
Toward Adaptation and Reuse of Advanced Robotic Software

Christopher R. Baker, John M. Dolan, Shige Wang, and Bakhtiar B. Litkouhi

Abstract— As robotic software systems become larger and
more complex, it is increasingly important to reuse exist-
ing software components to control development costs. For
relatively simple components, such as perception algorithms
and actuation interfaces, this is a reasonably straightforward
process, and many excellent frameworks have been developed
in recent years that support reuse of such components in novel
systems. For more advanced software components, such as
for modeling and interacting with the robot’s environment,
reuse is, however, a more challenging problem. In particular,
these advanced algorithms tend to be highly sensitive to the
perception and actuation capabilities of the robots they are
deployed on, and they often require nontrivial modification
to accommodate the specific capabilities of any one robotic
system. This work examines the nature of this sensitivity and
proposes a novel design methodology for isolating a stable,
reusable “core” algorithm from any platform-specific enhance-
ments, or “supplemental” effects. Modern software engineering
techniques are used to encapsulate these supplemental effects
separately from the core algorithm, allowing platform-specific
details to be accommodated by modular substitution instead of
direct modification of the “core” component. This methodology
is experimentally evaluated on existing software for autonomous
driving behaviors, yielding useful insights into the creation of
highly adaptable robotic software components.

I. INTRODUCTION

Robotic software systems are notoriously complicated,
costly to develop, and difficult to reuse, in whole or in
part, from one robot to the next. Many of these issues arise
from the nature of complex software systems, especially the
difficulty of subdividing a large system into a collection of
smaller components, and managing issues such as synchro-
nization and messaging between those components. Research
and practical efforts in these areas have yielded a number
of excellent robotic application frameworks and associated
toolkits, such as CARMEN[1], Player/Stage[2], CLARAty[3]
and the emerging ROS[4]. These generally focus on reuse by
carefully specifying components’ expected input and output
data such that, as long as all of its specified inputs are
available, a given component can be reused in any number
of applications generated using the same framework.

Unfortunately, these conditions, of using the same frame-
work and providing exactly the same data, are often
more constraining than openly admitted by proponents of
component-based robotics. The consequences of violating

This work was supported by the General Motors Autonomous Driving
Collaborative Research Lab at Carnegie Mellon University

C. Baker and J. Dolan are with the Robotics Institute at
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{cbaker,jmd}@ri.cmu.edu

B. Litkouhi and S. Wang are with General Motors
Global Research and Development, Warren, Michigan, USA
{bakhtiar.litkouhi,shige.wang}@gm.com

these conditions are that some components must be inva-
sively modified, i.e., their source code must be acquired,
understood, and altered to accommodate the details of a new
robotic platform. These are recognized as undesirable side-
effects that are “to be avoided when possible”, but there is
little direct discussion of what to do when such modifications
cannot be avoided. This leaves developers with very little
guidance as how to modify existing components for use on
other robots, resulting in ad-hoc adaptations that are difficult,
error-prone, and can leave the adapted component in a much
worse state for the “next” modification1.

Still, discussions of the “lessons learned”, or “difficul-
ties encountered”, in the development and application of
component-based architectures can provide insight into some
of the specific challenges of adapting robotic algorithms
to other systems. For instance, the MARIE[5] framework
successfully demonstrated the integration of components
from several of the aforementioned toolkits using the Adapter
and Mediator patterns[6], but their approach relies on the
assumption that the data provided by producing components
is semantically identical to the data expected by consuming
components. One particular “difficulty encountered” noted
by the authors of MARIE is that components often contain
“hidden assumptions” about the robots they run on, requiring
significant understanding of those components’ inner work-
ings, along with detailed knowledge of the original and target
platforms, to rectify.

This difficulty is consistent with discussion surrounding
CLARAty[7], which notes that even within the fairly nar-
row realm of planetary (Mars) rovers, variations in sensor
selection and placement, mobility and actuation capabilities,
power and communication architectures, and even mission
context can have ripple effects through many of the software
components that operate any given robot. These ripple effects
make it difficult to isolate common functionality in reusable
components, especially when attempting to define the in-
terfaces between such components, for which “neither the
union of all possible capabilities, nor their intersection”[7]
were satisfactory.

