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Abstract— This paper presents a perception-based GPS-
free approach for localizing a mobile robot in an orchard
environment. An extended Kalman filter (EKF) algorithm is
presented that uses a wheel odometry prediction step and laser
rangefinder update steps. There are two update steps, one that
uses measurements to reflective point features and one that
uses measurements to linear features formed by tree rows. The
features are associated to landmarks in previously surveyed
maps. The practical issues of dealing with uncertainty both
from the environment and the on-board sensors are discussed
and accounted for. The resulting algorithm is demonstrated in
over 20km of online operation in a variety of real orchard
environments.

I. INTRODUCTION

Localization of mobile vehicles is important in precision
agriculture for a variety of reasons. Data collected from
these vehicles can be geo-registered into maps, which field
managers and scientists can use alike. This allows the same
vehicle to return to specific locations and perform tasks
such as spraying in a more targeted manner, thereby saving
valuable resources. Localization is also critical for automated
or semi-automated vehicles that can improve productivity for
agricultural applications and fulfill the growing demand for
labor.

The use of GPS for localization has many drawbacks
for specialty crop settings. In orchards such as the ones
used in this work (Fig. 1), the line-of-sight to satellites
can get occluded by tree canopies. This occlusion problem
does not occur in broad-acre crops, where GPS has been
successfully used for many years [1]. Even without signal
interference, GPS systems that provide sub-meter accuracy
are prohibitively expensive for most specialty agriculture
applications. Additionally, GPS does not provide information
about the orientation of the vehicle, which is necessary for
automated steering, as well as for determining the position
of objects observed by vehicle-mounted sensors.

This research is part of the CASC project (Comprehensive
Automation for Specialty Agriculture), funded by the USDA,
to provide new technologies for specialty crops that are
reliable and affordable [2]. Our role is to automate a robotic
utility vehicle which can drive up and down orchard rows
with a variety of sensors to intelligently make sense of
itself and the environment. This paper describes efforts to
date to localize the vehicle in real time without the use of
GPS. Our approach uses sensors already on the vehicle for
other purposes, thereby adding no cost or infrastructure to
the platform. Wheel encoders, which are already being used
for vehicle control, are used to provide a preliminary pose
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Fig. 1. Fruit wall in a typical orchard environment. Tall tree canopies
make GPS unreliable. Shrubs, low-hanging branches, and thin trunks make
feature extraction difficult.

estimate based on dead reckoning. 2D lasers fixed to the
vehicle, which are already being used for obstacle avoidance,
are used to detect point and line features. These features are
used in an extended Kalman filter (EKF) for pose estimate
corrections.

The orchards we test in have many environmental chal-
lenges (Fig. 1). The rows of trees are called fruit walls,
resembling vines that grow along wires. The trees are closely
spaced and the trunks have very small diameters, with
branches that often hang low to the ground. This environment
is carefully engineered to maximize light interception to the
canopy. Our robot is limited in what it can sense with its
fixed 2D lasers. Tree trunks are narrow and often occluded
by leaves, ruling out the possibility of using them as point
features. Line features can be fit to the straight rows of trees,
but these lines are very noisy due to the organic shape of the
canopy.

The work presented here uses a practical approach to deal
with the constraints of our platform and the environment.
We use a combination of naturally-existing line features that
are formed by the tree rows and a small number of artificial
point features. As the robot drives down a straight row, noisy
lines fitted to the canopy are used to correct for crosstrack
error. Reflective tape placed only at the ends of rows are
used to correct for downtrack error when the robot nears the
end of the row, as well as to correct for error as the robot
makes tight turns from one row to the next. This allows the
robot to traverse entire orchard blocks, and we demonstrate
this with multiple endurance runs, where the robot is running
online localization algorithms used as inputs for autonomous
navigation.

