
  

  

Abstract—This paper considers the motion planning problem 
that arises when a tethered robot descends and ascends steep 
obstacle-strewn terrain. This work is motivated by the Axel 
tethered robotic rover designed to provide access to extreme 
extra-planetary terrains. Motion planning for this type of rover 
is very different from traditional planning problems because 
the tether geometry under high loading must be considered 
during the planning process. Furthermore, only round-trip 
paths that avoid tether entanglement are viable solutions to the 
problem. We present an algorithm for tethered robot motion 
planning on steep terrain that reduces the likelihood that the 
tether will become entangled during descent and ascent of steep 
slopes. The algorithm builds upon the notion of the shortest 
homotopic tether path and its associated sleeve. We provide a 
simple example for purposes of illustration.    

I. MOTIVATION AND BACKGROUND 
OME of the richest potential science targets for future 
Mars exploration missions lie in terrains that are inac-

cessible to state-of-the-art Martian rovers, limiting our abili-
ty to carry out in situ analysis of these rich opportunities. 
Example targets include geologic flows on crater walls, ice 
deposits in the depths of dark craters, bedrock layers in ver-
tical promontories, and extreme terrain underlying the 
source of methane plumes (see [1,2] for details). Titan, Eu-
ropa, Enceladus, and the Earth’s moon also offer challenging 
terrains with associated scientific targets. A new generation 
of exploration robots is needed to access these extreme ter-
rains in order to probe, sample, and measure. New inquiries 
of this sort could yield significant scientific rewards. 
 In order to provide access and in situ sampling in extreme 
terrains, the Jet Propulsion Laboratory (JPL) and the Cali-
fornia Institute of Technology have collaborated to develop 
the Axel rover [1,2]. The minimalistic Axel robot consists of 
two wheels connected by a central cylindrical body, a caster 
arm, and an actively controlled tether passing through the 
caster arm (Fig. 1). The caster arm, in addition to controlling 
the tether, provides a reaction force against the terrain 
needed to generate forward motion when travelling on flat 
ground. 
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Fig. 1.  Photograph of Axel 1 rover with key features labeled. 

 

 
Fig. 2.  Proposed mission concept overlaid on false color image of Victoria 

Crater. Note that the rover graphics are not drawn to scale. 
 
Axel is a rappelling robot which can operate in extreme 

terrain via the use of a host anchor platform. Since Axel’s 
body acts as a winch (the tether is wound and unwound 
around the central body as it rotates relative to the wheels), 
the host platform requirements are reduced to a simple 
mount. Fig. 2 portrays a hypothetical scenario in which Axel 
is deployed from the Mars Science Laboratory [3]. Axel has 
demonstrated high mobility in a simulated Martian environ-
ment using both its actively managed tether and its novel 
grouser (paddle) wheels. The rover has the capability to as-
cend/descend vertical cliff walls and climb over obstacles 
whose heights are ~70% of its wheel diameter [1,2]. At 
times, however, Axel relies on large tether tensions in order 
to climb and maneuver [1]. An open question is how to au-
tonomously plan Axel’s ascending and descending motions 
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so as to minimize the likelihood that its tether becomes en-
tangled during long traverses on complex terrains. Addition-
ally, we would like to know how to predict uncontrollable 
configurations of the rover on steep terrain and avoid them 
through intelligent planning.   

The goal of this paper is to develop the conceptual 
framework for motion planning algorithms for Axel-like 
robots operating in steep terrains. While we make many 
simplifying assumptions to produce this framework, we be-
lieve that future work can relax many of these assumptions 
while staying within the context of the algorithm. After re-
viewing previous work in the next section, Section III sum-
marizes our simplified model of extreme extra-planetary 
terrain. Section IV intuitively discusses the steep slope as-
cent/descent problem and then sketches the planning algo-
rithm. Section V provides technical details behind the algo-
rithm’s key steps. Section VI provides an example while 
Section VII describes open problems and our current activi-
ties. 

