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Abstract— Flexibility is often an unavoidable consequence of
the desire for high speed and performance manipulators. This
paper proposes a method that improves the performance of
flexible manipulators through the employment of robust state
estimation techniques. These techniques are based on discrete
time Kalman filtering and sliding mode principles. A simple
model for a single degree of freedom flexible manipulator is
derived and a control scheme is chosen and implemented. The
latter includes a robust non-linear estimator. Simulation and
preliminary experimental results are presented that demon-
strate the validity of the proposed control scheme.

I. INTRODUCTION

Industrial manipulators often sacrifice performance and ef-
ficiency for accuracy. The limitations placed on current state
of the art manipulators for precision come at the cost of high
speed manipulation, payload capability, and safety. Demand
for rigid positioning requires most industrial manipulators
to operate with payloads equal to 3% to 5% of their total
weight [1]. Increased manipulator weight also results in a
need for larger, more powerful, and inefficient motors and
drives to maintain the same performance characteristics as
lighter weight arms.

The increased demand for link stiffness has also severely
limited the workspaces of modern industrial robots. Current
long-reach, lightweight robots like that of the space shuttle
manipulator are operated far below their performance limits
in order to avoid exciting undesired vibration. Recently,
advanced control algorithms have improved the capabili-
ties of these complex motion systems through feed-forward
algorithms like inverse dynamics and command genera-
tion [2] [3]. These control algorithms effectively drive the
manipulator in a way designed to avoid causing residual
vibration. Fig. 1. shows an example of a robot to which these
techniques have been applied greatly improving the utility of
its long reach capabilities. However, while these techniques
ideally minimize vibration along a trajectory, they offer no
compensation for disturbances or unmodeled effects.

Feedback control can correct for external disturbances but
generally requires precise knowledge of the current system
state variables, which in practical applications, are rarely
directly measurable [4] [5]. This estimation challenge is
exacerbated by the nonlinearities and complexities of flexible
motion systems. Thus the solution to the problem falls on
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Fig. 1. CAMotion Depalletizing Robot

the development of state estimators to recreate an accurate
portrayal of the current state of the dynamic system from
available measurements.

Typically estimators of this type require an accurate model
of the system, and in the case of flexible manipulators,
models are either too complex for real time control or
fail to capture the true dynamic behavior of the system,
resulting in instability of the control system. Therefore, it
is desirable for the estimator to exhibit robustness with
respect to disturbances, parameter variation, and modeling
inaccuracies [6].

In this study we propose an observation strategy built on
the discrete time Kalman filter [7] and utilizing a sliding
mode discrete switching algorithm developed by Walcott and
Zak [8] to add robustness to the state estimates of a single
link flexible manipulator. A simple model of a single axis of
a gantry style packaging robot is derived and implemented
in the developed estimation scheme. Simulation results are
presented to examine the robustness and accuracy of the
proposed algorithm and preliminary experimental results
are included to verify practical applicability to industrial
systems.

II. MODELING

Fig. 2. illustrates a simple model for a single degree
of freedom of a belt driven gantry robot. Flexibility in
the system comes from the elastic belt and the thin beam
attached to the cart which is free to slide on a track with the
assumption of viscous friction.

In order to design a suitable compensator for a flexible
manipulator, the dynamic behavior of the flexible system
must first be adequately modeled. Many approaches to
the dynamic modeling of flexible manipulators have been



Fig. 2. System Schematic

proposed including finite element analysis [2], solutions to
partial differential equations for continuous vibrating beams
[9], transfer matrix methods [10] [11], and lumped parameter
approximations [12] [9] [2]. For the purpose of this study
we used a less accurate lumped parameter model based on
the Ritz series expansion that permitted examination of the
behavior of the proposed observation scheme.