Where these and other previous efforts focus on isolating
this variability behind increasingly generic data representa-
tions, this work instead embraces the idea that for some
robotic software components, no single input specification
can encompass the entire range of relevant data that a robot
could provide to the underlying algorithm. The proposed al-

1Large blocks of commented-out or conditionally-compiled source code,
such as via #ifdef MY ROBOT ... #endif, are a common symptom
of ad-hoc adaptation which can degrade a component’s understandability
and consequent reusability.

ternative is to classify candidate input data as either primary
data that enable the core algorithm of a given component,
or else supplemental data that only enhance the core algo-
rithm to exploit platform-specific capabilities. The primary
data are then used to specify a traditional input interface,
allowing the core algorithm, implemented free of platform-
specific enhancements, to be reused on a wide variety of
robotic systems. The platform-specific supplemental effects
are then bound through a dedicated adaptation interface
that, as opposed to attempting to enumerate all possible
supplemental data, instead enumerates the ways that the core
algorithm may be meaningfully adapted to exploit the unique
strengths, or compensate for the specific limitations, of any
one particular robot.

While this may seem straightforward, the division between
primary and supplemental data, along with the exact compo-
sition of the adaptation interface, will be highly algorithm-
specific, relying on the judgement and foresight of individual
designers to identify “good” versions of each. Moreover, it is
not immediately apparent that advanced robotic algorithms
can be easily separated into “core” and “supplemental” ele-
ments, nor is it clear that the proposed derivation and usage
of a complementary “adaptation interface” is a technically
feasible solution.

The goals of this work are to inform the judgement of
primary vs. supplemental data through a detailed analysis of
supplemental effects in existing software components, and
to present and compare two technical approaches to deriving
and using adaptation interfaces that can accommodate a
wide assortment of platform-specific variations. Together,
these will guide the design and implementation of advanced
robotic algorithms such that they are both reusable across
a wider array of robotic platforms, and also more easily
adaptable to the specific details of each system.

This begins in Section II with detailed examples of
platform-specific enhancements to otherwise generic algo-
rithms, followed by a more thorough exploration of the
proposed proposed primary vs. supplemental methodology
by identifying supplemental effects in existing autonomous
driving software in Section III. Section IV follows with a
presentation of two technical approaches to modularizing
these supplemental effects, and the resulting guidelines for
enhancing the adaptability of advanced robotic software are
then presented in Section V.

II. ON THE NATURE OF ADAPTATION

Consider the common example of a “point cloud”, as used
by a wide variety of mapping, localization, terrain analysis,
and other advanced robotic algorithms, which may be derived
using one or more of LADAR, stereo vision, or other per-
ception techniques. Classical approaches focus on reusability
by specifying highly generic input representations, as typified
by the Cartesian coordinates in the Point class in Figure 1.
Advanced algorithms are then implemented within coherent
modules, represented by the TerrainAnalysis class,
which uses the contents of the Point representation to
generate an obstacle map.

Fig. 1. Simplified data-flow model common to most component-based
architectures. Notation: UML[8]

As long as the Point class is representative of
the information that a given robot can provide, the
TerrainAnalysis class can be reused without modifi-
cation. The trouble with robots, as alluded to above, is that
while this representation covers the minimum data that are
necessary to describe an individual point, it also excludes any
additional data that a robot might provide about that point
that could influence the TerrainAnalysis algorithm.

For example, some LADAR scanners and stereo vision
techniques can provide uncertainty information in addition
to the “standard” Cartesian coordinates of a point. Accom-
modating this new datum would require introduction of an
“error” member into the input Point representation, and
extension of the TerrainAnalysis class to incorporate
“error” in its internal calculations.

While this may seem trivial for any one such datum,
subsequent robots may not be able to provide “error” in-
formation, but may instead provide temperature readings,
such as from stereoscopic thermal imagers, or an indication
of the presence of vegetation through more sophisticated
analysis techniques. These data could also be relevant to the
TerrainAnalysis algorithm, but are not compatible with
the existing “error” data, yielding the semantic mismatch
shown in Figure 2.