II. RELATED WORK  
Several prior works have considered the problem of mo-

tion planning for tethered robots, e.g. [4-8]. However, in 
these prior works, the tether acted primarily as an umbilical 
cord to provide power, communication, and control signals 
to the mobile robot. The tether did not generate large reac-
tion forces needed for mobility. The primary motion goal in 
these efforts was to minimize entanglement of the trailing 
umbilical tether with obstacles [4,5] or with other robots [6-
8] in a multi-robot scenario. The motion planning problem 
considered in this paper is, to our knowledge, unique in that 
not only must tether entanglement be avoided, but the tether 
and wheels acting together must also be able to generate 
sufficient forces in order to ascend or descend steep slopes.  
Moreover, these forces must be properly aligned with the 
robot’s motion goals to ensure stable robot movement. 

Axel is not the first tethered robot to be developed for 
steep terrain access. The Dante II robot [9-12], designed for 
descent into an Alaskan volcano, is the most well known 
tethered robot. The formidable engineering efforts [9,11] 
behind the development of this vehicle did not produce a 
detailed theory for tethered robot motion planning, although 
this work did analyze the forces experienced by a tethered 
robot on a slope [10]. It is worth pointing out that Dante II’s 
mission ended when large lateral tether forces destabilized 
and toppled the vehicle during slope ascent. This event de-
monstrates the need for a planning paradigm that integrates 
motion planning with tether mechanics and terramechanics. 

The JPL Cliffbot system [13,14] is another extra-planetary 
rover prototype designed to rappel across a cliff face under 
the actuation of two robotic tethers. While the Cliffbot has 
traversed cliffs on Svalbard, no motion planning theory for 
long descents has emerged from that effort, in part because 
its dual tether design is not suitable for long descents. The 
analysis presented in this paper assumes a single tether, 
though many of these principles could be extended to a 

planning algorithm for Cliffbot-like robots. 
It is important to note that Axel’s tether is paid out or 

reeled in from the robot and not from a winch located at the 
anchor. This approach minimizes abrasion on the tether as 
compared to a configuration where tether winching is per-
formed at the anchor. While we believe that much of our 
planning framework can be applied to anchor-winching sys-
tems, our focus is on robot-side winching systems. 

III. MODELING EXTREME EXTRA-PLANETARY TERRAIN 
To produce a robust tethered motion planning algorithm, 

we must first develop a generic blueprint for the extreme 
extra-planetary terrains that we expect to encounter. Since 
reaching lunar orbit in June of 2009, NASA’s Lunar Recon-
naissance Orbiter (LRO) has been acquiring altimetry data to 
produce a 3-dimensional map of the moon’s surface [17]. 
Fig. 3 shows a portion of this data from the north wall of the 
Shackleton Crater taken by the LRO’s Lunar Orbiter Laser 
Altimeter (LOLA) [18]. The Shackelton Crater is a good 
example of an extreme extra-planetary terrain which conven-
tional, un-tethered rovers would be unable to explore, and it 
is a candidate application for Axel. 
 

 
Fig. 3. Elevation map of 1 km wide strip of the Shackleton Crater taken by 

LOLA/LRO. 
 

 
Fig. 4.  Simplified 3-plane model of the Shackleton Crater. 

 
The data show that the crater walls have a very consistent 

and steep slope over 7km long. While descending or ascend-
ing the slope, a robot must rely upon the tether for climbing 
or support forces, as beyond a certain slope angle (which 
depends upon wheel size and geometry, the wheel-soil inte-
raction forces, the robot mass, and the wheels’ configura-
tion), the wheels cannot reliably generate sufficient traction 
forces to propel the robot. Additionally, the crater floor and 
rim, at least on a macroscopic scale, are relatively flat.  
Thus, we can conceptualize the rim, crater floor, and slope 
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as an intersection of three planes, two which are roughly 
horizontal and the other sloped at a steep angle α (Fig. 4).   

