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Abstract— Evidence grids are a popular representation for
fused data from multiple sensors. Previous attempts at back-
ground subtraction within evidence grids either do so prior to
sensor fusion or do so naively, simply ignoring any cells with
a high background occupancy probability. A key weakness of
these approaches is that they cannot reason about interiors of
objects or other unobserved regions. Recognizing and removing
solid object interiors is important for any application that must
be able to differentiate between occupied and unknown space
after background subtraction.

In this paper, we propose accessibility analysis as a method
for the removal of interior regions. We then present and
compare two approaches for performing background subtrac-
tion with accessibility analysis in evidence grids. Performance
is measured using a 3D evidence grid in a test bed for a
sensing system designed for use in safety monitoring of an
automated assembly workcell. Within the parameters of the
present study, both techniques allow for precise detection of
foreground objects while fully removing background objects.
Subtraction runs in near real-time, even for large grids.

I. INTRODUCTION

Evidence grids, also called occupancy grids, were first
introduced by Elfes and Moravec [3], [9], and are a pop-
ular technique to store probabilistic occupancy data about
environments based on an arbitrarily large collection of
sensor data. As with any sensor-based system, background
subtraction is commonly used to remove static, unmoving
objects in the environment and focus on objects of interest.
Figure 1 shows foreground regions in a 3D evidence grid
following background subtraction.

Most previous approaches to multi-sensor background
subtraction have done so directly on sensor images using
2D vision techniques [1], [4], [6]. Background is subtracted
from each individual sensor, then remaining foreground data
are combined to determine occupancy of foreground objects.

However, performing background subtraction directly at
the evidence grid level confers several advantages. For in-
stance, by simply discarding an individual reading when it
fits a background model, we lose the ability to differentiate
the region in-between the sensor and the sensed object, which
is known to be empty, from the region beyond the reading,
which is unobserved. Distinguishing between unknown and
unoccupied regions is important for many applications, such
as safety systems, where the potential cost of an object
occupying an unobserved region is high. Since evidence grids
keep track of whether regions are occupied, unoccupied, or
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Fig. 1. Background subtraction visualization. Red indicates sensed fore-
ground regions.

simply unknown, subtraction at the grid level can remove
occupied areas while leaving empty regions alone.

In mobile robotics, Simultaneous Localization and Map-
ping (SLAM) is another application for which evidence
grid-based background subtraction is advantageous. SLAM
approaches implicitly generate a background map either
through a static environment assumption (e.g., [11]) or
through moving object detection (e.g., [13]). Background
subtraction in these applications can give important informa-
tion about unexplored areas, as well as highlighting newly
observed objects.

One simple approach to background subtraction within
evidence grids is to simply ignore any cells that are occupied,
according to some background map. However, the regions
subtracted by this method are limited to the exterior surface
of objects, as object interiors cannot be directly observed.
For large objects, interior regions will always have prior
(unobserved) occupancy probabilities, which will remain
unchanged during background subtraction. Again, this poses
a problem for applications that must conservatively interpret
unknown regions as potentially occupied.

To address the problem of interior region removal, we
introduce the notion of accessibility analysis, a method of
measuring and removing regions that may be assumed to be
empty due to surrounding background objects. We define a
region to be accessible if and only if there exists a path to it
from some known open region that does not traverse through
any occupied region. However, note that, because of sensor
error and gaps in coverage, there will often exist small cracks
or occlusions in what is an otherwise solid object, leading to



an overly generous estimate of accessibility. For this reason,
we allow for an adjustable degree of tolerance to gaps by
measuring accessibility with respect to an object of some
given radius.

With this concept in mind, determining accessibility is
similar to a standard robotic motion planning operation. This
gives a simple algorithm for measuring accessibility:

1) Derive a configuration space by erosion of empty
regions.

2) Find all locations reachable from some known acces-
sible region within configuration space.

3) Revert to physical space by dilation of accessible areas.
Figure 2 illustrates these steps on a sample background map.