II. RELATED WORK

Laser localization for autonomous ground vehicles in out-
door environments has made many recent advances. Kelly et.
al. [3] use GPS for global pose estimates, and deal with GPS
drop-outs by using a suite of sensors for local pose estimates



and obstacle avoidance. The winners of the DARPA Urban
Grand Challenge [4] used an Applanix system for an initial
pose estimate, and then lasers to detect the reflectance
from road markers to correct for this estimate. Madhavan
and Durrant-Whyte [5] use wheel encoders and lasers to
localize in unstructured environments, using a combination
of reflective landmarks and polylines to structures with
clearly defined edges and corners. Guivant et. al. [6] use
wheel encoders and lasers to perform EKF Simultaneous
Localization and Mapping (SLAM) in park settings, using
the trunks of large trees as point features.

Using line features for robot pose estimation and naviga-
tion has been developed primarily in indoor environments,
where clean, man-made surfaces can be detected. Sack and
Burgard [7] learn line models by extracting line segments
from laser range scans, and then integrate them into a global
map. Lu and Milios [8] perform laser odometry by matching
lines that are fit to consecutive scans. Leonard et. al. [9]
extract linear features from sonar data, which are then used
for mapping and localization.

Autonomous navigation in outdoor agricultural environ-
ments has also been explored to some extent. Barawid et.
al. [10] navigated an autonomous tractor down straight tree
rows, using a 2D laser scanner to fit lines to the rows.
Stentz et. al. [11] developed a safe and reliable tractor
system predominantly used in orange groves, where GPS
was used for localization, and a suite of cameras was used
for sophisticated path tracking and obstacle detection.

In this paper, we build on this body of work by presenting
a GPS-free solution to the localization problem with limited
sensing in difficult outdoor environments. Our approach uses
an EKF to combine point feature measurements with noisy
line feature measurements created by organic structure (trees)
instead of man-made walls. The algorithm has been imple-
mented and validated through extensive experimentation in
real-world settings.

III. EXPERIMENTAL PLATFORM
The platform for this work is an electric vehicle, equipped

with brake and steering motors that allow for either au-
tonomous or manual control (Fig. 2). Encoders on the rear
differential and steering wheel measure distance traveled and
steering angle, respectively, at 250 Hz. The black box frames
the two lasers used in this work. Both have a 2D scan plane
oriented horizontally. The lower laser is a SICK LMS 291,

Fig. 2. Robotic utility vehicle used as the platform for the work presented.
The black box frames the two horizontal forward-facing laser rangefinders
used in this work.

with a 35 Hz scanning frequency, an 80 m scanning range, a
1 ◦ angular resolution, and a 180 ◦ field of view. The upper is
a SICK LMS 111, with a 50 Hz scanning frequency, a 20 m
scanning range, a 0.5 ◦ angular resolution, and a 270 ◦ field
of view. Each beam in a scan measures the range, r, and
bearing, φ, to the nearest object in its path. Each beam also
returns an intensity value, which measures the reflectivity of
that object.

A ruggedized laptop along with two embedded computers
share the computational load of interfacing with sensors and
processing data. The laptop runs a GUI for high level control.
The hardware drivers and algorithms are nodes within a
distributed communication framework built on top of ROS
[12], an open-source Robot Operating System. In addition to
seamless communication between modules, ROS provides a
playback mechanism that allows us to test new algorithms on
previously collected data, thereby saving hardware resources.

An onboard Applanix POS 220 LV high-accuracy posi-
tioning system is used to benchmark performance, as well
as for some preprocessing steps. The Applanix fuses RTK
corrected GPS, IMU, and distance-traveled encoder measure-
ments to provide a 6 DOF pose estimate, accurate to within
a few cm in position and 0.05 ◦ in orientation.

IV. TECHNICAL APPROACH

Fig. 3. Block diagram of system. The three steps of the EFK filter are
colored orange.

A feature-based EKF is used to estimate the state of the
vehicle. The state is the pose of the vehicle with respect to

the world, with an estimate q̂ =
[
x̂, ŷ, θ̂

]T
and associated

covariance matrix P. The filter uses an odometry-based
prediction step and two types of laser-based update steps.
The first uses measurements to point features and the second
measurements to line features. Fig. 3 is a block diagram of
the system architecture, with the three filter steps colored in
orange.