More generally, many extreme terrains of interest can be 
divided into an alternating sequence of gentle slopes (termed 
tether-free regions where the rover can travel without the aid 
of its tether) and steep slopes (termed tether-demand regions 
because tether forces are essential for mobility in these re-
gions).  For example, the promontory in the Victoria crater 
shown in Fig. 2 can be divided into a reasonably small num-
ber of tether-free and tether-demand regions. One can easily 
conceive of a model consisting of hundreds or thousands of 
intersecting planes in order to approximate a terrain. And in 
fact, most available altimetry data for extreme terrains 
comes in the form of a triangulated mesh. Modeling the cra-
ter this way, we change a motion planning problem on a 
complicated 3-dimensional surface into a quasi-2-
dimensional problem. For the bulk of this paper we analyze 
the simple geometry of Figure 4 and sketch in Section VII 
how to extend the methodology to more realistic surface 
meshes. 

IV. OVERVIEW OF EXTREME TERRAIN MOTION PLANNING 
This section considers the conceptual problem of planning 

the motions of a tethered, wheeled robot on an extreme ter-
rain of the type discussed in Section III in order to motivate 
the planning approach which is developed in Section V.  

A. Summary of the Problem  
We assume that a model of the terrain is a priori known.  

Any future mission to an extreme extra-planetary terrain will 
likely incorporate an orbiter which can provide altimetry and 
high resolution images from which terrain models can be 
constructed with features on the order of a few meters in 
scale. We further assume that the terrain is divided into teth-
er-demand and tether-free regions (see Section V). Tether-
free and tether-demand planes may contain one or more 
convex, polygonal obstacles (non-convex obstacles can be 
decomposed into a finite number of convex obstacles).  We 
assume that an anchor point, a0, has been chosen. While in 
practice the anchor may lie well away from a steep slope, we 
simply assume that a0 is on the edge of a tether-demand 
plane. The tether is fixed to the anchor, but its geometry is 
otherwise governed by its interaction with the terrain and 
with the robot. Likewise, the coordinates of a goal location, 
g, are given. 

The tethered motion planning problem on extreme terrain 
is formulated in the following manner: given a terrain model 
consisting of tether-free and tether-demand intersecting 
planes, a set of obstacles, an initial tethered robot configu-
ration and tether anchor point, compute a feasible round-
trip path from the anchor point to the goal configuration and 
back. In some cases, more than one feasible path may exist, 
and thus an optimal path could be chosen based on different 
criteria, such as “safest” or “shortest.” Here, a feasible path 
is one where, to the resolution of the available terrain model 
and surface characteristics, Axel is controllable (Section 

V.A) at all times during ascent and descent. 

B. Ascent/Descent Approach 
Within the tether-free regions, assuming that it is possible 

to pay out the tether at the same rate that the rover moves, 
one can use existing motion planning algorithms (e.g., [4]) 
to compute feasible paths. Motion planning in the tether-
demand planes requires more consideration.  

Tethered robot ascent of steep slopes is generally more dif-
ficult than descent. Working against gravity, terrains with 
little or no traction can be very difficult to traverse, and it 
can be easy for a rover to become stuck underneath an ob-
stacle. Additionally, while executing a tethered ascent, a 
robot’s motion is constrained in that it is unable to deviate 
much from the path of the tether.  

For the reasons just stated, not all feasible descent paths 
will be feasible ascent paths. Therefore, the set of all possi-
ble descent paths will generally be much larger than the set 
of viable ascent paths. Thus, in order to reduce the computa-
tional complexity of the planning problem and to structure 
the search space, the feasible ascent paths are computed first. 
We then search for safe descent paths within the set of paths 
whose initial tether configurations are homotopic (smoothly 
deformable) to the tether configuration of ascent paths.  

C. Ascent Path Planning 
 

 
Fig. 5.  Top view of intersecting tether-demand and tether-free planes with 
obstacles and intermediate anchor points. The dotted sections represent the 

controllable sets. 
 