In this paper, we present two methods for performing
background subtraction and accessibility analysis within a
fused evidence grid. The first is a natural extension of
the simple threshold-based approach to include accessibility
analysis. Second, we present a novel probabilistic algorithm
that computes accessibility probabilities for all cells based
on a min-cost path analysis. Finally, we test and compare
both methods using simple background subtraction scenarios
in a 4-sensor test workcell. Our results demonstrate that
accessibility analysis is an effective method for interior re-
gion removal, and that probabilistic subtraction is particularly
well-suited for detecting small foreground objects.

A. Prior Work

To date, there has been little research in background sub-
traction within the evidence grid framework. Work on back-
ground subtraction in multi-sensor systems has historically
performed subtraction on single sensors prior to data fusion.
For cases using monocular cameras with silhouette-based 3D
projection, background subtraction has been performed using
standard computer vision techniques [1], [4]. Other work has
used statistical analysis at the point cloud level, such as in
[6].

Background subtraction on fused data is implicit in
approaches to Simultaneous Localization and Mapping
(SLAM) as well as Structure from Motion (SfM) in non-
static environments [8], [13], [14]. There has also been
research in object segmentation for fused data. Standard data
clustering techniques may be used on either point clouds
or evidence grids [7]. There are also studies particular to
segmentation in point clouds [5] and in evidence grids
[12]. However, while useful for finding certain foreground
features, these methods do not directly address the problem
of background subtraction and accessibility.

B. Applications and Approach

The research described here is part of the ongoing Intel-
ligent Monitoring of Assembly Operations (IMAO) project
at Carnegie Mellon University. The goal of the project is
to allow humans to work closely with assembly robots
while maintaining a safe environment. The approach uses
3D sensing to closely monitor positions of all persons and
other potential hazards in the environment.

Fig. 2. Accessibility analysis example (thresholded, r = 1). (a) The initial
background map; (b) Configuration space generated by erosion of empty
regions; (c) Configuration space with inaccessible regions filled; (d) Final
background map after dilation of accessible regions.

Effective background subtraction is crucial to the success
of the project. Interior region removal is particularly im-
portant because the safety policy must be conservative, and
therefore any unknown regions must be treated as potentially
occupied. A background subtraction method for any safety
system must also operate in real-time.

The next two sections describe our thresholded and prob-
abilistic approaches to background subtraction.

II. THRESHOLDED BACKGROUND
SUBTRACTION

In the thresholded approach, we perform accessibility
analysis based on a binary thresholded background map.
Thresholding simplifies the problem, but has the disadvan-
tage that once a cell is classified as background, it will always
be removed even if the occupancy probability for the cell
later increases.

The algorithm starts with a background evidence grid GB ,
which contains for each cell the probability of occupancy by
a background object. This grid can be gathered by building
a standard fused evidence grid at a time when it is known
that all foreground objects are out of the environment.

A cell c in the grid can have one of two states, occupied or
empty. The probability of occupancy for a cell c according
to an evidence grid GB is denoted P (c = occ;GB).

Next, we threshold GB according to a background prob-
ability threshold tB , which produces the set of empty cells
E.



E = {c|P (c = occ;GB) < tB} (1)

In practice, this threshold can be set to any value above the
prior probability, typically just barely above.

To perform accessibility analysis, we use standard mor-
phological operations with a structuring element R, which
is defined as an object of uniform radius r. Choosing r is
application dependent; it should be approximately the size of
the smallest foreground object. Higher values will make the
system more robust to sensor noise and gaps in coverage,
but also may introduce false negatives.

To derive the configuration space ER of R in E, we erode
E:

ER = E 	R (2)

Now, we need to determine which regions in ER are ac-
cessible. An accessible cell in configuration space is defined
as any cell that can be reached starting from a cell that is
known a priori to be accessible.

