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Abstract— Redundant tendon-driven systems such as the
human hand or the ACT robotic hand are high-dimensional
and nonlinear systems that make traditional control strategies
ineffective. The synergy hypothesis from neuroscience suggests
that employing dimensionality reduction techniques can sim-
plify the system without a major loss in function. We define
a dimensionality reduction framework consisting of separate
observation and activation synergies, a first-order model, and
an optimal controller. The framework is implemented for two
example tasks: adaptive control of thumb posture and hybrid
position/force control to enable dynamic handwriting.

I. INTRODUCTION

The amazing versatility and dexterity of the human hand
remain unmatched by robotic hands in production today.
The superiority of the hand is a result of its biomechanical
properties, the neuromuscular control system, and the rich-
ness of sensory feedback available, but comes at a cost in
complexity. The 15 joints of the human fingers are controlled
by more than 30 muscles located in either the forearm or the
palm acting through a network of tendons that eventually
terminate at various connection points on the finger bones,
resulting in a nonlinear system with a variable moment arm.
A contentious subject in neuromuscular control is the extent
to which models of all these intracacies are used for different
levels of control and planning [1].

The hypothesis of “muscle synergies” offers a way for
the nervous system to reduce the degrees of freedom (DOF)
and thus simplify the control, learning, or planning problem:
rather than independently activating muscles, groups of mus-
cles are used in a coordinated manner corresponding to the
kinematic [2], [3] or dynamic [4] regularities of the system
itself or a task in the environment [5], [6]. Many studies
have shown that this method could explain different aspects
of the neuromusclar control system: for instance, frog leg
wiping trajectories can be composed from premotor drive
pulses [7] and a small subspace of possible movements is
used by people when manipulating an object [2]. A number
of different matrix factorization algorithms have been applied
to such analyses [8].

By mimicking the biomechanical features of the hand, the
Anatomically Correct Testbed (ACT) robotic hand [9] enjoys
many of same benefits as the human neuromusclar control
system and provides a platform for studying how synergies
may be used to control the hand. Most biomimetic robotic

This work was supported by NSF EFRI-0836042.
M. Malhotra*, E. Rombokas**, E. Theodorou*, E. Todorov* ***, and

Y. Matsuoka* are with the Departments of *Computer Science and Engi-
neering, **Electrical Engineering, and ***Applied Mathematics, University
of Washington, Seattle, WA 98195, USA. {malhotra, rombokas,
etheodor, todorov, yoky}@cs.washington.edu

Fig. 1. The Anatomically Correct Testbed robotic hand uses a biomimetic
tendon hood to transmit tendon forces to the fingers. Complex and dynamic
tasks such as handwriting are enabled by a dimensionality reduction
framework that simplifies the system model and control.

hands try to replicate the DOFs of the joints and the geometry
of the fingers and palm. However, the ACT hand is unique in
its actuation; rather than controlling each joint DOF with a
pair of tendons [10], tendons pull through a crocheted tendon
hood and along a surface defined by accurately reproduced
bones. The ACT hand does not currently have embedded
joint angle sensors, instead estimating the robot’s pose from
tendon lengths, as does a human from muscle spindles. These
features result in system nonlinearities similar to those of the
human hand that make traditional robotic control schemes
either difficult to implement or ineffective. In particular,
when controlled in tendon space, the system is underactuated
because of the tendon force non-negativity constraint.

Task space control of underactuated systems has been
studied for torque-driven systems [11] but must be adapted
for tendon-driven systems; synergies provide a framework for
controlling systems that are underactuated in tendon space
by instead doing control in task space. Previous work has
shown that employing linear observation synergies with PID
control can allow multi-DOF manipulation tasks such as
handwriting [12] or accurate single-DOF dynamic move-
ments such as striking a piano key [13]. In this paper, we
extend that work and show that a framework using synergies
for both observation and control of the tendon-driven system
enables dynamic movements, adaptive control, and hybrid
position/force control much improved over using observation
synergies and PID control alone.

II. SYNERGISTIC CONTROL FRAMEWORK

A. System Definition

Consider a tendon-driven system composed of n torque-
driven motors, each with an encoder to measure the displace-
ments, L, of all n tendons. First-order system dynamics can
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be expressed in discrete state space formulation as:

Lk+1 = ALk +BTk, (1)

such that Lk ∈ Rn is the state vector at timestep k,
Tk ∈ Rn≥ 0 is the control vector, A is the n × n state
transition matrix, and B the n× n control matrix. Note that
transmitting force through tendons results in a non-negative
control vector, so that this system is not always controllable
in the n-DOF space of tendon lengths. This problem is
often combatted by controlling in joint space, using tendons
antagonistically [14] and possibly redundantly to ensure
that the system is tendon-controllable [15]. However, the
configuration of tendons in the human hand does not adhere
to such design constraints. The following synergistic control
framework 1) reduces the dimensionality of observation and
control and 2) enables controllability for a tendon-driven
robot without enforcing an antagonistic joint-space control.

