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Abstract— This paper describes a novel auto-calibration
state-trajectory-based control method and its application to
electronic flow control for independent metering systems. In
this paper, the independent metering architecture that is con-
sidered uses five Electro-Hydraulic Poppet Valves (EHPV’s).
The proposed control method is applied to four of these
valves, arranged in a Wheatstone bridge configuration, to
regulate the flow of hydraulic oil coming into and out of an
actuator. For simplicity, the fifth valve is operated via open-loop
to control the supply pressure. Experimental data presented
herein demonstrate that the control method learns the valve’s
conductance characteristics (i.e. the inverse input-state dynamic
map of the valve) while simultaneously controlling the motion
of the hydraulic actuator.

I. INTRODUCTION

In recent years, the concept of using Independent Metering

Valves (IMV) to control the motion of hydraulic actuators

has attracted considerable attention in the fluid power in-

dustry. The attention has been focused at using IMV’s to

improve system efficiency in mechanical manipulators such

as hydraulic excavators and backhoes. When compared to

traditional systems composed of directional spool valves,

IMV’s can improve the system’s efficiency by switching

among metering modes (combinations of flow paths) that

allow single/multi-function flow regeneration [4,12,16]. An-

other advantage of this concept, is the fact that IMV’s are

solenoid-actuated valves which are controlled electronically

[1,2,10]. This allows not only the possibility of enabling

automation features for the aforementioned machines, but

also the application of intelligent controls. In this paper,

a novel auto-calibration state-tracking-based control method

is introduced for independent metering valves. The control

method simultaneously learns the valve’s inverse input-state

map (i.e. the conductance characteristics) while using this

knowledge to control the valve and in turn control the motion

of a given hydraulic actuator.

There are four major advantages of using an auto-

calibration based controller for IMV’s: first, there would be
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no need to obtain extensive offline calibrations for valves of

the same size as it is typically done in industry [10]. With

this type of learning/adaptive controller, generic calibration

data can be used and the discrepancies are corrected on-

line. Second, the IMV’s performance can be improved by

combining feedback control and active learning-based feed-

forward compensation. Third, an active learning-based auto-

calibration scheme can ensure an accurate characterization

of the valve is maintained throughout the operational life of

the device. Fourth, a fault detection scheme can be easily

implemented in the control loop by monitoring the valve’s

deviation from expected performance [7].

The idea of using the inverse mapping of the system for

control has been investigated in the past (see for example

[6,11,21]). In these works, research has been focused at

controlling the outputs of the system rather than the states.

In the fluid power industry, controllers with learning capabil-

ities have been attempted in large mechanical manipulators.

For example, a coordinated motion controller with learning

capabilities was presented by Johnson et al. in [3]. Song

and Koivo in [17] used a feedforward multilayered neural

network with backpropagation adaptation to model the in-

verse dynamics of an excavator. Recently, Liu and Yao in

[5] proposed the online modeling of the flow mappings for

unidirectional cartridge valves using neural networks. In [5],

the valve flow mappings were considered as time-invariant

and the valve dynamics were neglected.

It should be noted that most of the relevant works found

in the literature deal with output tracking error instead of

state tracking error. Moreover, for the reasons outlined above,

auto-calibration based control schemes have the potential to

add value on fluid power components using such strategies.

With this in mind, the contribution of this paper is the

introduction of an essentially model-free control law that

learns the inverse input-state dynamic mapping of an IMV

while the latter is used in a flow control application.

The rest of the paper is organized as follows: The IMV

used herein is introduced first in Section II followed by a

description of the experimental testbed (Section III). The

overall control architecture is then explained in Section IV

while the auto-calibration control scheme is discussed in

Section V. Experimental results are given in Section VI

followed by the conclusions of the paper.

II. INDEPENDENT METERING VALVE

The Electro-Hydraulic Poppet Valve (EHPV) considered

herein is shown in Fig. 1 and amply described in [8,22,23].

This is a valve whose opening is proportional to the amount



of current sent to its solenoid (a nonlinear relationship). In

addition, this valve has two main distinguishing features:

first this valve possesses an internal pressure compensation

mechanism. This mechanism ensures that the minimum

amount of solenoid current needed to crack the valve open is

always consistent [18,23]. Second, this valve is bidirectional,

a feature that is essential to accomplish regenerative flow

operations of hydraulic actuators [20]. Other features include

virtually ‘zero’ leakage (1.25 cm3/min at 10 MPa) and low

hysteresis (less than 5%).