To compute accessibility, first a connected components
algorithm is used to group the cells in ER. Then, given a
set of known accessible cells A0, a connected group Ei is
accessible if and only if it intersects with A0. This gives a
set AR of cells that are accessible in configuration space:

AR = {Ei|Ei ∩A0 6= ∅}. (3)

The method of selecting A0 is application dependent. In
our implementation, we have a grid with a bottom boundary
on the floor, a top boundary on the ceiling, and open sides,
so A0 is defined to be all cells on the four sides of the grid.
This choice is valid since any foreground entities will need
to travel through one of those boundaries to enter the grid.

Finally, we obtain the set of all accessible cells A by
dilation of AR, reversing (2):

A = AR ⊕R. (4)

Now, we can use this accessibility map to filter probabili-
ties at run-time by introducing a prior foreground occupancy
probability P (fore). This can be derived from the accessi-
bility probability P (acc):

P (fore) =
P (acc)P (fore|acc)+
P (¬acc)P (fore|¬acc). (5)

Naturally P (fore|¬acc) = 0, and for our purposes we use
P (fore|acc) = 0.5. This gives our final foreground prior

P (fore) =
P (acc)

2
. (6)

Since we are dealing with thresholded cells, c ∈ A ⇐⇒
c = acc, and we have

P (c = fore) =

{
c ∈ A 0.5

c /∈ A 0
. (7)

Application of this prior will have the effect of reducing
foreground occupancy probabilities to zero for inaccessible
cells, and leaving accessible cells unchanged.

III. PROBABILISTIC BACKGROUND
SUBTRACTION

The probabilistic version is conceptually similar to the
thresholded version, but instead of thresholding and produc-
ing a set of accessible cells A, we estimate for each cell its
probability of being accessible, P (c = acc;G). Thus, our
goal is to create a new evidence grid GA that contains the
accessibility probability for each cell

GA(c) = P (c = acc;G). (8)

The meaning of a cell being accessible in this case is the
same as before: a cell is accessible if and only if in the
background grid there exists a path to it from some known
accessible cell by an object of radius r. Our approach follows
the same motion planning-based steps as in the thresholded
method, but is generalized to the continuous domain.

A. Configuration space probabilities

First, we perform an analog of the erosion operator to
generate configuration space probabilities. A cell c is in the
configuration space ER of our structuring element R if and
only if the set of cells Rc it occupies when centered at c are
empty:

Rc = emp ⇐⇒ c ∈ ER, (9)

where P (c = emp) is the probability that a cell is empty,
and P (c = emp) = 1− P (c = occ).

We define Rc for an object of radius r as

Rc = {c′| ||c′ − c||1 ≤ r}. (10)

Now, we can write the configuration space probabilities:

P (Rc = emp) = P (
⋂

c′∈Rc

c′ = emp). (11)

Note that (11) is the probabilistic analog to (2). As is
typical in occupancy grids, we assume that cell probabilities
are independent, so this simplifies to

P (Rc = emp) =
∏

c′∈Rc

(1− P (c′ = occ)). (12)

For practical purposes we do not actually want to use the
straight background probabilities in computing the configu-
ration space. For large sizes of r, and for long accessibility
paths, even relatively low values of P (c = occ;G) will
cause accessibility to approach zero rapidly. The problem
is even more pronounced with unobserved cells, as they
have a prior probability of 0.5. This is mainly a result of
the cell independence assumption, and to mitigate it we set
unobserved cells and cells with an occupancy probability
lower than a fixed threshold tE to 0, using a thresholding
function f(c,G).



f(c,G) =


P (c = occ;G) < tE 0

c is unobserved 0

else P (c = occ;G)

(13)

Now we can define our configuration space grid GER

based on the background probability grid GB , using (12).
Also, from here on we choose to work in the negative log
space for computational stability.