A. Mapping Step
The EKF localization filter here requires an a priori map.

The map consists of line features formed by rows of trees in
the orchard and point features consisting of reflective tape
placed at the ends of the rows (Fig. 4). To survey the map,
we drive around the reflective tape with the vehicle. The
lasers give high intensity returns when the tape is detected,
and we use the vehicle pose from the Applanix to generate
point clouds of these returns in the world frame. We cluster
the point clouds and use the mean of each cluster as point



Fig. 4. Reflective tape placed around posts at the ends of rows. Arrows
point to tape.

features in the map. The map, m, contains a list of 2D
coordinates for each point feature, i, with respect to the
world, w: pwm,i =

(
xwm,i, y

w
m,i

)
.

Line features are generated by connecting the pair of end-
points along each row. Fig. 5 shows a top-down view of a test
site, where the black dots represent these point features, and
the green line segments connecting points down the length
of a row are segments from the line features in the map. (The
lengthwise and crosswise segments together create polygons
for each row, which are used for data association, described
in Section IV-D.) We define a line in polar coordinates, with
respect to some frame a, as la = [da, αa]

T, where da is the
perpendicular distance from the origin of frame a to the line,
and αa is the angle between the x-axis of frame a and the
vector that runs along that perpendicular. We can then write
a list of map coordinates for each line feature, j, with respect
to the world frame, lwm,j =

[
dwm,j , α

w
m,j

]T
.

B. Prediction Step
We use a point and shoot model for the EKF prediction

step:

q̂t = f (q̂t−1,ut) =

x̂t−1 +4tvt cos θ̂t−1

ŷt−1 +4tvt sin θ̂t−1

θ̂t−1 +4tωt

 , (1)

where q̂t is the current estimate of the pose, 4t is the time
difference between timesteps t− 1 and t, and ut = [vt, wt]

T

are the forward and angular velocity inputs, computed using
the encoder measurements. The noise on these velocity
readings is modeled with the covariance matrix U. (Refer
to IV-E for noise modeling.) The state covariance prediction
step is given by

Pt = FPt−1F
T + WUWT, (2)

where F = ∂f
∂q and W = ∂f

∂u are the Jacobians of the motion
model given in (1).

C. Point Feature Correction Step
At a specific moment in time, the laser will detect a high

intensity return to a point feature in the map, and give us a
range and bearing point measurement, z = [r, φ]

T. We write
now more specifically the pose estimate as q̂ = q̂wv , the pose
of the vehicle with respect to the world. Our measurement

model, h
(
q̂wv ,p

w
m,i

)
=
[
r̂, φ̂
]T

, is the measurement we
would expect to get at the pose estimate, q̂wv , to the landmark
pwm,i. h is a composite function,

h
(
q̂wv ,p

w
m,i

)
= h∗

(
g (q̂wv ) ,pwm,i

)
, (3)

where g (q̂wv ) = q̂ws transforms the world pose of the vehicle
to the world pose of the sensor using the fixed pose of the
sensor with respect to the vehicle, q̂vs . We then define h∗ as
the expected range and bearing between the sensor pose and
the landmark:

h∗
(
q̂ws ,p

w
m,i

)
=

√(x̂ws − xwm,i)2 +
(
ŷws − ywm,i

)2
atan2

(
ŷws −ywm,i

x̂w
s −xw

m,i
− θ̂ws

)  (4)

To choose the landmark, pwm,i, we use standard chi-
squared gating to associate to the one with the closest
Mahalanobis distance, using the covariance of our current
estimate, P, and the covariance of the sensor noise, Rp (refer
to Section IV-E). We calculate the Jacobian H = ∂h

∂q using
the chain rule on our composite function. We can then plug
q̂w
v , h

(
q̂w
v ,p

w
m,i

)
, z, P, H and Rp into the standard EKF

update equations to correct for the state. (Refer to [13] for
these equations.)

D. Line Feature Correction Step
A line measurement is obtained by fitting a line to a point

cloud of laser returns. When the robot is operating in an
orchard row, lines can be fit to the length of trees along
the left and right sides of the vehicle. A Hough transform
is used for an initial fit, and then a low pass filter gets rid
of noisy outliers. (Refer to [14] for more details.) If both
a left and right line measurement are received at the same
time, we run a separate update step of the filter for each
line before moving onto the next time step. ls represents the
polar coordinates of a line measurement in sensor frame.
We model the uncertainty of the line measurement with
covariance matrix Rl.

