
MIT Open Access Articles

Making self-disassembling objects with multiple 
components in the Robot Pebbles system

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Gilpin, Kyle, Koyanagi, Kent and Rus, Daniela. 2011. "Making self-disassembling 
objects with multiple components in the Robot Pebbles system."

As Published: 10.1109/icra.2011.5980305

Publisher: IEEE

Persistent URL: https://hdl.handle.net/1721.1/137108

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137108
http://creativecommons.org/licenses/by-nc-sa/4.0/


Making Self-Disassembling Objects with Multiple
Components in the Robot Pebbles System

Kyle Gilpin, Kent Koyanagi, and Daniela Rus

Abstract— This paper describes several novel algorithms
for shape formation by subtraction in programmable matter
systems. These algorithms allow the simultaneous formation of
multiple different shapes from a single block of host material.
The resulting shapes are allowed to intertwine in arbitrarily
complex ways. We also present a proof that the algorithms
operate correctly to form the desired shapes. Finally, we show
experimental results from close to 100 trials using both the
Robot Pebbles hardware and a unique software simulator.
Multiple trials of several different experiments demonstrate the
algorithms operating correctly.

I. I NTRODUCTION

We present two provably-correct algorithms for shape
formation by subtraction in the Robot Pebbles programmable
matter system. These algorithms allow the system to simul-
taneously form multiple, intricate, intertwining shapes that
could fill a multitude of mechanical roles by acting as joints,
hinges, gears, or fasteners. In general, programmable matter
systems are composed of small, intelligent modules that are
able to form a variety of macroscale objects in response to
external commands or stimuli. In our system, shapes are
formed by deconstructing an initial block of material to
eliminate unnecessary pieces. We call this approach self-
disassembly or subtraction [1]. In the same way a sculptor
removes the extra stone from a block of marble to reveal
a statue, our system subtracts modules to form the goal
structure. The system can make functional objects such as
tools, containers, linkages, and support systems, or objects
for entertainment like the Tetris pieces shown in Figure 1.

Our ultimate goal is to create a system of grain-sized
modules that can form arbitrary structures with a variety of
material properties on demand by selectively making and
breaking connections. Given a bag of this Smart Sand, one
can shake it in order to form arbitrary shapes with the
modules. The modules inside first crystallize into a regular
structure and then self-disassemble in an organized fashion
to form the requested object. The object can be retrieved
by reaching into the bag and brushing off the extra modules.
When the user is done with the object, he returns it to the bag
where it disintegrates back to its component modules. The
free modules are incorporated into the universal structure
of the bag and can be reused at a later time. Such a
system would be useful for an astronaut on an inter-planetary
mission or a scientist isolated at the South Pole. Even for
the average mechanic or surgeon, having access to arbitrary,
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Fig. 1. Twenty-eight modules assembled in a 4-by-7 grid can be told to
disassemble into all 6 possible Tetris pieces in one pass.

task-specific tools would be valuable for inspection and
manipulation in tight spaces.

A. Motivation

When using programmable matter to form objects, one
of the major challenges is conveying a description of the
object to be formed to the relevant modules. One approach
is to globally broadcast a description of the shape to be
formed. In a small system, this approach is tractable, but
the communication cost scales asO(n2)–in a system ofn
modules, a total ofn messages is exchanged among all
neighbors, withn bits per message–regardless of the size
of the object to be formed. We are aiming for a system of
Smart Sand in which each module is on the order of a cubic
millimeter. A typical claw hammer with a volume of 240cc,
would require over 240,000 grains of Smart Sand to form,
and the initial block of material would need to be several
times this size. Given that communication requires time and
power, the cost of broadcasting the shape description in
such a system would be incredibly inefficient and difficult
to implement.

As an alternative, this paper presents the design an imple-
mentation of shape distribution and disassembly algorithms
which transmit only a minimal amount of information to a
subset of all modules. These algorithms guarantee that all
modules in the initial block of material will correctly be in-
formed whether they are a part of a goal shape. Furthermore,
our disconnection algorithm relies on distributed leaf-to-root
deconstruction of an arbitrary spanning tree to ensure that



each module breaks its connections to its neighbors in an
ordered manner that guarantees the formation of the specified
goal shape. The paper offers proof that the algorithms
function correctly. Finally, the paper presents the results of
70 simulations and 27 hardware experiments to demonstrate
that the algorithms function correctly in practice.