In this paper, each EHPV is controlled by changing its

conductance parameter, denoted by Kv. The valve’s con-

ductance, a measure of the valve’s opening, is computed

using Kv = |Q| /
√

|∆P | (whenever ∆P 6= 0), where

Q is the flow through the valve and ∆P is the pressure

difference across the same. The valve’s conductance is con-

trolled by sending current to the valve’s solenoid via Pulse-

Width-Modulation (PWM). For a given solenoid current,

the EHPV’s employed herein are capable of maintaining a

constant Kv independent of the pressure difference across

the valve if the latter is higher than 0.4 MPa [9]. Although

EHPV’s are highly nonlinear with complex dynamics, exper-

iments have shown that these EHPV’s can be considered as

first order (single state) nonlinear systems whose input is the

solenoid current isol and whose single state and output are

the valve’s conductance Kv [8].

III. HYDRAULIC TESTBED

The motion control of a hydraulic actuator using IMV’s is

accomplished herein using five (5) EHPV’s as shown in Fig.

2. The EHPV labeled ’Valve SR’ is used to control the supply

pressure PS . The other four EHPV’s are part of a Wheatstone

bridge arrangement and accomplish a powered extension or

powered retraction of the actuator by controlling hydraulic

flow. The hydraulic piston actuates a rotating linkage that

raises or lowers a 445 N load. Furthermore, the pressures

labeled PS , PA, PB ,and PR as well as the piston’s position

Fig. 1. Components of the Electro-Hydraulic Poppet Valve (left) and its
detailed hydraulic symbol (right)

Fig. 2. Schematic of the hydraulic testbed (EHPV’s are depicted as two-
way two-position valves for simplicity)

y and velocity ẏ are available via CAN bus communication

for feedback.

The testbed uses a Vickers PVB20 pressure compensated

variable displacement piston pump. The pump is driven by a

25 hp Delco electrical motor whose speed is kept constant at

1755 rpm. The maximum displacement of the pump is 42.8

mL/rev, and as shown in [9], it has a pressure cutoff setting

of 8 MPa.

IV. CONTROL ARCHITECTURE

The complete control architecture is shown in Fig. 3.

An operator commands the system by moving a joystick

into a desired position. The position of the joystick r gets

converted into a normalized velocity command η ∈ [−1, 1] in

the ’operator interface’ module1. This module also receives

the inferred maximum attainable velocity ẏmax from the

’flow management’ module. The ’flow management’ module

receives the supply pressure PS and passes it through a

lookup table to compute the available flow from the pump

Qp = Γ (PS) [9]. The parameter ẏmax is then calculated by

ẏmax = Qp/A
∗ (η) using

A∗ (·) = AB +
AA − AB

2
(sgn (·) + 1) (1)

where AA = 5442 mm2 is the cap-side area of the piston,

AB = 3889 mm2 is the rod-side area of the piston, and

sgn (·) represents the sign function. The output of the

’operator interface’ module is the commanded piston velocity

ẏcmd = ηẏmax, which is then passed to the ’INCOVA logic’

1By convention, positive commands are associated to piston extension
while negative commands are associated to piston retraction.



module, discussed in Section IV-A, and the ’pump control’

module.

The ’pump control’ module has the task of controlling the

supply pressure PS . It receives the workport pressures PA

and PB and computes the commanded conductance Kvcmd
SR

for the ’SR’ valve using

Kvcmd
SR =

Γ (P ∗

S) − ẏcmdA
∗ (ẏcmd)

√

P ∗

S − PR

(2)

P ∗

S =

{

max
(

PA + ∆p, P
min
A

)

if ẏcmd ≥ 0
max

(

PB + ∆p, P
min
B

)

else
(3)

For this particular testbed, the pump margin was set to

∆p = 2.0 MPa and the minimum pressures were set to

Pmin
A = Pmin

B = 2.5 MPa. The computed Kvcmd
SR parameter

is then passed through the corresponding ’inverse calibration’

module. As it can be seen in Fig. 3, there is an ’inverse

calibration’ module for each EHPV. These modules are used

to compute the solenoid current command for the corre-

sponding valve (e.g. icmd
SR = Λ

(

Kvcmd
SR

)

). Each calibration

map Λ : R → R is obtained from the steady state current

vs. conductance characteristics for the corresponding valve.