We now define a function that maps a line in frame a,
la, to the equivalent line in frame b: lb = λ∗ (qab , l

a), where
qab is the pose of frame b with respect to frame a. λ∗ is a
composite function,

λ∗ (qab , l
a) = λ∗2 (λ∗1 (qab , l

a)) . (5)

λ∗1 initially maps the line into the new frame,

λ∗1 (qab , l
a) = l̄b =

[
d̄b

ᾱb

]
=

[
da − xab cosαa − yab sinαa

αa − θab

]
,

(6)
but since α ∈ (−π, π], we avoid redundancy by enforcing d
to be positive:

λ∗2
(̄
lb
)

= lb =

{[
db, αb

]T
if d > 0,[

−db, αb + π
]T

if d < 0.
(7)

We can then use λ∗ to define our line feature measurement
model, λ

(
q̂wv , l

w
m,j

)
, which is the line measurement we

would expect to get at our current pose estimate, q̂wv , to
the closest line feature in the map, lwm,j . λ is a composite of
two functions,

λ
(
q̂wv , l

w
m,j

)
= λ∗

(
g (q̂wv ) , lwm,j

)
, (8)

where g (q̂wv ) = q̂w
s again transforms the world pose of the

vehicle to the world pose of the sensor, and λ∗ transforms
a map line from the world frame to the sensor frame,
λ∗
(
q̂ws , l

w
m,j

)
= l̂s. Note that λ is a composite of three

functions total. When solving for the Jacobian, Λ = ∂λ
∂q ,

it is necessary to solve separately for the two cases in λ∗2.



Data association is made easy with the use of the polygons
(Fig. 5). We assume the state estimate is good enough to tell
us which polygon the vehicle is in. If the pose is outside
of a polygon, then the robot is at the end of a row and
the line fit is probably bad, so we throw the measurement
out. (This is OK because when outside of a polygon, the
robot is near the point landmarks.) Otherwise we determine
which polygon the pose is in, whether the measurement is
to the left or right of the robot using α, and then associate
to the corresponding line in that polygon. Note that this
constrains us to only use line detections from the current row.
Sometimes the lasers see through the trees to other rows in
the block, and we throw out these measurements by gating
on their d values. We gate the innovation separately on d and
α with appropriate values based on sensor characterization
(see Section IV-E.) This allows us to make the appropriate
decisions in the data association, as well as to further rule
out noisy outliers and bad detections.

E. Noise Modeling
The three steps of the filter each have covariance matrices

that model the noise on the sensors being used. To determine
the parameters for these models, we manually drove the
robot up and down the rows of an orchard site that had
already been mapped, while collecting sensor measurements
and ground truth poses from the Applanix. Note that we only
have to recalculate these parameters when the hardware on
the vehicle is altered. Using the values from one orchard site
generalizes to all other sites used in experimentation.

For the prediction step, we model the noise on our forward
and angular velocities, U. We computed the velocities by
differentiating both the encoder readings and the Applanix
poses. We then computed the covariance of the error between
the two sets of values. The motion of the vehicle is separated
into two cases: 1) when it is driving straight down a row, and
2) when it is turning at the end of a row. We compute the
covariance separately for these cases, giving us U1 and U2.
The variance on the angular velocity was much higher for the
turning case, which is to be expected. Whether the vehicle
is inside or outside of a polygon tells us whether the vehicle
is going straight or turning. This is used here in modelling
the noise, as well as in the filter itself for deciding whether
to use U1 or U2 for each prediction step.

For the point feature measurement model, we collected
range and bearing measurements, z, at each time step. We
mapped our Applanix poses through h to get the expected
measurements at these time steps. We then computed the
covariance of the innovations,

(
z− h

(
qwv ,p

w
m,i

))
, between

the two sets of values to use for the covariance matrix Rp.
For the line measurement model, we collected line mea-

surements, ls, at each time step. We mapped our Ap-
planix poses through λ to get the expected measure-
ments. We then computed the covariance of the innovations,(
ls − λ

(
qwv , l

w
m,j

))
, to use for the noise model Rl.

