult issues. However, for the

relatively simple addressed problem, it was shown that

the solutions computed with nonlinear optimization can

be used on-line, to a noticeable advantage of the here

arbitrarily chosen cost function.
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[1] U. Frese, B. Bäuml, S. Haidacher, G. Schreiber, I. Schaefer, M.
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