Fig. 2. Semantic mismatch between an input representation that expects
points to be annotated with error information, and a platform that provides
temperature readings instead.

This mismatch can only be addressed by further mod-
ification of the TerrainAnalysis algorithm, such as
to introduce mission-specific policies for whether or not
“hot” surfaces or blocks of “vegetation” may constitute
an obstacle. Moreover, these data do not generally have
safe “default” values, so these policies would have to be
selectively enabled or disabled depending on the detailed
capabilities of each specific robot. In the general case, this
can lead to a cumbersomely large set of conditionally-active
effects that would significantly degrade the understandability
and adaptability of the TerrainAnalysis component.

This phenomenon is often described as an an accumulating
“calcification” or “brittleness”[9] of robotic software with
respect to this type of adaptation, and it is particularly
common in prototype robotics, wherein individual sensors

or perception algorithms are continually introduced or en-
hanced. This can cause any combination of:

1) Additional data to be incorporated into algorithms to
enhance performance, safety, etc.;

2) Absent data that can no longer be derived by the
system, requiring excision of any associated effects;

3) Altered data, whose precise semantics “drift” as a
result of progressive enhancements, requiring corre-
sponding updates to their effects.

This accumulating “brittleness” was particularly apparent
during the development of the autonomous driving software
discussed in Section III, and was one of the primary mo-
tivators of the work presented in this paper. However, the
problems of adaptation to varying input data are not unique
to prototype robotics, nor do they require explicit “porting”
from one platform to another as in the example above.

In a more rigorous production environment, such as the
automotive industry, similar difficulties may also be encoun-
tered in the use of the Product Line[10] approach to maintain
autonomous and semi-autonomous driving algorithms across
a collection of related, but distinct vehicles. In this case,
the goal of sharing components across the entire line can
be thwarted by the differences in sensing and actuation
capabilities that separate one class of from another, such as
a compact sedan vs. a luxury SUV.

For example, some platforms in a product line may detect
traffic using RADAR, where others might use computer
vision techniques instead. For an advanced algorithm, such
as for highway merge-planning, to be reusable on all such
platforms, it must be implemented in terms of the common
capabilities of these techniques, such as providing basic
position or range information about candidate obstacles.
For optimum performance on any one system, however, the
algorithm must also be adapted to the specific strength of
each sensing technique, such as exploiting higher confidence
in velocity measurements from RADAR, or the ability to
detect turn signals with computer vision.

The critical observation underlying this work is that while
the data that contribute to such algorithms may change from
one platform to the next, the algorithms themselves remain
largely the same. This work investigates the proposition
that many platform-specific data will affect advanced robotic
algorithms in comparatively few ways, and that identifying
and encoding these likely points of variability in a dedi-
cated “adaptation interface” would allow platform-specific
enhancements, or “supplemental effects” to be maintained
separately from a stable, reusable “core algorithm”.

III. SUPPLEMENTAL EFFECTS IN AUTONOMOUS
DRIVING ALGORITHMS

Three autonomous driving algorithms from “Boss”, Tartan
Racing’s winning Chevy Tahoe[11] in the DARPA Urban
Challenge[12], have been thoroughly analyzed for supple-
mental data and effects. These algorithms were responsible
for the robot’s adherence to Urban Challenge traffic rules
regarding safe following distance, precedence ordering at
intersections, and merging into lanes of moving traffic.

Their overall design, described more thoroughly in [13],
emphasized adaptability and flexibility through the use of
the Observer, Factory and Strategy patterns[6], encapsulating
individual algorithms for traffic behaviors in separate compo-
nents that could be updated or replaced individually as Boss’s
perception and planning capabilities evolved over time.