V. EXPERIMENTS AND RESULTS
The point and line feature based EKF localization algo-

rithm was implemented on our robotic vehicle and tested
in a variety of orchard sites. For each test block, we place
reflective tape at the end posts of the rows (refer to 4.) The
experimental procedure was to first collect a large data set
that could be used to build the map. After this, experiments
were run to test the localization algorithm running online.

Fig. 5. Top down view of a trajectory, as the robot drives through an orchard
block. The blue line shows the localization estimate, and the red line (barely
visible) shows the Applanix estimate for ground truth comparison. Black
dots at the end of the rows designate the point feature landmarks in the
map. Green line segments connecting these points designate line features,
as well as polygons for data association. (Sunrise Orchards, Rock Island,
WA, 07/23/2010)

The robot is initialized at a known starting location, and
then driven up and down the orchard rows, making k-turns
to go from one row to the next. For some of the experiments
the robot was manually driven by a human operator, and in
other experiments the robot was driving autonomously. The
localization module was abstracted from the system so that
it could run seamlessly in either mode.

Fig. 5 shows a top-down plot of one of our trials. The blue
line shows the localization estimate of the vehicle trajectory,
and the red line (barely visible) shows the corresponding
ground truth values. The black dots show the placement of
the reflective landmarks and the green line segments show the
corresponding line features and data association polygons.

Fig. 6 shows the same trial as Fig. 5, except with the
dead reckoning estimate plotted as well. The dead reckoning
is what we would get if we just ran the prediction steps of
the filter without the measurement update steps. The dead
reckoning relies on information only from the encoders, and
it can be seen here that small errors in the steering wheel
encoder are magnified over distances. This is meant to give
the reader an appreciation for how the software algorithms
presented here overcome the challenges of interfacing with
cheap sensing hardware.

To evaluate performance, our primary metric for error
is the Euclidean distance between the estimate and the
ground truth at each time step. We look separately at the
crosstrack and downtrack dimensions of this error. Fig. 7
shows histograms of these distributions for a typical run.
When a robot drives in a straight line, its dead reckoning
crosstrack error will usually accumulate more quickly than
the downtrack, due to the propagation of small errors in
heading. In our filter, the crosstrack error is corrected by line
measurements, and therefore remains small. The downtrack
error accumulates to some extent as the robot drives down



Fig. 6. Same trajectory shown in Fig. 5, except zoomed out and plotted
with the dead reckoning estimate as well. This is meant to give the reader
an appreciation for the limitations of the wheel encoder measurements, and
how the filter corrections drastically improve the performance.

a row, but then gets corrected when observations to point
features are made near the end of the row. The point features
continue to help the robot as it makes the k-turn at the end
of the row, and then both point and line features help the
entry into the next row run smoothly.

Fig. 8 shows an example of an extreme case of downtrack
error accumulation, as the vehicle is nearing the end of a
very long row. As it nears the end, it picks up a reading

(a)

(b)

Fig. 7. Distributions of position errors of our localization estimate
compared with ground truth from the Applanix. (A typical run, from Sunrise
Orchards, Rock Island, WA, 07/23/2010)

to a reflective landmark one row over to the right. Because
the filter estimate has so much error, the innovation in the
measurement will be very large, and has the potential not
to pass the data association gate. However, because the
noise was modelled correctly, the state covariance ellipse will
characterize the downtrack error, and the Mahalobis distance
of the innovation will pass under the gate.

The experiment was repeated in multiple orchards with
varying characteristics, and the results of these experiments
are summarized in Table I. In total, sub-meter mean per-
formance was demonstrated in over 20km of in-orchard
operations. It is evident that the downtrack error increases
as the row length increases, due to the dead reckoning
accumulation in the middle of the row. The filter is still able
to correct for itself at the ends of the rows with observations
to point features. The orchards used in this testing represent
the varying environments that are common in the apple
industry. Canopies ranged from neatly manicured fruit-walls
to uneven bushy rows. Row lengths varied from 53 to 345
meters. Terrain varied from hilly to flat. Two of the trials
were conducted autonomously, and in the rest the vehicle
was driven manually. In spite of all these differences, the
EKF algorithm performed well in all environments without
any need to tune the various EKF parameters.