Due to the continuous nature of flexible motion systems, a
lumped parameter model will ultimately fail to characterize
the true dynamic nature of the system. Inaccuracies arise
from the fact that any continuous vibratory system has an
infinite number of resonant modes. As a matter of practi-
cality, this infinite series is truncated to consider only the
first few modes. This approximation leads to residual mode
spillover and aliasing, which can result in uncompensated
high frequency modes of vibration and ultimately possible
instability [6]. Therefore, model-based estimators like the
Luenberger observer and Kalman filter built on inexact
models will provide inaccurate state estimates, potentially
destabilizing the system.

The Ritz series method for the description of vibrating
beams, often called the ”assumed modes method,” is an
energy based technique derived from the framework of
Lagrange’s equations. The basic procedure utilizes a series
expansion of basis functions to represent the dependence
of the displacement field of the vibrating beam. Thus the
central issue in the Ritz series formulation becomes the
selection of appropriate basis functions for the given type of
vibration and constraints [9], in our case flexure with fixed
free end conditions. Thus we can define the corresponding
basis function (1).

ψj = cos

(
(j − 1)πx

2L

)
(1)

Where L is the beam length and x is the displacement
along the beam. From the kinetic energy of the system the
effective inertia matrix can be determined.

Mjn =

∫ L

0

ψjψnρAdx+
∑

mψj(xm)ψj(xm) (2)

Where the first term comes from the distributed mass ρA
of the continuous beam and the second from the point masses

at the base (cart mass) and tip (tip mass). Similarly the
elasticity matrix can be determined from the system’s total
potential energy. Again the distributed elasticity EA of the
beam is accounted for by the first term of (3), where E
is Young’s modulus and A is the cross-sectional area. The
attachment of elastic elements at fixed points is enabled by
the second term.

Kjn =

∫ L

0

EA
dψj
dx

dψn
dx

dx+
∑

kψj(xk)ψj(xk) (3)

Damping in the physical system stems from friction be-
tween the cart and track and internal damping in the flexible
beam, which is characterized by a loss factor γ. The damping
matrix itself is derived from the energy dissipated by the
system.

Cjn =

∫ L

0

γEA
dψj
dx

dψn
dx

dx+
∑

cψj(xc)ψj(xc) (4)

The generalized forces applied to the system are derived
from the energy introduced to the system by external forces
and consist of distributed forces fx and point forces F .

Qj =

∫ L

0

fxψjdx+
∑

Fψj(xf ) (5)

The system equation of motion is given by (6).

Mq̈ + Cq̇ +Kq = Q (6)

This equation of motion is a system of coupled differential
equations, which can be decoupled by converting to modal
coordinates η. This transformation is accomplished by solv-
ing the eigenvalue problem (K−ω2

nM)v = 0 resulting in the
natural frequencies wn and mode shapes v. Transformation
to modal coordinates is accomplished by (7).

q = Φη (7)

Where Φ = [v1, v2, ..., vn] resulting in the modal equation
of motion (8).

η̈ + ΦTCΦη̇ + ω2
nη = ΦTQ (8)

An infinite number of modes must be considered for
complete description of a continuous flexible motion system.
However, the series is truncated to the first three terms: a
rigid body mode and first and second flexible modes, for the
purposes of this study.

III. STATE OBSERVATION
In order to build an observation strategy for a flexible

motion system as described in section II. the modal model
must first be converted to state-space form. State derivatives
ẋ and system outputs y are a linear function of the system
states x and the inputs to the system u.

ẋ = Ax+Bu (9a)
y = Cx+Du (9b)



One convenient way to transform the modal equation of
motion to state space is to define the modal coordinates and
their derivatives as the states of the system.

x =



x1
x2
x3
x4
x5
x6


=



η1
η2
η3
η̇1
η̇2
η̇3


(10)

For simplicity, let ΦTCΦ = Ĉ and ΦTQ = Q̂. Then by
solving the modal equation of motion in (8) for the second
derivative of the modal coordinates, the following state space
realization can be defined.