B. Related Work

Our research builds on previous work in programmable
matter, self-assembly, and self-reconfiguring robotics, all
of which grew out of the modular robotics field. Typi-
cally, modular robots have been categorized as either chain-
style [2]–[4], or lattice-style [5]–[7]. Often the categorization
of a robot is ambiguous and there are other systems, like
the Digital Clay project [8], that lack any innate actuation
capability and rely on a user to rearrange the modules. There
are many interesting systems which rely on stochastic self-
assembly with rigid modules to create shapes [9]–[12]. More
recent research [13] has investigated scaling the size of a self-
assembled object based on the number of modules available.
Unlike our system, these approaches focus on shape forma-
tion by self-assembly rather than self-disassembly.

Other research has focused more directly on the concept
of programmable matter. The catoms concept [14], proposes
using spheres to form reconfigurable 3D structures. Existing
catom prototypes use electromagnets affixed to the circum-
ference of cylindrical PCB assemblies [14] or electrodes
patterned on miniature hollowSi02 cylinders [15] to achieve
2D reconfiguration. Theoretical research has previously in-
vestigated the use of sub-millimeter intelligent particles as
3D sensing and replication devices [16]. Finally, the system
described in [17] demonstrates ‘virtual’ programmable mat-
ter by forming a paintable display.

A limited amount of past research has focused specifi-
cally on the algorithms employed in self-disassembling sys-
tems [16], [18], [19]. The work presented here builds on our
previous work in [1], [20] on the Robot Pebbles hardware and
algorithms. There are unique hardware challenges associated
with the Pebbles, but the work presented here shows how
algorithms can be designed to overcome these challenges
to use self-disassembly as a process to create multiple,
interlocking objects from a single block of raw material.

II. EXPERIMENTAL CONTEXT AND CAPABILITIES

As this paper is concerned primarily with new subtraction
algorithms for multiple shape distribution and disconnection
in programmable matter systems, we will only give a brief
summary of the module hardware and system architecture.

The algorithms in this paper use the Robot Pebbles system
described in great detail in our ICRA 2010 paper [1]. The
most important aspect of each module is that it must be able
to autonomously communicate and bond with its immediate
neighbors. More specifically, the Pebbles, as shown in Fig-
ure 2, are 12mm cubes that weigh 4.0g. Each is formed by
wrapping a flexible printed circuit around a brass frame. Each
Pebble contains an ATMega328 microprocessor, an energy
storage capacitor, and four electropermanent (EP) magnets

(a)

(b)

(c)

(d)

Fig. 2. The Robot Pebbles are 12mm cubes with four active faces. They
are formed by wrapping a flex circuit (a) around a brass frame (b). Four
electropermanent (EP) magnets (c) provide latching, communication, and
power transfer capabilities to each module. Since the modules lack batteries,
a 100µF capacitor (d) fills the interior to provide a reservoir of charge.

that are used for inter-module latching, communication, and
power transfer among neighboring modules. The EP magnets
are crucial to the Pebbles’ operation. They are solid-state,
genderless connection mechanisms capable of supporting
over 80 times the weight of a single module and only
consume power when switching on or off. Once switched,
they consume no power and maintain their state for years.

The EP magnets also form the only inter-module commu-
nication link in the system. When two EP magnets are mated,
they form a 1:1 isolation transformer that enables inductive
communication at 9600baud. One limitation in our design is
that a Pebble, due to coil driver space constraints, can only
communicate with one neighbor at a given time. As a result,
the Pebbles randomly split their time communicating with
all neighbors. Because a given Pebble is never guaranteed
to be listening for incoming messages on a given face at a
given time, a module typically must make several attempts
to successfully transmit a message.

The Pebbles do not contain batteries. Instead, electrical
power is passed from one module to its neighbors through
the two poles of each EP magnet. Because each inter-
module electrical connection has a resistance of approxi-
mately 3Ohms, the 100µF energy storage capacitor inside of
each module forms a charge reservoir that is utilized when
switching the state of their connectors, which can only be
done while the module is part of a connected system.