To climb a tether-demand plane, Axel must reel in its teth-

er until it is taut and use the cable’s tension to travel up the 
steep slope. The shape of the taut tether is very important to 
the robot’s ascent since it will dictate the direction in which 
this upward force is applied. For simplicity, we will assume 
that the contact between the tether and the ground is friction-
less. This ignores “frictional” obstacles, or snagging points 
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Input: Terrain model, obstacles O1,…,ON, anchor a0, goal g 
 
1.  Preprocess terrain into tether-demand, tether-free regions; 
2. Construct {Si(a0,g)} (Set of SHPs connecting  a0 to g); 
3. Extract intermediate anchor points {ai,j}in {Si(a0,g)}; 
4. Sfeas={}; Nfeas=0;                  % set of feasible ascending paths 
5  For i=1 to NS                                      % find feasible ascending paths  
        Continue=true;   q = g;   j= Ai; 
        While (Continue) 
     Construct  Ci,j(q); 
    If  (ai,j is passable) 
     j=j-1;                    % advance to next intermediate anchor  
     If (j==0),             % path to anchor exists 
                             {Sfeas}={Sfeas}+ Si(a0,g);    Nfeas= Nfeas +1; 
        Continue=false; 
     Else Select q ε SHP edge; 
   Else Continue=false;            % Si(a0,g) not feasible 
6. If (Nfeas>0)                                         % feasible ascending paths exist 

    For i=1 to Nfeas                               % construct descending paths  
  Find safe descending subset of sleeve(Si

feas); 
          Plan path from a0 to g  in safe sleeve(Si

feas); 
    Else report failure.                               % no feasible ascent exists 
 
Output: A set of controllable descent/ascent paths, or failure. 
 

that may occur in areas of high surface friction. With this 
assumption, the taut tether geometry will be the shortest ob-
stacle-free path from the anchor to the robot. Hence, one can 
compute the configuration of a taut tether given a slack con-
figuration by finding the shortest homotopic path (SHP) 
from the anchor to the robot’s configuration. I.e., this is the 
shortest path which is smoothly deformable to the tether’s 
geometry. An algorithm for computing the SHP in a 2-D 
plane with obstacles can be found in [19]. Aspects of this 
algorithm’s construction will be summarized in Section V. 
 Once the SHP from the anchor to a given robot configura-
tion has been computed, we can identify intermediate anc-
hor points. These are the points at which the taut tether con-
tacts one or more of the obstacles, O1…ON. Starting with the 
anchor point, a0, the intermediate anchor points, a1…ak, are 
indexed in increasing order along the tether from the anchor 
point (Fig. 5). An intermediate anchor point, aj, is passable 
from robot configuration q if, given q and an SHP with anc-
hor points a0…aj, the robot can reach a configuration which 
removes aj from the SHP and makes aj-1 the most immediate 
anchor point.  

With these definitions, the ascent path planning problem 
simplifies to finding a taut tether configuration containing a 
sequence of passable anchor points between g and a0. To 
find the set of all feasible ascents, one computes all of the 
SHPs connecting the anchor, a0, to the goal, g.  Algorithms 
for finding the shortest path of given homotopy type already 
exist [19-21]. We only consider shortest paths which do not 
wind around an obstacle. Let {Si(a0,g)}, i=1,..NS, denote this 
set of taut tether paths connecting a0 to g. Assuming a finite 
number of obstacles in the region of interest, NS is finite. 
Likewise, there are a finite number of intermediate anchor 
points, Ai, in path Si(a0,g). 

To determine whether or not the intermediate anchors of 
Si(a0,g) are passable, we define a controllable set, Ci,j(q), 
associated with the jth anchor point of the ith  SHP, ai,j.  
Ci,j(q) is the set of points that, given the SHP associated to q 
and the closest intermediate anchor aj, are reachable from 
the current robot configuration, q. Generally, the controlla-
ble sets will depend upon the SHP, the terrain angle, the 
terrain traction model, and the robot’s dynamic capabilities.  