However, no special treatment was given to enhancing
component-level adaptability, and, consequently, several be-
havioral algorithms became increasingly difficult to adapt,
or “brittle”, with respect to the robot’s evolving capabilities.
In particular, the perception team was continually improving
the detection and tracking of other vehicles, and the system’s
representation of those vehicles was frequently updated as
alternate sensors and modeling techniques were introduced.
The final version of this so-called “Moving Obstacle” rep-

Fig. 3. The Moving Obstacle representation used for the Urban Challenge

resentation, shown in Figure 3, included such expected
information as the position, heading, size and velocity of
an obstacle that were treated as primary data. Beyond these,
there were four supplemental obstacle properties that were
more peculiar to Boss’s final configuration:

• Is Moving, which was tied to the use of RADAR on
Boss, indicated high confidence that the obstacle was in
motion, beyond simply having non-zero velocity.

• Is Observed-Moving, which indicated that the obsta-
cle’s historical motion was consistent with the percep-
tion subsystem’s model of “typical” Urban Challenge
traffic.

• Lane Associations, which was a list of road lanes that
the obstacle might be trying to travel in, each with a
confidence value tied to similar lane-driving models in
the perception subsystem.

• Is Predicted, which was closely tied to the robot’s
occlusion model, indicated that the obstacle had been
extrapolated from previous sensor data, but was not
instantaneously supported by sensor readings.

These properties were added and updated incrementally
over many months of development, leading to frequent
modifications to behavioral algorithms to accommodate new
information or updated semantics, making them ideal can-
didates for treatment as supplemental data. Tracing the path
and influence of these data yielded a total of 16 distinct
supplemental effects, scattered across the implementations
of three separate components:

• The Traffic Estimator, which identified the lead vehicle
in the current travel lane and estimated the distance to
and speed of that vehicle for the purposes of maintaining
a safe following distance.

• The Precedence Estimator, which determined the
precedence ordering vehicles and verified that the in-
tersection was free of traffic before proceeding.

• The Merge Planner, which identified merge opportuni-
ties between other vehicles, and planned and executed
merge maneuvers into adjacent lanes of travel.

The majority of the supplemental effects in these com-
ponents fall into one of five categories, with the first and
simplest being enhancements to relevance or false-positive
culling tests. For example, the Precedence Estimator required
that an obstacle have at least one strong “lane association”
before treating it as candidate traffic for yield calculations.
The semantics of being “associated” with a lane made the
obstacle less likely to be a stalled vehicle, roadside vegeta-
tion, or other irrelevant debris, and ignoring non-associated
obstacles allowed forward progress to be made in spite of
those common perception artifacts.

Relatedly, the second category of supplemental effects
substituted alternate thresholds into underlying calculations,
often complementing the issue of culling false-positives by
exploiting circumstances of increased certainty. For instance,
the Traffic Estimator allowed “observed-moving” obstacles
to be farther from the centerline of Boss’s lane of travel
before ignoring them as candidate “lead” vehicles.

The third category follows this trend of modulating the
degree of “trust” placed in a candidate obstacle by affecting
context-specific “conservative” estimates of the obstacle’s
state, such as assuming a “worst-case” speed for vehicles that
are not explicitly marked as both “moving” and “observed-
moving”. This was the case both for the Traffic Estimator,
which assumed a worst-case of “stopped”, and also for the
Precedence Estimator, which, for yield calculations, assumed
a worst-case of the speed limit of the road.

A small number of supplemental effects fell into a fourth
category, of wholesale substitution of some underlying calcu-
lation for a more efficient usage of supplemental data. For
example, both the Precedence Estimator and Merge Plan-
ner supplanted generic, computationally-intensive geometric
tests for whether an obstacle is “in” a given lane of travel
with simple examination of the “lane associations” datum,
once it became available. The tradeoff for this efficiency is
a brittle dependency on this datum, which, if later removed,
would leave these components in a non-functional state.

The fifth and final category covers secondary issues that
arise from the “main” effects listed above. Examples include
exposing alternate thresholds as configuration variables, and
augmenting intermediate data representations to propagate
supplemental data to the end of a long processing pipeline.