A =

[
0 I3
−w2

n Ĉ

]
(11a)

B =

{
0

ΦT Q̂

}
(11b)

C =

[
T (0)Φ 0

T (L)Φω2
n T (L)ΦĈ

]
(11c)

D =

{
0

T (L)ΦQ̂

}
(11d)

Where T (x) = [ψ1(x), ψ2(x), ψ3(x)] and cart position
and tip acceleration are chosen as outputs.

A. Kalman Filter

Originally proposed by R.E. Kalman in 1960 [13], the
discrete time Kalman filter has seen ubiquitous use in numer-
ous fields. The Kalman filter is a recursive algorithm for the
estimation of a dynamic system. Given a stochastic system
model, the filter produces estimates that are optimal in the
least squares sense [7]. It is this optimality in the presence
of system noise that makes the Kalman filter a good choice
for the first layer of our proposed estimation routine.

To implement the Kalman filter we must first define the
stochastic system model (12a) and (12b).

ẋ = Ax+Bu+Gw (12a)
y = Cx+Du+Hw + v (12b)

Where w and v are the system process noise and measure-
ment noise, G is a matrix relating the process noise to the
system states, and H relates the process noise to the system
outputs. For the discrete time Kalman filter formulation the
system must be discretized.

xk+1 = Adxk +Bduk +Gdwk (13a)
yk = Cdxk +Dduk +Hdwk + vk (13b)

We must also determine the process noise covariance
matrix Qp, measurement noise covariance matrix R and the
cross covariance matrix N . Then the Kalman gain equation
becomes (14).

Fig. 3. State Estimator
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Fig. 4. Sliding Surface in Error Space

Lk =
[
AdPkC

T
d +GdQpH

T
d +GdN

][
CdPkC

T
d +HdQpH

T
d +HdN +NTHT

d +R
]−1

(14)

Where Pk is the update covariance matrix and is defined
in (15).

Pk+1 =
[
AdPkA

T
d +GdQpG

T
d

]
− Lk

[
AdPkC

T
d +GdQpH

T
d +GdN

]T (15)

Thus it becomes a matter of measuring the covariance
of the measurement signals and tuning the process noise
covariance to determine the appropriate weights to give the
model predictions and the noisy system measurements in the
estimated state.

A significant drawback to the Kalman filter however, is
its limited robustness. Thus for our application we seek a
method to improve the robustness of the Kalman filter to
unmodeled nonlinearities and parameter variation.

B. Sliding Mode Observer

To improve robustness we borrow a technique from vari-
able structure systems theory and use a sliding mode term
to compensate for bounded nonlinearities and variations
in system parameters (Fig. 3.). The general function of
this sliding term is to force the error trajectories of the
compensated system to a sliding surface [4] [14] on which
the error between estimated and true state is driven to zero
according to the error dynamics of the Kalman filter (Fig.
4.). Our estimator then becomes (16) as described in [8].



˙̂x = Ax̂+Bu+ L(y − ŷ) +Ks [sgn(y − ŷ)] (16)

letting e = x̂− x the error dynamics become (17).

ė = (A− LC)e+Ks [sgn(y − ŷ)]−∆Ax (17)

Where ∆Ax represents parametric variation due to mod-
eling errors, simplifications in system dynamics, and nonlin-
earities in the plant.

It then becomes a matter of overpowering this parametric
variation to achieve stable error dynamics. Walcott and
Zak [8] suggest the following form of Ks to satisfy this
requirement.

Ks = ρP−1CT (18)

Where P satisfies the Lyapunov equation (19)

(A− LC)P + P (A− LC)T = −Q (19)

We can show that the error dynamics are stable by choos-
ing a Lyapunov candidate (20) and showing its derivative is
negative definite. For a formal stability proof see [4], [8] or
[6].