Controllable sets have 3 types of edges: 1) an edge which, 
when crossed, changes the list of anchor points in the SHP 
(SHP edge), 2) an edge which is the limit of reachable con-
figurations (reachable edge), and 3) an edge which may be 
both (1) and (2). In Fig. 5, the SHP edge is the dotted line, 
the reachable edges are the dashed lines, and the 
SHP/Reachable edge is the dotted-dashed line.  

From the definitions presented in this section, it should be 
evident that the intermediate anchor ai,j is passable if Ci,j(q) 
has a SHP edge which, when crossed, makes ai,j-1 the most 
immediate anchor point. Once an intermediate anchor is 
found to be passable, the crossed SHP edge is used to calcu-
late a starting configuration, q, for the analysis of the follow-
ing controllable set. Optionally, q becomes set-valued as the 
starting point for the computation of Ci,j-1(q).  

If all intermediate anchor points of Si(a0,g) are passable, a 
kinodynamic motion planning algorithm [22] can be used to 

search for feasible or optimal paths from g to a0 within the 
space of the associated controllable sets.  

D. Descent Path Planning 
The descent path planning problem is similar to the ascent 

planning problem except that we are now further constrained 
to consider only paths which are homotopic to the feasible 
ascent paths, {Si

feas(a0,g)}. As described below we use the 
sleeve framework of Hershberger and Snoeyink [19] to 
search for descent paths within the feasible ascent homotopy 
classes. 

E. Summary 
The basic tethered robot steep terrain planning algorithm 

can be summarized in the following pseudo-code. 
 

Fig. 6.  Pseudo-code of steep terrain tethered robot planning algorithm 

V. ALGORITHM DETAILS 
This section provides additional technical details regard-

ing the key steps of the planning algorithm described above. 

A. Homotopies (Sleeves) of Ascending Paths 
To construct the taut tether configuration and to prepro-

cess the terrain for efficient descent planning, the tether de-
mand regions are triangulated as follows. Recall that a 2-
dimensional simplicial complex is a triangulated 2-manifold. 
I.e., it is a collection of triangles, edges, and vertices such 
that individual triangles may have only 3 relations 1) no in-
tersection, 2) intersection at a vertex, or 3) intersection at 
two vertices and a common edge. A boundary-triangulated 
2-manifold (BTM) is a simplicial complex in which all ver-
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tices are incident to two boundary edges. Boundary edges 
are incident only to a single triangle. Practically, boundary 
edges form the boundaries of the tether demand regions or 
the edges bounding obstacles. Fig. 7 shows the tether-
demand plane of Fig. 5 triangulated as a BTM. [19] provides 
details on constructing a BTM. 

A simple path is a curve which does not cross itself. We 
are concerned only with simple paths since we are modeling 
a continuous tether and do not want paths that form closed 
loops around obstacles. 
 

 
Fig. 7. The tether-demand plane of Fig. 5 processed into a boundary-

triangulated 2-manifold (BTM). 
 

 
Fig. 8(a)-(d). Shaded grey regions represent the four possible sleeves run-
ning from the top of the tether-demand plane to the robot configuration. 

 
Finally, a sleeve [19] is a triangulated simple polygon (a 

polygon with no holes) whose dual tree is a simple path. 
Sleeves can represent the homotopy class of the tether confi-
guration during ascent. For example, Fig. 8 shows the four 
possible sleeves for the BTM presented in Fig. 7. These 
sleeves represent the 4 unique homotopy classes of paths 
connecting the top of the tether demand region to the robot 
configuration. The sleeve is particularly useful because it has 
the property that any two simple paths in the same sleeve 
with the same endpoints must be homotopic. Thus, all tether 
paths within the sleeve of Si(a0,g), denoted by  
sleeve[Si(a0,g)], will deform to  Si(a0,g) when the tether is 
pulled taut. The shortest path in a simple polygon can be 

readily found. While it is not relevant to this paper, it is 
worth noting that given a slack tether shape, the associated 
SHP (taut tether configuration) can be found from the sleeve 
construction [19]. 