These “support” effects, along with the first two categories,
of false-positive culling and the substitution of alternate
weights or thresholds, are recurring themes in robotic soft-
ware, suggesting that supplemental data might have similar
effects in other algorithms. Following the terrain analysis
example in Section I, it is conceivable that supplemental
data, such as error or vegetation measurements, might cause
individual points to be weighed differently in, or excluded
entirely from, the embedded obstacle map calculation. This

suggests a wider applicability of these ideas than this fairly
narrow context of urban driving, and exploring these issues in
other systems would be an excellent path of future research.
In fact, some such effects have already been identified in
early analysis of software from CLARAty[7], which is the
origin of the TerrainAnalysis example above.

For the more algorithm-specific effects, such as the con-
servative estimation of obstacle speed, or the substitution
of more efficient versions of existing functionality, it is at
least plausible that there would be parallels in other robotic
software, but it would be up to the judgement and experience
of individual designers to identify those effects in other
contexts. Part of the goal of the work described in this paper
is to inform that judgement, and to equip future designers
with candidate technical solutions, described in the next
section, to enable them to separate these platform-specific
details from the more generic, reusable elements of advanced
robotic software.

IV. TECHNICAL APPROACHES TO MODULARIZATION OF
SUPPLEMENTAL EFFECTS

As with most software design problems, there are many
possible approaches to isolating supplemental effects, such as
those described above, from a given core robotic algorithm.
The “best” solution will depend not only on a design’s
ability to address the problem, but also on issues such as
existing development practices, team expertise, and even
individual designer preference. Rather than focus on a single
technical solution that may or may not meet these criteria,
this work presents two distinct approaches to separating
the core driving algorithms listed above from their associ-
ated supplemental effects, one based on established Object-
Oriented design techniques, and one leveraging more recent
developments in Aspect-Oriented methodology.

As a running example, drawn from the first category
of “relevance-test” enhancements identified in the previous
section, consider the pseudo-code in Listing 1, which shows
a simplified segment of the original implementation of the
Precedence Estimator. In this listing, the determination of
whether or not a candidate obstacle will be considered for
yield calculations is composed of four individual boolean
tests. The first test, which represents the core algorithm, uses
the position and size of the candidate obstacle to determine
whether it occupies one or more lanes that Boss must yield
to at the current intersection. Issues with detection of false
positives, especially at long ranges, caused this test to be
augmented by three supplemental data. An obstacle would
be considered in yield calculations only if it was:

1) Marked as “moving”, indicating support by one or
more “solid” RADAR readings;

2) Marked as “observed-moving”, indicating that its his-
torical motion was consistent with “nominal” traffic

3) Marked as having at least one “lane association”,
indicating its historical motion was highly consistent
with one or more real road lanes.

As shown in Listing 1, these tests were originally em-
bedded in a large, complex method, which made them

void PrecedenceEstimator::computeYields() {
// set up yield calculation:
// determine where traffic may come from
// iterate over list of moving obstacles
// test each for relevance...
if(obstacleInYieldZone(obst) && // core

obst->isMoving && // supp
obst->isObservedMoving && // supp
!obst->laneAssocations.empty()) // supp

{
// main body of yield calculation:

}
// cleanup and set appropriate outputs

}

Listing 1. Pseudo-code showing original, direct encoding of supplemental
effects on the yield-calculation relevance test in the Precedence Estimator.

difficult to identify, understand, and update during ongoing
development. These, and other such directly-encoded effects,
led directly to the “calcification” of the three behavioral
components discussed above, as seemingly small updates to
include “just one more” status flag, or to tweak “just one
more” default calculation, became increasingly difficult to
analyze, implement, and verify.

A. Object-Oriented Approach: Delegation to Strategy
Classes

The first approach evaluated for modularizing these sup-
plemental effects follows established Object-Oriented (OO)
methodology by delegating segments of the core algorithm to
small Strategy[6] classes that may be specialized to introduce
various supplemental effects. The UML diagram in Figure
4, along with the corresponding pseudo-code in Listing
2, shows how the individual effects of the “isMoving”,
“isObservedMoving” and “laneAssociations” supplemental
data may be isolated according to this pattern.