Likewise, there is a ’PWM driver’ for each valve. These

drivers receive the corresponding solenoid current command

in mA and use an internal analog feedback controller to

deliver the current to the appropriate solenoid via Pulse-

Width-Modulation. Lastly, the ’Kv measurement’ module

receives the measured piston’s velocity ẏ along with the

system pressures and computes the actual Kv for each

valve. The ’Kv measurement’ module is only activated when

the auto-calibration controller, explained in Section V, is

used. The entire control architecture is implemented using

MATLAB’s XPC target tool and run at a sampling period of

10 ms (i.e. sampling at a frequency of 100 Hz).

A. INCOVA Logic Module

The ’INCOVA logic’ module, invented by Pfaff and Tabor

[10], receives the commanded velocity ẏcmd along with the

system’s pressures and in turn computes the conductance

coefficient for each valve in the Wheatstone bridge. This is

accomplished by first computing the parameter KvEQ using

(4) according to [10,19,20] (see appendix for the derivation).

KvEQ =
|PEQ|

PEQ

ẏcmdAB
√

|PEQ|
(4)

The computation of KvEQ requires knowledge of the pres-

sure parameter PEQ given by

PEQ = R (P1 − PA) + (PB − P2) (5)

where R = AA/AB , and the working pressures P1 and

P2 are obtained from Table I depending on the appropriate

metering mode.

The parameter KvEQ is related to the active valves via

(6). The active valves, which use the subscripts α and β, are

given in Table I for the appropriate metering mode.

KvEQ =
KvαKvβ

√

Kv2
βR3 + Kv2

α

(6)

Once the parameter KvEQ is known, all four valve conduc-

tances are computed according to [10,19,20] as

Kvα =
√

µ2 + R3KvEQ (7)

Kvβ = µ−1Kvα (8)

Kvγ = Kvδ = 0 (9)

where µ is the conductance or opening ratio. If this parameter

is set to µ = R, then the valves are opened aiming at having

equal pressure drops. In this case, the opening ratio is set to

µ = R3/4 to minimize the impact errors in valve conductance

have on achieving the commanded piston’s velocity ẏcmd [10,

19,20].

Next, constraints are introduced for the computed con-

ductances of the active valves to prevent cavitation (min-

imum workport pressure Pmin
i ), overpressurization (maxi-

mum workport pressure Pmax
i ), and to avoid exceeding valve

opening capabilities. As such,

Kvcmd
α = max

{

min {Kvα, Kvmax
α } , Kvmin

α

}

(10)

Kvcmd
β = max

{

min
{

Kvβ, Kvmax
β

}

, Kvmin
β

}

(11)

where the limits are obtained from (Θ denotes min or max )

KvΘ
α = Θ

{

ΨA
1 (min) , ΨA

1 (max) , 0, K̄vα

}

(12)

KvΘ
β = Θ

{

ΨB
2 (min) , ΨB

2 (max) , 0, K̄vβ

}

(13)

Ψw
i (h) =

Awẏcmdsgn
(

Pi − P h
w

)

√

|Pi − P h
w|

(14)

In these constraints, K̄vα and K̄vβ represent the maximum

valve coefficients that are physically attainable for Kvα and

Kvβ respectively. The constraints are applied to satisfy the

following priorities:

1) Constrain valve conductance to physically realizable

limits

2) Satisfy pressure constraints Pmin
i and Pmax

i

3) Achieve desired piston velocity ẏcmd

4) Use µ = R3/4 to minimize ev = ẏ − ẏcmd

V. AUTO-CALIBRATION CONTROLLER

The overall control architecture presented so far em-

ploys ’inverse calibration’ modules that contain non-adaptive

lookup tables Λ (·). In what follows, each ’inverse calibra-

tion’ module shown in Fig. 3, except the one used for valve

’SR’, will be enhanced with an auto-calibration controller.

For this purpose, the ’Kv measurement’ module is enabled.

At every sampling instant, this module feeds back the active

valves’ measured conductances using the equation Kvij =
|ẏ|A∗ (ẏ) /

√

|Pi − Pj |.