Let Si
feas(a0,g) denote the ith feasible ascending SHPs (all 

of its intermediate anchors are passable). After all feasible 
ascent paths, {Sj

feas(a0,g)}, j=1,…,Nfeas are found, the search 
space for descending paths is limited to the sleeves of the 
feasible ascent paths, e.g., one of the shaded regions of Fig. 
8. As described below, we can further refine this space by 
looking only at the subsets of these regions where the rover 
is safe and controllable. If no suitable descent path can be 
found within this space, we can expand the search to include 
triangles adjacent to the sleeve, so long as the path returns to 
the sleeve through the same triangle edge from which it left. 
This will ensure homotopy to the ascent configuration when 
the tether is pulled taut.  

B. Constructing Controllable Sets (Safe Rover Postures) 
During the ascent planning, we must construct the control-

lable sets needed to assess if an intermediate anchor is pass-
able. In the descent phase, it is useful to determine the sub-
sets of the sleeves where the vehicle is likewise safe and 
controllable. In general, constructing reachable sets of nonli-
near control systems is a difficult task and depends upon the 
dynamic capabilities of the robot, its configuration on the 
terrain, a terrain-vehicle interaction model, and the geometry 
of the tether. Here we sketch a general and conservative ap-
proach. 
 

 
Fig. 9. Sketch of Axel in tether-demand, showing Axel configuration va-

riables and up-slope motion cone, US(q) 
 

Controllability requires a dynamic model which characte-
rizes the vehicle’s ability to generate maneuvering forces. 
Let )(),(),( qVqqKqqL −=   be the rover’s Lagrangian, 
where K is its kinetic energy and V its potential energy, and 
q denotes its configuration variables: 
𝑞 = (𝑥,𝑦,𝜃,𝛽,𝜑1,𝜑2,𝜃𝑐) for Axel, where x, y, and θ refer 
to Axel’s position on the tether demand plane and its up-
slope orientation, respectively. The variables β, φ1, and φ2 
denote the body and wheel angles and θc is the caster arm 
angle. 

To obtain the correct equations of motion, we must apply 
appropriate constraints. The tether constrains the system 
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such that the distance between Axel and the upslope inter-
mediate anchor can be no greater than the length of unreeled 
tether (assuming that tether elongation under load is negligi-
ble). The movement of the caster arm is restricted such that 
it cannot penetrate the ground. Under these assumptions, the 
tether reaction force and the caster arm ground reaction force 
can be modeled as a set of two independent holonomic in-
equality constraints of the form ℎ𝑗(𝑞) ≤ 0, 𝑗 = 1,2.  

A model for the wheel-ground interaction forces can be 
quite complex and dependent upon the soil type [23]. For 
purposes of discussion, assume that a Coulomb friction 
model governs Axel’s ground contact. Assuming Axel rolls 
upon the ground without slipping, its motion is governed by 
nonholonomic constraints of the form: 𝜔𝑘(𝑞)𝑞̇ = 0, 
𝑘 = 1,2,3. Including the reaction forces that arise from the 
nonholonomic constraints, the Euler-Lagrange equations 
take the form 

τ=Λ+
∂
∂

−







∂
∂ )(qC

q
L

q
L

dt
d T


 

where τ is the vector of wheel and caster motor torques, Λ 
are the undetermined Lagrange multipliers that correspond 
to the tether, caster, and wheel reaction forces (assuming the 
constraints are active), and matrix C(q) arises from the con-
straints: 

𝐶(𝑞) = �𝜔𝑘
𝑇(𝑞) �

𝜕ℎ𝑗(𝑞)

𝜕𝑞
�
𝑇
�
𝑇
. 