Fig. 4. Object-Oriented delegation of the yield relevance test to encapsulate
supplemental effects as specialized Strategy[6] classes

The critical benefit of this alternate design is that the
effects of each supplemental datum are encapsulated in
individual classes, allowing them to be added, removed,
or updated in isolation, as discussed above. The largest

// default case for YieldRelevance is "true"
class YieldRelevanceDelegate {
vitual bool check(MovingObstacle obst) {
return true;

}
};
// each supplemental datum gets its own class
class MovingEffects
: public YieldRelevanceDelegate {

vitual bool check(MovingObstacle obst) {
return (obst.isMoving &&

YieldRelevanceDelegate::check(obst));
}

};
// same for ObservedMoviong
class ObservedMovingEffects
: public MovingEffects { ... };

// and for Lane Associations
class LaneAssociationEffects
: public ObservedMovingEffects { ... };

class PrecedenceEstimator {
// delegate are "owned" by their parent
LaneAssociationEffects
yieldRelevanceDelegate_;

};
void PrecedenceEstimator::computeYields() {
// set up, same as before, but call out
// to delegate class instead of directly
// inspecting obstacle properties
if(obstacleInYieldZone(obst) &&

yieldRelevanceDelegate_.check(obst))
{
// ...

}
}

Listing 2. Pseudo-code showing object-oriented delegation of yield-
calculation relevance test.

disadvantage of this isolation is the need to explicitly manage
the dependencies between individual specialized effects, and
the correspondingly long inheritance chains that follow the
application of many such effects to a single delegation
interface. This design also requires roughly 20 lines of code,
where the “direct” encoding only took a single, albeit deeply-
embedded, line for each supplemental effect. This represents
a nontrivial “overhead” for encapsulating supplemental ef-
fects in this manner, which motivates exploration of other,
possibly more advanced, approaches to the problem.

B. Aspect-Oriented Approach: Crosscutting Programming
Interfaces

Looking beyond classical techniques, the nature of the
supplemental effects described above resonates very strongly
with the idea of a crosscutting concern as presented by the
Aspect-Oriented (AO) design community[14]. That is, the
effects of any one supplemental datum may be scattered
across the implementation of one or more core algorithms,
and they often tangle with effects of other supplemental data
by affecting the same places in those algorithms, such as in
the “yield relevance” example presented above.

Fig. 5. Aspect-Oriented exposure of adaptability through a Crosscutting Programming Interface (XPI), and binding supplemental effects as “after” advice
through the XPI

AO methodology is aimed at a more natural representa-
tion of such crosscutting concerns than is possible using
traditional OO approaches, making AO techniques an at-
tractive solution to the problem of encapsulating the effects
of supplemental data as described above. In particular, the
AO design community has recently proposed the idea of a
“Crosscutting Programming Interface”[15], or “XPI”, which
complements traditional functional interfaces with an enu-
meration of the ways that a given component may be aug-
mented by AO “advice” introductions. Although originally
conceived in terms of more benign effects on a software
system, such as debug tracing, transaction logging, or thread
synchronization concerns, an XPI is highly consistent with
the idea of an “adaptation interface” proposed above. As
shown in Figure 5, and the corresponding Listing 3, an XPI
may be used to allow similar encapsulation of supplemental
effects as in the OO design without the same degree of
interdependencies or raw overhead.

The most notable differences in the AO design for encap-
sulating supplemental effects are that the core algorithm does
not need to call out to an explicit delegation interface, and
the individual supplemental effects only depend on the XPI,
instead of each other. This leads to a much more concise
description of these effects, averaging fewer than 10 lines of
code each, where the OO design takes closer to 20 lines per
supplemental effect. The drawback to this approach is that
AO techniques are still relatively new, which means that tool
support is somewhat limited and prototypical, and the overall
methodology will be unfamiliar to most developers, both of
which pose significant risks to the success of any project.

C. Analytical Results and Discussion
All 16 supplemental effects in the Urban Challenge soft-

ware system were refactored following each of the two
designs described above, and the resulting artifacts have been
analyzed using two different software metrics that quantify:

1) The degree of “concern diffusion”[16] in a given
system, which is a proxy for “understandability”;

2) The “net option value”[17] provided by a design,
which models how well it accommodates changes by
modular substitution, instead of direct modification.