Shape formation by subtraction is a multiple step process
that moves through six major phases: localization, neighbor
discovery, bonding, virtual sculpting, shape distribution, and
disconnection. The details of the localization, neighbor dis-
covery, and bonding phases are not important in the context
of this paper. After bonding, the modules have assembled
into a close-packed lattice that forms the initial block of
material that will be sculpted. Within this block, each module
knows its position and whether it has neighbors. To enable
the virtual sculpting process, the modules transmit their state



information through a series of reflection messages back to
the user’s PC so that the sculptor may choose which to
include in the final structure and which to discard. The result
of this sculpting is a series of inclusion messages that will
convey the desired shape to the structure during the shape
distribution phase. Once all modules know whether they
are included in the final structure, disconnection commences
and all unnecessary bonds between neighboring modules are
broken in order to arrive at the desired set of goal shapes.
For more information on this process, consult [18], [20]

III. M ULTIPLE SHAPES

In this section we present an algorithm that controls and
optimizes the formation of multiple shapes by sculpting an
initial block of connected material. While prior work [18]
has shown that self-disassembly can form a particular shape
from an initial block of material, the previous algorithm was
only able to form a single shape during each iteration of
the self-disassembly process, and the resulting shape had to
include a unique root module. The new algorithm removes
these restrictions. It can form multiple shapes that are con-
tiguous or separated by any number of unused modules. This
flexibility allows the sculpting of objects with interlocking
sub-parts and internal degrees of freedom.

The shape distribution algorithm operates by transmitting
a single inclusion message to each module in the initial
structure that is destined to be a part of a goal shape.
Modules not included in any goal shape do not receive an
inclusion message. Modules assume, by default, that they
are not included in the final structure. Inclusion messages
originate from the sculptor’s PC, and, once in the structure,
they create and follow a dynamicinclusion chain constructed
from a constant amount of information per message. The al-
gorithm avoids encoding the detailed path that each inclusion
message must follow, and it avoids flooding the system with
inclusion messages.

The total communication cost of the inclusion chain algo-
rithm is O(n2) wheren is the number of modules included
in the final structure. This bound arises because for each
of the n modules, the inclusion message that informs each
module of its status may have to travel from the root module
throughO(n) other modules. In contrast, using a shortest-
path algorithm to route a message from the root to each
included module also has a theoretical communication cost
of O(n2) if there are no obstacles in the structure that
could form effective local minima and a gradient descent
approach is employed. Once one considers broken inter-
module communication links and voids within the initial
structure, the communication cost of the routing algorithm
increases as each message must contain more specific routing
instructions. Given the uncertainty over which approach will
perform better on average, we choose the inclusion chain
approach for its simplicity given the hardware’s limited
processing capabilities.

A. Inclusion Message Distribution

Inclusion messages are generated by the system’s user,
often with the help of a GUI. All inclusion messages, like
all other messages, enter the initial block of modules through
the root module’s serial connection to the user’s PC. As an
inclusion message moves from a module to its neighbor, it
extends the tail of aninclusion pointer chain. Figure 3 shows
how inclusion messages follow this chain for a specified
distance termed thehop count. Once a message has traveled
the specified number of hops, it branches off of the chain
in the specifiedbranch direction. The hop count and branch
direction are pieces of information carried by the message
itself—they do not come from the modules in the structure.
However, the modules in the structure do store the inclusion
pointer chain. Each module only needs to remember where
to redirect an incoming inclusion message with a hop count
greater than one. The module that the message reaches after
branching is included in the structure.

Inclusion messages carry additional pieces of information.
First, each message contains anignore field which may
be used to counteract the message’s typical effect at its
destination module. This module, instead of assuming to
be included in the final structure, effectively ignores the
inclusion message. The advantage is that a module may be
part of the inclusion pointer chain without being a part of
the final shape. This allows the formation of an unlimited
number of disjoint shapes from one initial block of material
during a single self-disassembly process.