Fig. 8. This diagram shows an extreme case of downtrack error, where
correct noise modeling allows for data association to still be successful. The
solid blue and red L shapes are coordinate frames of the filter estimate and
ground truth poses, respectively, at time t. The dashed blue frame is the
filter estimate at time t + 1, after a point feature update step. The black
dots are landmarks in the map. The thin blue line is a laser ray, ending at a
reading to a landmark, as observed by the filter estimate at time t. The green
arrow on the bottom left highlights the downtrack error at time t. The same
green arrow is translated up to the laser reading, to highlight the difference
between the actual landmark and where the filter expects to see a landmark.
The top half of an ellipse is centered around the blue pose estimate at time
t. This is a 3σ ellipse representing the state covariance P. The fact that the
red ground truth frame lies within this ellipse demonstrates that the noise
has been modeled correctly to represent the state uncertainty. This in turn
allows the landmark reading to pass the Mahalanobis gate during the data
association step.



TABLE I
STATISTICS FOR EXPERIMENTS OVER THE SUMMER OF 2010
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FRECa 2.05 0.18 0.28 0.78 1.13 125
FRECa 2.00 0.14 0.34 0.60 1.82 125
Sunriseb 1.38 0.15 0.17 0.54 0.65 53
Sunriseb 1.78 0.18 0.16 0.62 0.61 53
Sunriseb 1.59 0.17 0.25 0.60 1.01 53
Skylinec 2.94 0.23 0.66 0.67 3.16 345
Skylinec 10.21 0.22 0.73 0.64 3.48 345

aFREC stands for Fruit Research and Extension Center, Biglerville, PA
bSunrise is short for Sunrise Orchards, Rock Island, WA
cSkyline is short for Skyline East Orchards, Royal City, WA. In these trials

the robot was driving autonomously.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we demonstrated a point and line feature
based EKF localization filter running online in challenging
outdoor environments. We developed a GPS-free solution,
with minimal sensing from two wheel encoders and two
fixed lasers operating in horizontal planes. We used the
Applanix system in preprocessing steps to model the noise
parameters and build the map, as well as to benchmark our
results. Our online algorithms worked separately from the
Applanix, without any GPS inputs. We demonstrated our
solutions through extensive experimentation in a variety of
real-world conditions. By rigorously modeling the noise on
our sensors and our platform, we were able to attain robust
solutions without retuning any parameters between trials.

It should be noted that this 2D filter performs very well
even in hilly terrain. The update steps use measurements
detected to features within a local vicinity, so we can assume
that the coordinates of the vehicle and these features lie on
a flat plane, even if this plane is tilted due to a slope in the
terrain. On a more global scale, hills could affect the dead
reckoning estimate, but these errors can be corrected by the
udpate step, as long as the hills are not extreme enough to
affect the data association.

In future work, we plan to extend this to a full SLAM
solution, where the map is not registered ahead of time.
Now that we have modeled the challenging characteristics
of our platform and the surrounding environment, we will
be able to tackle this problem more robustly. We also plan
to incorporate other sensors to help with natural point feature
extraction from the environment. This could include cameras
as well as spinning lasers or fixed lasers rotated at different
angles to give us more 3D information. Currently, we wrap
reflective tape around endposts, but other sensors could help
with detecting those endposts without the tape. Of course,
all of these techniques involve putting more infrastructure
on the platform, which incurs cost and complexity.

Laser odometry is another area we plan to explore. We
have done some preliminary work in matching features
extracted from consecutive scans, but this involves having a
very clean environment (i.e. unoccluded tree trunks) where

the uncertainty of the data does not render this registration
obsolete. We are optimistic about performing laser odometry
at the end of rows, where either the end posts or the
entire ends of rows can be used as features to improve the
accuracy of the EKF prediction step, resulting in improved
performance for the overall filter.
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