TABLE I

METERING MODES AND CORRESPONDING PARAMETERS USED FOR

KEQ AND PEQ

Metering Mode P1 P2 α β γ δ

Powered Extension (ẏ ≥ 0) PS PR SA BR SB AR
Powered Retraction (ẏ < 0) PR PS AR SB SA BR



Fig. 3. Schematic of the overall control architecture

The auto-calibration control law presented hereafter is

equally applied to each valve in the Wheatstone bridge. This

controller uses a Nodal-Link-Perceptron-Network (NLPN)

in the feedforward loop. This is a perceptron-type neural

network architecture developed by Sadegh in [13,14,15] that

can be understood as an adaptive look-up table. At every

sampling instant, the NLPN receives the commanded con-

ductance Kvcmd and computes the corresponding solenoid

current2 isol according to

isol = Ŵ
T Φ (x1, x2) + Λ (x1) (15)

where x1 = Kvcmd, and x2 = ∆Kvcmd. The latter pa-

rameter, included to distinguish steady state and dynamic

valve response, represents the time derivative of Kvcmd and

is computed by taking the difference between the current and

past sampled values of Kvcmd. Moreover, in (15), Ŵ ∈ R
N

is the vector of adjustable weights applied to the basis

function vector Φ = [φ1,1 (x1, x2) , . . . , φn1,n2
(x1, x2)]

T
.

The basis function vector contains a total of N piece-

wise linear activation functions φ : R
2 → R where N =

n1×n2 represents the number of nodal points chosen by the

user. The output of φi,j (x1, x2) is computed from

φi,j (x1, x2) = ϕi,1 (x1)ϕj,2 (x2) (16)

ϕm,z (xz) =











(xz−λm−1,z)
(λm,z−λm−1,z) if xz ∈ [λm−1,z, λm,z)
(xz−λm+1,z)

(λm,z−λm+1,z) if xz ∈ [λm,z, λm+1,z]

0 else

(17)

for i × j = {1, . . . , n1} × {1, . . . , n2}. The values n1 − 1
and n2−1 represent the number of divisions the user selects

for the x1-axis and x2-axis respectively to form the NLPN

input space grid. The grid points establishing these divisions

2For example, isol = icmd
SA

if Kvcmd = Kvcmd
SA

.

are denoted by λ·,1 and λ·,2 for the x1-axis and x2-axis

respectively. In addition, λ0,1, λ0,2, λn1+1,1, and λn2+1,2

are artificially set to ∞.

At the same time the NLPN is used for feedforward

control, it is simultaneously trained via the following steepest

descent adaptation

Ŵ
+ = Ŵ + γΦ (x1, x2) e (18)

where e = Kvcmd − Kv is the state trajectory error for

the EHPV. The superscript ’+’ is used to denote the next

sampling instance of the parameter Ŵ given its present

sampled value Ŵ and the present sampled values for x1,

x2, and e. Note that the term Λ (·) can be dropped from

(15) if the vector of adjustable weights Ŵ is initialized

with available steady state data. Also, it is important to

mention that the learning rate γ must be chosen such that

0 ≤ γ |Φ (x1, x2)|
2

< 2 to ensure closed loop stability (see

[7,14]). Moreover, in this case, the learning rate γ is set to

0 if the desired state trajectory Kvcmd is not a persistently

exciting signal (see [7]).

VI. EXPERIMENTAL RESULTS

The response of the system subject to this control system,

with and without adaptation in the ’inverse calibration’

modules, is given in the following figures. Note that for

the case presented in these figures, the commanded velocity

was generated by the XPC-target computer as a periodic and

smooth signal for comparison purposes. Fig. 4 shows the

commanded piston velocity ’Vcmd’ along with the measured

piston velocity without adaptation ’Vm NL’ and with adapta-

tion ’Vm L’. Likewise, all the system pressures are included

in this figure. Fig. 5 shows the individual commanded con-

ductances along with the measured individual conductances

with and without adaptation. For example, ’KSAc L’ is

the commanded conductance for valve ’SA’, and ’KSAm



Fig. 4. Overall system response with and without learning/adaptation

L’ is the measured conductance when learning/adaptation is

enabled. Furthermore, ’KSAm NL’ is the measured conduc-

tance when learning/adaptation is disabled. As evidenced in

these figures, good tracking performance is achieved with

the learning/adaptive controller in a few cycles. Because of

limitations arising from the linkage’s range of motion and

the pump capabilities, higher piston speeds and thus higher

conductance values were not attempted.