The second auxiliary piece of information carried by an
inclusion message is thegroup number. When an inclu-
sion message reaches its destination, the group number is
assigned to the module. During the disassembly phase, if
two included modules have different group numbers, they
disconnect. Likewise, if their group numbers are identical,
they remain bonded to each other. Group numbers will allow
the formation of contiguous interlocking shapes including
hinges, gears, and bearings as the module size is reduced.

In practice, inclusion messages are ASCII strings:
#INC,<hop count>,<branch dir.>,<ignore>,<group>.
Each module employs Algorithm 1 when processing an
incoming inclusion message. When a module receives an
inclusion message, it first checks the hop count (line 6). If
that value is 0, the receiving cube is the intended destination.
In addition, if the ignore flag is not set, the module records
the fact that it should be a part of the final structure and
saves the group number included in the message (lines 7–
8). A hop count of 1 indicates that one of the receiver’s
immediate neighbors is the message’s intended destination.
The receiving module uses its own known rotation and
the message’s branch direction to determine the face that
should retransmit the message after the hop count is set to 0
(line 10–11). This inclusion pointer direction is stored aspart
of the module’s state (line 12). Finally, if a module receives
an inclusion message with a hop count greater than 1, it
decrements the hop count and then retransmits the message
on the face indicated by the stored inclusion pointer direction



(line 14). The algorithm terminates when the module receives
a disassemble (#DIS) message.

Algorithm 1 Inclusion Message Processing Algorithm
1: included = false
2: incChainPtr = NULL
3:

4: repeat
5: wait for #INC msg. w/ hop countHC, branch dir.BD,

ignore flagIGN, and group numberGRP
6: if HC = 0 and IGN = 0 then
7: included = TRUE
8: myGroup = GRP
9: else if HC = 1 then

10: txFace = branchDirToFace(BD)
11: queueINC(txFace, ∞, 0, BD, IGN, GRP)
12: incChainPtr = BD
13: else
14: queueINC(incChainPtr, ∞, HC−1, BD, IGN, GRP)
15: end if
16: txQueuedMsgs()
17: until #DIS message received

The queueXXX(txFace,retries, . . .) function such as the
one in line 11 places an XXX-type message in the trans-
mit queue of the specified face. After the queues have
been loaded with messages, calling thetxQueuedMsgs()
function makes one attempt to transmit the queued mes-
sages to a module’s neighbors. If theretries parameter
passed to the queuing function is less than infinity, each
call to txQueuedMsgs() decrements this parameter by one.
When all retries for a particular face have been exhausted,
txQueueIsEmpty(txFace) will return true.

Proving the correctness of the shape distribution algorithm
requires a description of the shape one wishes to form. In
our system, generating a description of the goal shape is
facilitated by a GUI that allows the user to virtually sculpt
the desired shape and then generates a list of inclusion
messages that are transmitted to the root and distributed.
In [18] we show that this approach is efficient and correct.
While the prior proof did not incorporate the concept of
ignored modules, their effect is minimal, and we will not
repeat the proof here. Additionally, the group code carried
in each inclusion message has no effect on the algorithm.

Figure 3 illustrates the propagation of eight inclusion
messages as they form a simple wrench from a 3-by-4 block
of material. As indicated by the text above the modules in
Figure 3(a), the first inclusion message is#INC,0,n/a,true,0.
The second inclusion message reaches module A with a hop
count of 1, indicating that one of A’s neighbors is to be
included. The branch direction of this message is “up,” so
the hop count is decremented to 0 and the message is sent to
E. Module A sets its inclusion chain pointer to E. The third
message reaches A with a hop count of two, follows A’s
inclusion chain pointer to E, and obeys the message’s branch
direction by moving to the right and including module F.

Jumping ahead, after Module L is included as shown in (f),
the next inclusion message modifies module G’s inclusion
chain pointer from “up” to “down” to include C. Module
K’s inclusion chain pointer still points to module L, but the
inclusion of modules C and D is unaffected.
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Fig. 3. Eight inclusion messages are used to create a simple wrench from
a 3-by-4 block of programmable matter. The root module is labeled A. As
modules are included in the final structure, they change fromtransparent
to shaded. The arrows in the figure represent the inclusion chain pointers
stored in the modules.