GER
(c) = −

∑
c′∈Rc

log(1− f(c′, GB)) (14)

B. Configuration space accessibility

Next, we must compute the probability that cells are
accessible in configuration space, P (Rc = acc). This is
analogous to (3):

Rc = acc ⇐⇒ c ∈ AR.

A cell is accessible in configuration space if and only if there
exists some path P of adjacent cells traveling from a known
accessible configuration R0 ⊂ A0 to a configuration Rd such
that ∀c ∈ P,Rc ∈ ER. However, because of the infeasibility
of combining all possible paths, we approximate this with
the most probable path:

P (Rc = acc) ≈ max
{P |c∈P}

P (
⋂
c′∈P

Rc′ = emp). (15)

In practice, this is not an unreasonable approximation.
Most areas will consist of unoccupied space, where the path
taken is irrelevant. Areas that do require entry into occupied
space will typically have a single point of entry that gives
maximum accessibility probability, with all less probable
paths being insignificant in comparison.

The log probability of accessibility via a path P is then
the conjunction of all probabilities along that path:

logP (Rd = acc;P ) = logP (RP0
, ..., Rd)

=
∑

i logP (RPi |RP0 , ..., RPi−1)
.

(16)
We can now derive the cost of moving from a cell ci

to an adjacent cell cj from the conditional probabilities if
we assume P (RPi

) is independent of P (RP0
), ..., P (RPi−2

)
given P (RPi−1).

cost(ci, cj) = − logP (Rcj = emp|Rci = emp)
=

∑
c∈Rcj

,c/∈Rci
GER

(c) (17)

The conditional independence assumption here does intro-
duce inaccuracy, in that any time there is a turn in the path
there will be cells that are in RPi−2

but not in RPi−1
. This

has the effect of penalizing turns in the path; for an object
radius r, there are r cells that are double counted in any turn.
However, as R incorporates ≈ 2r2 cells (depending on grid
dimensionality), this is usually a minor problem.

With these costs, we can use Dijkstra’s algorithm to
compute the most probable path from some R0 to each Rc.
This yields a configuration space accessibility grid GAR

with
values

GAR
(c) = min

P

n∑
i=1

cost(Pi−1, Pi). (18)

C. Individual cell accessibility

Finally, we need to extract the individual accessibility
probabilities P (c = acc), analogous to (4) in that

c = acc ⇐⇒ c ∈ A.

Since Rc = acc→ ∀c′ ∈ Rc, c
′ = acc, we can write

P (c = acc) = P (
⋃

c′∈Rc

Rc′ = acc). (19)

Now for any two cells ci, cj ∈ Rcwhere P (Rci = acc) >
P (Rcj = acc), we assume that the path to Rci travels
through Rcj . This is a reasonable approximation, at least
for relatively small values of r. Then P (Rci |Rcj ) = 1 and
P (Rci ∪Rcj ) can be simplified to

P (Rci ∪Rcj ) = P (Rci) + P (Rcj )− P (Rcj )P (Rci |Rcj )
= P (Rci)

(20)
Therefore, we can take the maximum probability, giving

P (c = acc) = maxc′∈Rc
(P (Rc′ = acc))

= exp(−minc∈Rc
GAR

(c)).
(21)

D. Foreground filtering

During run-time, foreground extraction uses accessibility
probabilities in computing the prior P (fore), as shown in
(6). This prior may be used during fusion in accordance with
standard practice. In our experiments we use the independent
opinion pool method with probabilities stored in log-odds
format as defined in [3], so foreground filtering consists of
adding the prior to the current fused evidence grid.

IV. EXPERIMENTAL METHODS

Our test environment consists of a 4m x 4m x 2m frame,
with one 3D sensor mounted in each upper corner near the
ceiling (Figure 3). Two sensors are Swissranger SR4000
flash LIDARs and the other two are TYZX G3 EVS stereo
cameras. All senors are oriented inward at the center of the
environment.