When the learning/adaptation was enabled, the NLPN

weights were initialized to zero and (18) was used to update

the weights with a learning rate γ of3 0.015. Moreover, the

NLPN’s input space was partitioned with the grid vectors,

x1 grid = [λ1,1, . . . , λ9,1]

= [0, 1, 100, 600, 800, 1000, 2000, 5000, 10000] (19)

x2 grid = [λ1,2, . . . , λ5,2]

= [−40000,−0.01, 0, 0.01, 40000] (20)

Consequently, the number of nodal points for the NLPN (i.e.

the NLPN’s size) was N = 9×5 = 45. The size of the NLPN

can be increased to improve accuracy in the learned inverse

input-state map at the expense of increasing computational

burden.

The steady state characteristics of valve ’SR’ were mea-

sured in a separate valve body and used to create the

generic inverse input-state calibration Λ (·). For illustration

purposes, this calibration was scaled down by 10% and used

in all ’inverse calibration’ modules. The generic calibration

is shown along with the learned calibrations in Fig. 6. Note

that vertical lines were added in these plots to help the reader

visualize the grid vector x1 grid. Additionally, notice that

the learned calibrations differ from the generic one mostly

around4 800-2000 LPH/sqrt(MPa), which is the region of

the NLPN’s input space where most of the experiment took

place (see Fig. 5). It is in this region that the control system

corrected the generic calibration map.

3Increasing the learning rate has the trade off that performance during
learning/adaptation may be less smooth.

41 LPH = 1 L/hr = 2.8×10−7m3/s

Fig. 5. Flow conductance performance with and without adaptation for the
EHPV’s in the Wheatstone bridge

Fig. 6. Generic and learned calibration characteristics for the EHPV’s in
the Wheatstone bridge

VII. CONCLUSIONS

This paper presented the application of an auto-calibration

based control method for EHPV’s. More specifically, the use

of this controller for independent metering of a hydraulic

actuator during a powered extension and a powered retraction

were considered in this case. Other metering modes were not

explored and will be left for future research. The control

law presented herein simultaneously corrected a generic

inverse input-state mapping of the EHPV while forcing

its conductance coefficient to follow a prescribed desired

trajectory. Experimental results showed that it was possible

to achieve good tracking of the commanded piston’s velocity

by using the proposed controller in conjunction with open-

loop control of the supply pressure. It was also shown that

this was possible while using a relatively small number of

nodal points for the NLPN.
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IX. APPENDIX

The derivation of the KvEQ and PEQ parameters is

presented next under the following assumptions:

1) Quasi-static hydraulic piston motion

2) Fluid is incompressible

3) Fluid inertance is negligible

4) Fluid temperature is constant

5) Negligible cylinder crossport leakage

Using Assumption 1 and summing forces on the hydraulic

piston yields the following algebraic relationship between

workport pressures PA and PB , load Fload, and friction

forces f (ẏ)

PAAA − PBAB = Fload + f (ẏ) := Fh (21)

With the aid of Assumption 3, it is not difficult to realize

that

Qα = sgn (P1 − PA)Kvα

√

|P1 − PA| (22)

Qβ = sgn (PB − P2)Kvβ

√

|PB − P2| (23)

where the subscripts α and β represent the active valves

according to Table I. Likewise, from conservation of mass

and using Assumptions 2 through 5, one finds that the

metering flows are related to the piston’s velocity by Qα =
ẏAA and Qβ = ẏAB . Hence, Qα = RQβ where R is the

area ratio. Substituting these relationships into (22) and (23)

and using the form Q |Q| = Kv2∆P yields

PA = P1 − ẏ |ẏ|

(

RAB

Kvα

)2

(24)

PB = ẏ |ẏ|

(

AB

Kvβ

)2

+ P2 (25)

Substitution of these results into 21 yields

Fh

AB
= R

(

P1 − ẏ |ẏ|
(RAB)

2

Kv2
α

)

− ẏ |ẏ|
A2

B

Kv2
β

− P2 (26)

Upon algebraic manipulation and the use of 21 to substitute

for Fh, one finds that
(

Kv2
βR3 + Kv2

α

Kv2
αKv2

β

)

ẏ |ẏ|A2
B = R (P1 − PA) + (PB − P2)

(27)

which can be rewritten as ẏ |ẏ|A2
B = Kv2

EQPEQ where

KvEQ is given by (6) and PEQ is given by (5).
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