IV. ORDEREDDISCONNECTION

One of the most challenging aspects of shape formation
with the Robot Pebbles is the inter-module disconnection
process that must occur after all modules know whether
to remain as part of a finished object or to disconnect
completely. The complexity in this disconnection process is
caused by the fact that a module loses its ability to function
once it breaks its connection with the neighbor supplying it
with power. Furthermore, all modules that are dependent on
that module for power will also lose power and will not be
able to break additional magnetic bonds.

A. Parents, Children, and Neighbors

A tree can be used to represent how power is transmitted
through an initial block of modules. Because it is connected
to an external power supply, the module connected to the
user’s PC, is the root of this power transfer tree. Every other



module in the tree has one parent,P. This parent is the
neighbor that supplies the module with power. Conversely,
every module to which a module supplies power is a child.
Children of a module are denoted by the setC. Parents
and children are both subsets of a module’s magnetically
bonded neighbors,N. In practice, current often follows many
different paths from the root to any other implying that a
module should have multiple parents. We disallow multiple
parents by definition because they only serve to complicate
the disassembly process. The key concept is that although
different neighbors could also supply it with power, a module
will never lose power as long as it is connected to its parent.
These child and parent relationships are defined during the
assembly process. A module is not allowed to become the
parent of another until it has a parent of its own.

B. Child-to-Parent Disconnection

We have designed and implemented Algorithm 2 which
ensures that an initial block of material can disassemble
correctly—disconnecting bonds that should be broken and
keeping those that should be preserved. In general, the dis-
connection algorithm operates by ensuring that a module has
no children before disconnecting from its parent. If a module
is a part of the same finished shape as its parent, the child
uses a child removal message to inform its parent that it no
longer needs to be considered a child. The algorithm uses sets
N, P, andC to keep track of a module’s bonded neighbors,
parent, and children, respectively. We use two additional sets,
G andK, that are initially empty. All neighbors from which
a module has received group (#GRP) messages are added to
G. If a neighbor’s group matches the receiver’s, the neighbor
is added to thekeep list, K.

The algorithm begins by waiting for a disassemble (#DIS)
message from some neighbor. The face on which the message
arrives is represented by the single-element setrxFace.
When the module receives a #DIS message, it forwards
it to its children (line 3). If the children do not receive
this message, there is no guarantee that they will receive a
#DIS from any other source. In line 4, the #DIS message is
also sent to the module’s neighbors that are not children to
speed its propagation throughout the structure. To prevent
two modules from repeatedly sending #DIS messages to
each other, a #DIS message cannot be sent back to the
module from which it was received. After the #DIS messages
that are to be transmitted have been queued, we continue
attempting to retransmit them until the transmit queues for
all neighbors are empty (line 7). By passing infinity to
queueDIS() in line 3 when the algorithm queues the #DIS
messages for the module’s children, the algorithm ensures
that thetxQueuedMsgs() function will never stop attempting
to deliver the message until it is successful. This guarantees
that module’s children receive the #DIS message before the
algorithm moves past line 7. In contrast, the DISRETRIES
parameter in line 4 indicates that thetxQueuedMsgs() func-
tion only makes a finite number of attempts to send the
#DIS message to the module’s non-child neighbors before the
txQueueIsEmpty( f aceSet) returns true. Once the children

Algorithm 2 Disassembly Algorithm
1: G = K =∅

2: wait for #DIS msg. to be rcvd. on facerxFace
3: queueDIS(C\ rxFace, ∞)
4: queueDIS(N \ (rxFace∪C), DIS RETRIES)
5: repeat
6: txQueuedMsgs()
7: until txQueueIsEmpty(N \ rxFace)
8:

9: if included then
10: queueGRP(N, ∞, myGroup)
11: repeat
12: if #GRP msg. rcvd. (on facerxFace specifying a

neighbor in groupneighborGroup) then
13: G = G∪ rxFace
14: if neighborGroup= myGroup then
15: K = K ∪ rxFace
16: else if rxFace 6= P then
17: queueUnlatch(rxFace, ∞)
18: end if
19: end if
20: txQueuedMsgs()
21: until txQueueIsEmpty(N) and N = G and N = (P∪

K)
22: if myGroup 6= parentGroup or parentGroup = ∅

then
23: queueUnlatch(P, ∞);
24: else
25: queueCLD(P, ∞);
26: end if
27: else
28: queueUnlatch(N \ (C∪P)), ∞)
29: queueGRP(C, ∞, myGroup)
30: repeat
31: txQueuedMsgs()
32: until N = P
33: queueUnlatch(P, ∞)
34: end if
35: repeat
36: txQueuedMsgs()
37: until N =∅

have received the #DIS message, the algorithm branches
(line 9) depending on whether the module is included in
any of the final structures being formed.