Sensor evidence models are generated using a
parametrized sensor model similar to the one used by
Moravec et al in [10]. Evidence models for each point
are one-dimensional, as the sensor resolutions are dense
enough to give sufficient coverage without conical evidence
profiles, and single-line profiles significantly speed up
processing. The model used for all tests has a peak
occupancy probability of 0.56 at the reading and a trough
at the sensor origin of 0.44. Rasterization into the evidence



TABLE I
TEST SETUPS

Scenario Foreground CAD image

Large One additional
box

Small One 2x4 placed
on top

Fig. 3. CAD model of the test environment

grid is performed using a 3D version of Bresenham’s line
algorithm.

All tests were performed using arrangements of boxes with
known ground truth. Ground truth evidence grids were gen-
erated within the OpenRAVE simulator [2] using simulated
sensors. All simulated sensors had the same calibration, field
of view, and resolution as the real sensors. We used an ideal
0-1 sensor model for generating evidence grids in simulation,
where the voxel containing the sensor reading is marked as
occupied with P (occ) = 1 and all voxels leading up to it are
marked as unoccupied with P (occ) = 0.

Tests used a 3D evidence grid containing an area with
dimensions 1.7m x 1.5m x 1.5m in the center of the en-
vironment. The voxel size for all experiments was 5 cm.
For accessibility analysis, all tests used an accessibility
object radius r = 10 cm. The thresholded method used
a background threshold tb = 0.51, and the probabilistic
method an empty threshold te = 0.1.

To measure the performance of background subtraction,
we compared the observed evidence grid with the simulated
ideal grid using a standard precision-recall curve. We used
a foreground threshold tf to classify voxels in the observed
grid as occupied or empty, then checked the classification
against the ideal grid. Any voxels that were unknown in
the ideal grid, i.e., voxels in the interiors of foreground

Fig. 4. Foreground occupancy for large object test, using thresholded
subtraction and tf = 0.73.

Fig. 5. Foreground occupancy for large object test, using probabilistic
subtraction and tf = 0.73.

objects, were ignored. Precision-recall curves were generated
by measuring error rates across different values of tf .

In addition to the probabilistic and thresholded background
subtraction techniques presented in this work, we also tested
baseline versions of these methods with no accessibility
analysis. For the thresholded algorithm, we used the set of
all empty cells E instead of the accessible cells A when
computing the prior probability P (fore) in (7). For the
probabilistic algorithm, we substituted the probability that
a cell is empty in the background grid 1− P (occ) in place
of the accessibility probability P (acc) in (6).

All measurements were gathered in two test scenarios,
with background and foreground objects as indicated in Table
I. One scenario tested detection of large objects, and the other
detection of small objects.

V. EXPERIMENTAL RESULTS

Error rates for the large object test are shown in Figure 8
and for the small object test in Figure 9. Images showing
foreground voxels, taken from the perspective of sensor
Stereo 1 (see Figure 3), are shown in Figures 4 and 5 (large
object), and in Figures 6 and 7 (small object).

In the large object test, results are good for both the thresh-
olded and probabilistic methods. In the versions without
accessibility analysis, results are significantly worse. This is



Fig. 6. Foreground occupancy for small object test, using thresholded
subtraction and tf = 0.73.

Fig. 7. Foreground occupancy for small object test, using probabilistic
subtraction and tf = 0.73.

to be expected, as the baseline methods will naturally classify
interior regions of the background boxes as occupied for any
threshold tf < 0.5. In the small object test, performance is
dramatically better with the probabilistic method, particularly
under high recall.

Accessibility analysis does negatively affect performance
under some circumstances, such as those seen in the low-
recall portion of Figure 9. When detecting a flat surface
such as the top of the background box, sensor noise will
naturally produce scattered false positive voxels, making
it uneven. During the accessibility computation, the mor-
phological operations in effect perform a closing operation,
which will exacerbate the problem by marking many of the
gaps in-between the noise-generated voxels as inaccessible.
However, our results indicate that this is not a major problem
in practice.