V = eTPe (20)

Defining Ao = A − LC, ξ = (P−1CT )−1(∆Ax) and
substituting the relation sgn(y − ŷ) = −C(x̂−x)

‖C(x̂−x)‖ gives

V̇ = eT (ATo P + PAo)e− 2ρ
eTP (P−1CTCe)

‖Ce‖
− 2eTCT ξ

(21)
Assuming a worst case for the parameter variation by

taking the euclidean norm of the last term in (21)

V̇ = −eTQe− 2ρ ‖Ce‖+ 2 ‖Ce‖ ‖ξ‖ (22)

Therefore to ensure stability of the estimate one must
choose ρ ≥ ‖ξ‖ [15].

Assuming an adequately fast sampling rate, this criteria is
sufficient to ensure that the estimate error is asymptotically
stable. As the estimate error converges to the sliding surface,
the sliding mode gain in (18) will switch signs infinitely fast.
This effectively negates its impact on the overall system. In
practice however this high gain switching algorithm leads to
undesirable chatter at lower sampling rates.

C. Boundary Layer Sliding Mode Observer (BLSMO)

A boundary layer is proposed to minimize this chatter [8]
[6]. This yields a linear transition region below the boundary
layer instead of a sharp discontinuity. Thus with small errors
in the state estimate, a proportionally small effort will be
applied to force the state error to the sliding surface.

˙̂x = Ax̂+Bu+ L(y − ŷ) + S (23)

where

S =

{
ρP−1CT sgn(y − ŷ) ‖y − ŷ‖ > λ

ρP−1CT (y−ŷ)
λ ‖y − ŷ‖ ≤ λ (24)

Tuning of the SMO and BLSMO requires the selection
of a positive definite Q, a scalar ρ and in the case of
BLSMO a boundary layer thickness λ. While intuition and
iteration were used in this study, several approaches have
been described in [16] and [17].

IV. SIMULATION

We performed a simulation to evaluate the effectiveness of
the proposed state estimation algorithms. A model of a single
axis of a CAMotion three axis gantry style packaging robot
was developed using the assumed mode modeling technique
described in section II. and the observer structures outlined
in section III. were implemented using the LabView 2009
Control Design and Simulation Module.

A linear quadratic regulator with penalties on cart position
error, tip acceleration, and command effort was used as the
controller. And for consistency all observers were evaluated
using the same controller gains and trapezoidal velocity
profiles.

Nonlinearities present in the physical system were imple-
mented in the simulation, including saturation of the motor
drives and dead-band. Likewise, noise characteristics from
the system sensors, an angular encoder for cart position and
a piezoelectric accelerometer for tip acceleration were mea-
sured and included. Possible sources of parameter variation
including beam length, tip mass, cart mass, cart friction, and
loss factor were identified and considered to examine the
robustness of each estimator.

Fig. 5(a). and 5(b). represent a sample simulation result
from a trapezoidal move of 30 cm in 0.5 s with a +75%
variation in tip mass. Akin to the added mass of an object
picked up by the gripper of the robot, the results illustrate
the inherent robustness problem with the Kalman filter, as
well as the benefits and behavior of the nonlinear observers
and their effects on the controlled system. The actual output
in each case is represented by the dark blue line and the
observer estimates of the output by the lighter grey line.

It should be noted that with 0% parameter variation
and ignoring the system nonlinearities, all three observer
systems provide nearly identical performance. Aside from
the observed chatter in the case of the SMO estimator, and
the responses in each case remain stable. However, as the
system nonlinearity and parameter variation increase, the
result becomes immediately apparent.

It is clear from Fig. 5(a). that the controlled system is
unstable when using the Kalman filter observer for the given
amount of parameter variation and nonlinearity. This is due
to the divergence of the estimated from the true system state.
Using the sliding mode observer, the system remains stable
but with significant residual tip vibration evident in Fig. 5(b).
from the chattering effect. The boundary layer sliding mode
observer, however, stabilizes the system and reduces residual
tip vibration by decreasing the chatter present in the SMO
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Fig. 5. 75% Tip Mass Variation

system. Of particular interest are the portions of the response
where the estimated and true outputs reach the edge of the
boundary layer and the switching behavior dominates. This
forces the errors back in as illustrated by small portions of
the trajectory in Fig. 5(a). and 5(b).