If the module is not included in the final structure, the
relevant pseudo-code begins on line 27. It begins with the
module queuing an unlatch message for all of its neighbors
except its children and parent. Then, in line 29, it queues
group (#GRP) messages for its children. Group messages
simply inform the recipient of the transmitter’s group. The
infinity parameters passed to thequeueXXX() functions in
lines 28 and 29, would normally indicate that all of the
unlatch and #GRP messages will be repeatedly transmitted
until successfully received, but the receipt of an unlatch



message purges the corresponding transmit queue; there is
no point in continuing to transmit a message to a neighbor
that is no longer present. (This behavior is not shown in the
pseudo-code.) Now that the unlatch and #GRP messages are
queued, the algorithm continually transmits them (line 30–
32) until the module’s only remaining neighbor is its parent.
This elimination of neighbors results from the pseudo-code
on line 33. Once a module’s only neighbor is its parent, the
module queues an unlatch message for the parent and waits
(lines 35—37) until the message is received. When it is,
the parent is removed from the module’s list of neighbors,
indicating that the module is now completely disconnected.

Alternatively, if the module is included in the final struc-
ture, it behaves differently. Lines 11–21 of Algorithm 2 form
a repeat-until loop that eliminates all of a module’s neighbors
(except its parent) with group numbers that do not match its
own. Before the loop begins in line 10, the algorithm queues
#GRP messages for all neighbors, including the module’s
parent and children. The infinity parameter in line 10 en-
sures that these #GRP messages are sent repeatedly by the
txQueuedMsgs() function until they are received. Once the
loop beings, the algorithm checks for any incoming #GRP
messages from its neighbors (line 12). If one is received, the
neighbor from which it was received,rxFace, is added toG,
the list of neighbors from which the module has received
#GRP messages. If the #GRP message indicates that the
neighbor’s group is the same as the module’s (line 14),
then that neighbor is added to the module’s keep list,K
(line 15). If the neighbor’s group number differs from the
module’s, and if the neighbor is not the module’s parent,
the module queues an unlatch message for the neighbor in
line 17. This unlatch message overwrites any pending #GRP
message destined for that neighbor.

This process of transmitting and receiving #GRP messages
will eliminate all of a module’s neighbors other than its
parent and the neighbors inK. The loop ends in line 21, when
the transmit queues of all neighbors have been emptied, we
have received a #GRP message from each of our remaining
neighbors, and our only remaining neighbors are (P∪K).

The module’s children are eliminated over the course
of the repeat-until loop in lines 22–26. To consider the
disconnection process complete, the module only needs to
inform its parent that it is no longer the parent’s child.
Exactly how the module informs its parent is determined by
line 22. If the module’s group is different than its parent’s,
(or if its parent does not belong to a group because it is not
included in the final structure), the module queues an unlatch
message for its parent. When this message is received, the
two modules disconnect and the parent no longer considers
the module its child. Alternatively, if the module and parent
share the same group, the module sends a child removal
(#CLD) message to its parent. This message simply informs
the parent that the module has performed all necessary tasks
and no longer requires a power source. As a result, the
parent removes the module from its list of children,C. In this
manner, the parent will eventually be left with no children
so that it can sever the bond with its own parent.

C. Disconnection in Action

Figure 4 shows Algorithm 2 in action. In the figure, (a)
represents the state of the modules after the #DIS message
has been distributed and the modules have exchanged #GRP
messages, but before any have begun to disconnect from their
neighbors. The color of each module indicates the group to
which it belongs. Module C is not included in any of the final
structures. As shown by the transition from Figure 4(a) to
(b), disconnection begins when the modules without children
(E, F, and H) sever the relationships with their parents. In
the case of E, its parent belongs to the same group, so it
sends a #CLD message that breaks the parent relationship
while maintaining the physical bond. Module F belongs to
the same group as its neighbor, G, so G is in F’s keep
list. Given that all modules have already exchanged #GRP
messages, F’s state satisfies the conditional in line 21 of
Algorithm 2. Consequently, F executes line 23 of the pseudo-
code and transmits an unlatch message to its parent. Module
H disconnects from its only non-parental neighbor, module
D, because they are in different groups.