The Euler-Lagrange equation can be arranged in the form 

         τ=Λ+++ )()(),()( qCqGqqBqqM T        (1) 

where M(q) is a mass matrix, B is the Coriolis forces, and 
G(q) denotes gravitational forces. When active, the holo-
nomic constraints can be modeled as forces acting on the 
system: 𝑧𝚥̈ = 𝐹�𝑧𝑗 , 𝑧𝚥̇�, where 𝑧𝑗 = ℎ𝑗(𝑞). More generally, 
this can be expressed as: 

𝜕ℎ𝑗
𝜕𝑞
𝑞̈ + 𝑑

𝑑𝑡
�
𝜕ℎ𝑗
𝜕𝑞
� 𝑞̇ = 𝐹 �ℎ𝑗(𝑞),

𝜕ℎ𝑗
𝜕𝑞
𝑞̇� . 

The tether tension force, for example, can be readily mod-
eled as a mass-spring-damper system. These forces can be 
added into the time-derivative of the constraint equation, 
yielding 𝐶𝑞̈ + 𝐶̇𝑞̇ + 𝑆 = 0, where 

 𝑆 = �0, 0, 0,−𝐹(𝑧𝑗 , 𝑧𝚥̇)�
𝑇
.  

Solving for the Lagrange multipliers,  

[ ] ( )[ ]qCSGBCMCCM T ++−−=Λ −−− τ111

 substituting the multipliers into Equation (1), and assuming 
that Axel is moving slowly, yields:  

( ) SqKqGCMqKM
SCCMCM

GCMCCMCMMq
TT

TT

)()]([)(
][

])[][(

11

111

11111

−−−≡

−
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−−

−−−

−−−−−

τ

τ

. 

Since Axel moves slowly, its motions can be approximated 
by 𝑞̇ ≈ 𝑞̈∆𝑡 for small time ∆𝑡. Thus, axel can successfully 
maneuver upslope if there exists at configuration q a feasible 
set of motor torques τ such that: 

( ) )()()]([)( 11 qUSSqKqGCMqKM ∈−−− −− τ  
where US(q) is the upslope motion cone at configuration q, 
which  represents the directions of motions which usefully 
displace Axel in a direction which allows passing of the 
nearest intermediate anchor (Fig. 9). 
 In practice, one or more of Axel’s wheels may slip as it 
maneuvers, and the tether and caster constraints may become 
intermittently active and inactive. We test if the wheel reac-
tion forces (which are computed from the Lagrange multip-
lers) do not exceed the friction limits. If they do, the confi-
guration is deemed uncontrollable. Alternatively, one can 
use a more complex dynamic model which incorporates 
wheel slip forces. It is generally not possible to model these 
issues with enough precision to predict when Axel will 
switch between different models that govern its behavior. 
Thus, Axel’s dynamics represent a multiple model control 
system [24], and Axel’s ability to locally maneuver around 
an obstacle can be formally posed as a problem in multiple 
model controllability [24], which is beyond the scope of this 
paper.  
 A similar analysis can be used during descent planning to 
prune the geometry of the sleeve down to the subset of safe 
and controllable rover configurations. In practice, the con-
trollable sets for ascent and the pruning procedure during 
descent planning are computed on a grid. Because controlla-
bility depends on the SHP, each sleeve corresponding to a 
feasible ascent path, Si

feas, is discretized, and the controlla-
bility calculation is performed at each point of the grid. Fig. 
10 shows a computational example of such a discretized 
calculation for the sleeve of one ascending SHP. 
 

 
Fig. 10.  Computational example of Axel controllability calculation in one 
sleeve of 45 degree sloped tether demand region.  Left figure shows goal 

and anchor point, with obstacles in white and one possible sleeve in yellow. 
Dots in right figure represent grid points in sleeve.  Red circles depict con-

trollable/safe subset of sleeve. 
 

Finally, the dynamic model, with the tether reaction force 
removed, can be used to predict if the rover is mobile at a 
given posture, q.  This analysis can be used to classify the 
motion planes in to tether-demand and tether-free categories. 
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VI. EXAMPLE 
A simple example will help to illustrate the concepts pre-

sented in this paper. Let the terrain model be given as in Fig. 
11, with the anchor point placed near the border between a 
tether-free and tether-demand plane. Obstacles and a goal 
are located on the tether-demand plane, which is slanted at 
angle α to the horizontal. The dotted line denotes the boun-
dary between compact soil and loose sand terrain regions. In 
this example, the robot is modeled as a simple point mass 
with Coulomb friction governing its interaction with the 
terrain. 