A direct comparison of the robustness of the three observer
types is shown in Fig. 6. Note that when the model is exact
replica of the physical system, the Kalman filter provides the
best estimates and the errors in the estimates of the sliding
mode observer are significantly larger. As the amount of
variation in the system model increases, the Kalman filter
estimates worsen dramatically and both the sliding mode
and boundary layer sliding mode observers offer substantially
more robustness.

V. EXPERIMENTAL RESULTS

Preliminary experiments were carried out on a modified
CAMotion packaging robot. An aluminum armature was
affixed in place of the vertical axis as pictured in Fig. 7.
to accentuate the flexibility of the system and bring the
resonant natural frequencies of 8.13 Hz and 78.31 Hz into

Fig. 6. Robustness Comparison

Fig. 7. Experimental Apparatus

the controller bandwidth. Cart position was measured using
a encoder mounted to the drive shaft of the belt drive
API Turboservo AC servo motor, and tip acceleration was
measured using a piezoelectric accelerometer from PCB
Piezotronics Inc.

Identical control structures and plant models to those used
in the simulation were used for the experiments. The control
system was implemented using Labview Real-time on a real
time quad-core pc and utilizing a NI X-Series DAQ card
for data acquisition and command generation. Controller
implementation again was executed in LabView CD-SIM at
a sampling rate of 1 kHz.

For uniformity, each observer design was evaluated using
identical control gains and the same trapezoidal velocity
profiles. Similarly each commanded move was carried out
on identical portions of the track to standardize the nonlinear
effects apparent in the system including belt stiffness and
track friction.

Fig. 8. shows an example result from one trial using
the three observer systems. The respective cart positions
have been omitted for space considerations and because they
elicit no new information. This is because we are ultimately



Fig. 8. Tip Acceleration m/s2

concerned with tip vibration reduction and each system
tracks the desired trajectory equally well. As illustrated by
the results, all three observer systems are stable. Note that
both the Kalman filter and boundary layer sliding mode
observers significantly reduce the residual tip acceleration.

Although on direct observation all three observer systems
visibly reduce the magnitude of residual tip vibration relative
to an uncompensated system, the sliding mode observer
results in high residual acceleration of the beam tip. It is
important to note that this residual vibration does not occur
at the dominant natural frequency of the system at approxi-
mately 8 Hz. Instead, it occurs at a much higher frequency of
approximately 71 Hz, indicating that the chattering effect is
exciting the second system mode resulting in the extraneous
residual acceleration. In fact, when operating with the SMO,
an audible tone at a frequency of roughly 1 kHz is emitted
from the servo drive.

VI. CONCLUSIONS AND FUTURE WORK
A. Conclusions

A single degree of freedom model for a flexible link
manipulator was developed using the assumed modes lumped
parameter method. A robust non-linear observer was dis-
cussed based on the boundary layer sliding mode principle,
and built on top of a Kalman filter to provide optimal state
estimates. A simulation was performed to test the robustness
of the developed observer with respect to the Kalman filter
and a sliding mode observer for a flexible motion system.
Finally preliminary physical experiments were performed
on a lightweight, high speed industrial robot to assess the
behavior of the proposed observation strategy on a realistic
system.

We find that the boundary layer sliding mode observer,
built on the Kalman filter, offers a combination of both
the noise filtering characteristics of the Kalman filter and
the robustness of the sliding mode observer, while greatly
reducing chatter.

B. Future Work

Experimental evaluation of the robustness of the observers
is ongoing and extension, application, and evaluation of
the algorithms to multiple degrees of freedom remains an
important next step in the development of a general solution
for the control of flexible motion systems. Feedback control
of flexible systems is, at its best, imperfect because of the
reliance on the existence of trajectory errors before any
control effort is applied. Therefore, in order to be successful,
any feedback control system must also be combined with a
method for the generation of vibration reducing trajectories
as well.
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