In subfigure (b), module D has no remaining neighbors
except its parent, module C, which is not included in the
structure, and therefore lacks a group code. Module D
therefore satisfies the condition on line 22 of Algorithm 2,
and it sends an unlatch message to C to disconnect from its
parent. Without any remaining connection to the structure,
the shape formed by modules D and E loses power in
subfigure (c). Also shown in the transition from (b) to (c),
module H sends its parent, G, a #CLD message leaving G
without children.

As soon as G has no children, it disconnects from its
parent because it is not included in the structure. After
disconnecting, the shape formed by modules F, G, and H
loses power. This disconnection is the only change as the
system transitions from Figure 4(c) to (d). Once in the state
shown by (d), module C realizes that it now has no children
and no neighbors except its parent. Because it is not included,
C can disconnect from its parent.

In Figure 4(e), module B has no children and no neighbors
other than its parent, allowing it to send a #CLD message
to its parent, A. It sends a #CLD message instead of an
unlatch message because it knows that A is a part of the
same group. When A receives this message, the parent-child
bond between A and B is broken, transitioning the system
to the state shown in subfigure (f). Finally, module A is left
with only its parent, so it symbolically disconnects from the
user’s PC. At this point, all modules have lost power, but
all of the necessary bonds have been maintained, and the
desired shapes have been formed.

D. Correctness

The correctness of Algorithm 2 can be proven using
induction on the height of the power transfer tree.

Theorem 1: Algorithm 2 results in a neighbor disconnec-
tion order that maintains power in each module until it has
finished disconnecting from all unincluded neighbors and
neighbors with group numbers different from its own.
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Fig. 4. Disconnection occurs in an orderly fashion. Each color of module
in the figure represents an object that is to be formed from theinitial block
of material. As modules disconnect from the structure and lose power, they
change from filled to empty. Before disconnecting, a module must ensure
that all of its neighbors that depend on it for power have completed their
disconnection process. Module A is the root.

Proof:
Base case: Tree height 1. A tree of height one has a single

parent and multiple children that are the leaves of the tree.
These children may or may not be magnetically connected
neighbors. If a child has magnetically connected neighbors,
it exchanges #GRP messages with them. If the groups of two
neighbors are different, or if either neighbor is not included
in any of the final structures, the neighbors unlatch (line 17).
If they are in the same group, they do nothing. Once a leaf
module handles its neighbors appropriately, the leaf severs
its parent-child bond with the root. If the root and leaf
are in different groups, the leaf sends the root an unlatch
message (lines 22–23). Otherwise, the leaf sends the root a
#CLD message that breaks the parent-child connection while
maintaining the magnetic bond.

As we set out to prove in the theorem, the following
occurs for each module before it potentially loses power by
disconnecting from its parent: an unincluded module com-
pletely disconnects from all neighbors and then its parent;an
included module with magnetically connected neighbors in

groups other than its own detaches from these neighbors; and
simultaneous with power loss, a module disconnects from its
parent if their groups differ.

Induction: Assume the disconnection process operates
correctly for trees of heightn. To complete the proof, we
need to show that the disconnection process works correctly
for trees of heightn+1. Following this approach, a tree of
height n+1 can be viewed as a tree of heightn with one
additional set of leaves. These leaves may or may not be
magnetically bonded with any other module in the entire tree.
Whether or not they are bonded does not change how they
act. Just as in the height 1 base case, the leaves exchange
#GRP messages with their magnetically bonded neighbors
and break their magnetic connection if they are in different
groups or if either is not included in the final structure. Once
this is complete, the leaves break (by unlatching or sending
a #CLD message) their parent-child bond with their parent.