Differences between the thresholded and probabilistic
methods are most visible in boundary areas at the edges of
background objects, where there is a moderate accessibility
probability. In the thresholded method, these regions will
likely be part of the background map and always removed,
but in the probabilistic version the regions are still sensitive
to changes in evidence. Since they are at a boundary between
empty and occupied space, the probabilistic accessibility
path does not need to go through occupied regions to reach
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Fig. 8. Precision-recall for large object test
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Fig. 9. Precision-recall for small object test

them, and base subtracted foreground probability will be only
slightly below 0.5.

In many situations this sensitivity is helpful. For small
object detection, the increase in evidence may be a result
of the addition of a thin foreground object touching a
background object. This means that small objects may be
detected even though they occupy voxels with high back-
ground occupancy probability (Figure 7), something that
is not possible using the thresholded version (Figure 6).
This accounts for the drastic difference in recall between
thresholded and probabilistic subtraction in Figure 9.

However, this feature can also introduce unwanted noise,
as there are circumstances where occupancy probabilities
may increase even though no foreground object is added.
In Figure 5 we see one example of this type of false
positive, which results from occlusion of an area from one
or more sensors by a foreground object. While intuitively



objects should have higher occupancy probability if there
are more sensors reading it, in reality this is often not the
case, especially near object boundaries. Since the evidence
ascribed to a voxel by a given sensor reading is a function of
the distance between them, for voxels near a surface a sensor
reading normal to the surface will give higher evidence than
one at an oblique angle. The phantom voxels seen on top of
the lower box in Figure 5 are a result of the occlusion of
low-angle sensor readings. Note that the thresholded results
in Figure 4 do not exhibit this behavior.

Adding the background prior during run-time to perform
subtraction is fast; our 30,600 voxel grid took under 1 ms
on a standard desktop computer. However, computing the
background prior is more lengthy: the thresholded method
requires approximately 20 ms, and the probabilistic version
nearly 400 ms. However, because we use a static background,
this computation only needs to be performed once at start-up
and is not a significant consideration.

The video clip accompanying this work demonstrates the
IMAO system in action with several people moving about
the environment. The entire sensing, fusion, and visualization
system runs at 10 hz, distributed across two computers.

VI. CONCLUSIONS AND FUTURE WORK

Our results indicate that background subtraction at the
occupancy grid level is highly effective. Foreground filtering
is reliable using either method presented, accurately detects
objects down to single-voxel resolution, can be done in real-
time, and is easily parallelizable.

For most applications that require coarse-grained detection
of large objects, the thresholded version is sufficient. When
greater sensitivity and detection of small objects is required,
the probabilistic method performs significantly better, but is
also more vulnerable to false positives.

In all cases, accessibility analysis is shown to be effective
under the conditions of this study. Even with a small gap
tolerance, interior regions are removed completely, allowing
for much greater precision than would otherwise be possi-
ble. However, we expect the success of the interior region
removal to be highly dependent on sensor coverage. Our
test environments were designed such that all portions of
the objects were visible to at least one sensor, but with less
dense sensor coverage determining accessibility would be
impossible, leaving interiors of background objects unknown.

A. Future Work

While current results are successful within the parameters
of this study, there are several areas where the approach could
be extended to improve results and broaden the potential
applications of this work.

First, this work was limited to the study of static back-
grounds. Testing this approach with a dynamically changing
background map would increase its versatility and allow it
to be used in less controlled environments. The methods
developed in this work are compatible with any standard
background modeling technique, as accessibility analysis is
performed after the background is gathered. However, using

a dynamic background would require recomputing accessi-
bility every time it changes, which will slow performance.

Also, the use of an evidence grid with a cell independence
assumption requires many approximations, particularly in the
probabilistic algorithm, which leads to decreased accuracy.
The evidence grid independence assumption could be relaxed
to a first-order Markov assumption, which may allow more
accurate accessibility estimates, but likely at significant com-
putational cost.
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