 

 
Fig. 11. (a) Terrain model in perspective and (b) the top-down view. The 

dotted line denotes the boundary between compact soil and the loose sand. 
 

 
Fig. 12. Shaded regions represent some of the controllable sets for the ter-
rain model. Different shadings distinguish between adjacent controllable 

sets. 
 
 Our first task is to compute the homotopy classes of the 
viable ascent paths, which requires that we find the controll-
able sets. If we assume quasi-static robot motion, then the 
reachable edges of the controllable sets will occur at the 
points where the point mass robot will start to slip in static 
equilibrium. A straightforward calculation shows that this 
relation is given by 

                         ( )αµθ cotsin 1
max

−=  .                       

θmax is the maximum angle from the vertical to the straight 
line connecting the robot to the nearest anchor point, α is the 
slope angle, and µ is the coefficient of friction between the 
robot and the terrain (which differs in the two soil regions). 
Fig. 12 shows some of the controllable sets in this terrain 
model. θc is the maximum up-slope tether angle for the com-
pact soil and θs is the analogous value for the loose sand, 
which has a lower coefficient of friction.  

Following the algorithm in Sections IV and V, we see that 
the only continuous sequence of passable intermediate anc-
hor points from the goal to a0 is [a1 a2] as shown in Fig. 12. 
Next, we compute the BTM of the tether-demand plane and 
search for a path within the ascent sleeve based on an opti-
mization criterion, in this case the shortest path (Fig. 13).   
 At first glance the naïve shortest path from the anchor 
point to the goal may seem very desirable because it com-
pletely avoids contact between the tether and the obstacles. 
The controllable sets, however, tell us that this path does not 
guarantee the robot’s safety on this steep terrain. Instead, we 
take advantage of the passable anchor points in order to find 
a safe path to the goal and back to the anchor point.  

 
 

 
 

Fig. 13. Dashed lines show the BTM of the terrain, where the shaded region 
is the sleeve of the viable ascent path,.  The red line is a naïve shortest path 
from anchor to goal, while the green line is the shortest path within the only 

viable ascent homotopy class. 

VII. DISCUSSION AND CONCLUSION 
This paper was motivated by the belief that tethered ro-

bots, such as the Axel rover, offer a potential platform to 
access scientific targets on extreme extra-planetary terrains. 
This paper presented a first step toward a motion planning 
framework for such vehicles. Admittedly, our algorithm is 
based on many assumptions which may not hold in practice. 
However, we feel that many aspects of this framework will 
still hold when some of these assumptions are relaxed. We 
considered only flat tether-demand planes in this paper.  
However, the BTM construction holds for curved surfaces 
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and 3-dimensional surface meshes. Keeping with the as-
sumption of frictionless tether-ground interaction, the short-
est path on these non-flat BTMs is equivalent to finding the 
shortest path for a point robot operating in a field of 3-
dimensional polyhedral obstacles [25]. The generalization of 
the notion of sleeve to this geometry is still an open ques-
tion. A more difficult problem is to include the effects of 
ground-tether friction. Finally, it is abundantly clear that the 
motion plans may be quite sensitive to the details of the 
wheel/soil interaction model. Developing a planner which is 
robust against errors in this model is essential for real world 
applications. Finally, an on-line version of a tethered-robot 
planner which can handle terrains which are only a priori 
partially or incompletely known will be invaluable in some 
applications. 
 

 
Fig. 14. Assembled Axel II prototype traversing a rock in the JPL Mars 

Yard. 
 
 Our long term plan is to implement this algorithm on the 
Axel II rover during field experiments conducted on terrains 
which closely resemble mission targets on the Moon or Mars 
(see Fig. 14). 
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