A complete presentation of these results requires detailed
discussion of individual supplemental effects that is beyond

void PrecedenceEstimator::computeYields() {
// set up, same as before, but no extra
// calls or conditions in relevance test
if(obstacleInYieldZone(obst))
{
// ...

}
// ...

}
// XPI exposes adaptability in core algorithm
aspect XPI_PrecedenceEstimator {
// expose the in-yield-zone method for
// AO advice introduction
pointcut yieldRelevanceTest(obst) =
execution ("obstacleInYieldZone")
&& args(MovingObstacle obst);

}
// each supplemental datum gets an aspect
aspect MovingEffects {
// augment yield relevance test
// require obst->isMoving
advice XPI_PrecedenceEstimator::
yieldRelevanceTest(obst) : after()

{
// tjp (The Join Point) allows return
// value to be manipulated by advice
*(tjp->result()) &= obst.isMoving;

}
}
// .. same for observed-moving, lane assoc.
// no explicit composition as in OO design

Listing 3. Pseudo-code showing application of supplemental yield rele-
vance effects through an XPI

the scope of this paper. Instead, Table I summarizes the
average- and best-case changes in “diffusion” and “option
value” for supplemental effects in each of the OO and AO
designs, as compared to the original implementation.

These results indicate that both of the detailed design tech-
niques can enhance a component’s adaptability to platform-
specific details, but that the AO design may be better-suited
to this problem. This is consistent with the examples in
the previous section, where the AO technique was both
more concise at the source-code level, and created fewer
dependencies between components at the design level. Still,
the AO design represents a nontrivial technical risk, and there

Metric → Concern Diffusion Net Option Value
Design ↓ Average Best Average Best

OO Delegates -27% -42% +51% +67%
AO XPI’s -100% -100% +58% +80%

TABLE I
HIGH-LEVEL SUMMARY OF ANALYTICAL RESULTS. BETTER DESIGNS

HAVE LESS “DIFFUSION” AND MORE “OPTION VALUE”.

are still clear benefits to be had through the more traditional
OO design, so which approach is “best”, or whether any such
advanced design is warranted at all, is ultimately up to the
judgement of individual designers.

Even in the event that these advanced designs represent
too much risk, or too much additional work, the refactoring
and analysis described above also suggests several ways
that the proposed primary vs. supplemental methodology
can guide much simpler design processes. For example,
the categories of supplemental effects described in Sec-
tion III can be used to guide the decomposition of large
functions into smaller subsidiary functions. Something as
simple as isolating the elements of Listing 1 that depend
on supplemental data into a separate method, such as
obstacleIsRelevantForYields(), would make it
easier to identify existing supplemental effects in the larger
PrecedenceEstimator class. Taken one step further,
dedicating such methods for other likely points of variability,
even if the “base case” is simply to return “true”, could
pay significant dividends to future adaptation by highlighting
the places where platform-specific effects might be applied.
Moreover, such a method-level decomposition would make
it easier to apply more advanced design techniques at a later
time, promoting their incorporation on an as-needed basis.

V. SUMMARY

This paper has presented a design methodology aimed
at enhancing the adaptability and reusability of advanced
robotic software components based on the isolation of the
platform-invariant core algorithm from the supplemental
effects that enhance that algorithm to exploit the special
capabilities of any one robot. The division between the
two is framed in terms of the primary data that all robots
must provide to a given core algorithm, and the remaining
platform-specific supplemental data, which will vary from
one robot to the next.

Five categories of supplemental effects have been identi-
fied in autonomous driving algorithms, including:

• Explicit policies for determining whether a candidate
obstacle is “relevant” to the present context;

• Specific thresholds for determining the scope, or “max-
imum range” of the present context;

• Conservative estimations of obstacle state, such as as-
suming a context-specific “worst-case” speed;

• Substitution of generic, resource-intensive calculations
with more efficient usage of platform-specific data;

• Propagation of supplemental data through intermediate
data representations in long processing “pipelines”.