As in the base case, all leaves, before losing power, have
disconnected from their neighbors as needed. Unincluded
leaf modules have broken all of their magnetic connections.
Included leaf modules have broken their magnetic connec-
tions with neighbors belonging to groups different than their
own and maintained their connections with neighbors of the
same group. With the leaves removed, then+1 height tree
is now ann height tree.

V. EXPERIMENTS

We have performed a number of experiments in both sim-
ulation and hardware. The simulated experiments are used
in place of hardware to test the algorithms and demonstrate
scalability. Because the shape distribution and disconnection
phases are distinct, we are concerned with the success of
each. The first experiment we performed consisted of fully
disassembling a 3-by-3 block of modules that did not contain
any goal shapes. This is shown pictorially in Figure 5(a).
In 12 of 15 hardware experiments, all bonds were broken
as expected. In the other 3 three, there were 2, 3, and
4 unbroken bonds. In all three cases, the initial shape
was poorly constructed and the modules far from the root
did not align well with their neighbors. As a result, we
believe communication failures, not the algorithm, led to the
unbroken connections.
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Fig. 5. We have used the Robot Pebbles to form a number of different
shapes that test the ability of the hardware and algorithms to form multiple
contiguous and discontiguous shapes.

We performed additional experiments with other goal
shapes to test the system’s ability to use the ignore and
group fields of an inclusion message. The results for both
the simulator and hardware appear in Table I. In the table,



the shape distribution success rate is measured by observing
which Pebbles know that they should be a part of goal
structure. The disconnection success rate is the number of
bonds that behaved as expected divided by the total number
of bonds in the initial structure

TABLE I

EXPERIMENTS SHOW THE ALGORITHMS WORKING CORRECTLY.

Goal Shape(s)
Sim / Number Success Rate [%]
HW Trials Distribution Disconnection

Figure 5(a)
Sim 15 N/A 100.0
HW 15 N/A 95.0

Figure 5(b) Sim 15 100.0 100.0
HW 5 100.0 98.3

Figure 5(c) Sim 15 100.0 100.0
HW 5 100.0 96.7

Figure 5(d) Sim 15 100.0 100.0

Figure 3(h) Sim 10 100.0 100.0
HW 2 100.0 97.1

The results in Table I show that the shape distribution algo-
rithm works flawlessly in both simulation and hardware. We
only see errors when performing disconnection experiments
in hardware. Even so, the overall disconnection success rates
are still good. This leads us to believe that the disconnection
algorithm functions correctly, but that peculiarities of the
hardware are interfering with its operation.

We have observed four particular hardware issues that
affect the disconnection process. First, all modules are not
exactly the same size. As a result, alignment errors can accu-
mulate, resulting in marginal or no communication between
neighbors. Second, during the assembly process, previously
bonded modules are sometimes pulled out of position as
new modules are added to the structure. This results in
the connected modules losing power, resetting their states,
and introducing inconsistencies in the system. Third, the
disconnection process releases internal stresses as some of
the magnets turn off. Given that we see the modules moving
as they disconnect, we suspect that this may also result in
modules temporarily losing power. Finally, the power supply
sourcing power to the root module is current limited. When a
module deactivates an EP magnet, it momentarily draws 4A.
The simultaneous deactivation of many EP magnets during
disconnection often pegs the power supply at its current limit,
potentially preventing some modules from unlatching.

VI. D ISCUSSION

We have proposed two new algorithms for forming shapes
through a process of disassembly. These algorithms ef-
ficiently distributed a description of the desired shape(s)
throughout an initial block of material that is being sculpted.
As programmable matter systems grow to include more
and more modules, algorithms such as these will become
absolutely necessary. In the future, we plan to perform
experiments with additional modules, and we intend to
explore different methods for shape formation including
magnification of a miniaturized shape and replication of
an original shape. We also plan to add 3D functionality to
our system. While there are additional hardware challenges

associated with 3D shape formation, the algorithms presented
in this paper theoretically apply equally well in 3D. In
practice, one must pay more attention to the alignment and
disconnection order of a 3D system to ensure that extra
modules can be removed while maintaining the structural
integrity of the shape. With these algorithmic advances and
additional miniaturization of hardware, we hope thatSmart
Sand will become a reality.
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