Two advanced design techniques, one aspect-oriented and
one object-oriented, have been proposed to separate these
effects from their underlying core algorithms. High-level
results from applying these designs to existing software
indicate that they can increase the understandability and
adaptability of the corresponding software artifacts, support-
ing their consideration for future design efforts.

Even though this work is framed in the context of a single
software system, the categories of supplemental effects listed
above are likely have analogues in other advanced robotic
software, suggesting a broader applicability of the issues
outlined in this paper. This encourages future developers to
consider the distinction between primary and supplemental
data, and a corresponding division of core algorithms from
supplemental effects to enhance the adaptability and reusabil-
ity of advanced robotic software.

REFERENCES

[1] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The Carnegie Mellon Navigation
(CARMEN) Toolkit,” in Proceedings of the International Conference
on Intelligent Robots and Systems, 2003.

[2] T. H. Collet, B. A. MacDonald, and B. P. Gerkey, “Player 2.0: Toward
a practical robot programming framework,” in Proceedings of the
Australasian Conference on Robotics and Automation (ACRA), Sydney,
Australia, 2005.

[3] I. Nesnas, et al., “CLARAty: An architecture for reusable robotic
software,” in Proceedings of SPIE, 2003.

[4] M. Quigley, et al., “ROS: an open-source robot operating system,” in
Proceedings of the Open-Source Software workshop at the Interna-
tional Conference on Robotics and Automation (ICRA), 2009.

[5] C. Cote, et al., “Robotic software integration using MARIE,” Interna-
tional Journal of Advanced Robotic Systems, vol. 3, pp. 55–60, 2006.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[7] I. A. Nesnas, et al., “CLARAty: Challenges and steps toward reusable
robotic software,” International Journal of Advanced Robotic Systems,
vol. 3, no. 1, pp. 023–030, 2006.

[8] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language reference manual. Essex, UK, UK: Addison-Wesley
Longman Ltd., 1999.

[9] A. Cowley, L. Chaimowicz, and C. J. Taylor, “Design minimalism
in robotics programming,” International Journal of Advanced Robotic
Systems, vol. 3, no. 1, pp. 31–36, November 2008.

[10] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice. Addison-Wesley, 2003.

[11] C. Urmson, et al., “Autonomous Driving in Urban Environments: Boss
and the DARPA Urban Challenge,” Journal of Field Robotics, vol. 25,
no. 8, pp. 425–466, 2008.

[12] Defense Advanced Research Projects Agency (DARPA), “Urban chal-
lenge website,” July 2007, http://www.darpa.mil/grandchallenge.

[13] C. R. Baker and J. M. Dolan, “Street smarts for boss: Behavioral
subsystem engineering for the urban challenge,” IEEE/RAS Robotics
and Automation Magazine Special Issue on Software Engineering in
Robotics, vol. 16, no. 1, pp. 78–87, 2009.

[14] G. Kiczales, et al., “Aspect-oriented programming,” in Proceedings of
the European Conference on Object-Oriented Programming, 1997.

[15] W. G. Griswold, et al., “Modular software design with crosscutting
interfaces,” IEEE Softw., vol. 23, no. 1, pp. 51–60, 2006.

[16] A. F. Garcia, et al., “Modularizing design patterns with aspects: A
quantitative study.” Transactions on Aspect-Oriented Software Devel-
opment I, vol. 3880/2006, pp. 36–74, 2006.

[17] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The structure
and value of modularity in software design,” in ESEC/FSE-9: Proceed-
ings of the 8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on Foundations of
software engineering. New York, NY, USA: ACM, 2001, pp. 99–108.

http://www.darpa.mil/grandchallenge

	I Introduction
	II On the Nature of Adaptation
	III Supplemental Effects in Autonomous Driving Algorithms
	IV Technical Approaches to Modularization of Supplemental Effects
	IV-A Object-Oriented Approach: Delegation to Strategy Classes
	IV-B Aspect-Oriented Approach: Crosscutting Programming Interfaces
	IV-C Analytical Results and Discussion

	V Summary
	References