B. Observation

Let the observation synergy S be an s×n(s < n) orthonor-
mal matrix that is used to project L into a s-dimensional
virtual space. Define x as the “synergy position”:

x = SL. (2)

The synergy position, x ∈ Rs, is a low-dimensional resp-
resentation of the measured tendon lengths and provides a
virtual state on which to control. S must be orthonormal
so that all the different bases in the virtual space are
separately observable, an important property for preserving
system linearity. The selection of S alters the extent to
which each tendon’s displacement is observed in the virtual
space and also defines the dimensionality of the virtual
space. Two different methods for choosing S are presented
in sections III-B and III-C .

Since S is orthonormal, the inverse operation is easily
computed. For instance, a target in tendon length space can
be reconstructed from the target synergy position by the
equation:

L̂ = ST x̂. (3)

This definition differs slightly from standard postural
synergies [2]: tendon lengths are the input rather than joint
angles. This is analogous to human’s proprioceptive feedback
from muscle spindles, which is considered the primary input
for awareness of joint position in the absence of vision [16],
[17]. Consequently, tendon-space synergies may account for
both inter-joint coupling and for the coupled movement of
multiple tendons that results from a single joint movement.

C. Control

The dimensionality of the control input can be reduced
to simplify modelling and optimal control selection. Let
the activation synergy W be a n × w(s < w < n) non-
negative matrix used to project the w-dimensional “synergy
activation,” u, into torque commands for each of the n
motors.

T =Wu. (4)

Thus, activating a single component of u produces a
weighted activation of a set of motors. This is a common
form of linear synchronous muscle synergies [1] usually
used to interpret neural motor control. Although this strategy
decreases the number of free parameters available to a
controller, a proper W will encourage smoother control
signals and reduce the complexity of modelling and feedback
control problems. Two ways to determine W are dicussed in
Section III.

D. Virtual Space System

Applying both the observation and control reduction mod-
els significantly simplifies the system. Now, the first order
system dynamics are expressed in discrete state space as:

xk+1 = Ãxk + B̃uk. (5)

The state transition and control matrices, Ã and B̃, are no
longer n × n, but instead Ã is s × s and B̃ is s × w. For
instance a system of 6 tendons would require (6× 6)+ (6×
6) = 72 parameters to represent the tendon-space system
dynamics, but reduced to s = 2 and w = 3 instead has only
(2× 2) + (2× 3) = 10 parameters. In terms of the original
system dynamics,

Ã = SAST (6)

B̃ = SBW (7)

E. Modelling and Optimal Control

Joint-space tendon-driven control methods can be applied
to the virtual space system with the synergy position subsi-
tuted for joint angle and the synergy activation substituted
for tendon force. Analogously to joint torque, the ”synergy
torque” can be defined as

τS = JTu (8)

where J is the Jacobian. Making a simplifying assumption
of first-order dynamics in the virtual space, B̃ = JT , Ã is
the identity matrix, and τS can be estimated from the change
in synergy position: δx = JTu. The system is then virtual-
space-controllable if the non-negative rank of B̃ > s.

A simple optimal controller can be achieved using the
efficient non-negative least squares algorithm [18] at every
timestep to select synergy activations to achieve target syn-
ergy position displacements:

û = argmin
u
‖JTu− δ̂x‖ subject to û ≥ 0 (9)

This algorithm minimizes the norm of the synergy activation
and produces smooth control.

F. Adaptive Control

Adaptive control is a well-known framework for sys-
tem identification and control of dynamical systems with
parametric uncertainty [19]. In this study, the parameter
under identification is the Jacobian, as the observation and
activation synergies are fixed. The Jacobian can be estimated
offline by linear regression from a set of identification data:

J0 = (UUT )−1UXT , (10)
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where U is the w × N matrix of input synergy activations
and X is the s×N matrix of measured synergy torques over
N timesteps. If the estimated Jacobian has full non-negative
rank this indicates that the virtual-space system should be
controllable.

A model-adaptive controller can then revise the estimated
Jacobian as a trajectory is tracked through synergistic control.
The revision is done using with a batched, damped recursive
least squares [20] formulation of the form:

Jk+1 = Jk − c((UUT )−1U(JT
k U −X)T ) (11)

where U and X are recorded over time horizon N and the
damping coefficient c controls adaptation speed. The time
horizon can be lengthened to combat noise and avoid non-
singular matrix inversion (this condition is caught and J is
not altered).

III. EXPERIMENTS

A. Hardware

We demonstrate the usefulness of the synergistic control
framework on the ACT robotic hand’s thumb, index, and
middle fingers. Each finger mimics the human’s degrees of
freedom in its joints, number of muscle/tendon actuator units,
and complex tendon routing. Motor torques are controlled at
200Hz via CAN-bus communicating to 20 Barrett Pucks [21]
that run the commutation for the brushless motors. Tendon
lengths are measured at 200Hz by optical encoders with a
0.68 µm resolution. To show the simplicity of synergistic
control, no other sensors were used within the control loops
for these experiments. Experiment 1 is an example usage
of the framework to perform tracking of thumb posture in
2 DOF with a recursively estimated Jacobian. Experiment
2 shows feedback control of coordinated three finger move-
ment with an additional grip force target, which together
produce handwriting on a surface.

B. Experiment 1: Model Adaptive Control

Fast and accurate movement of the thumb is easily
achieved with the synergistic control framework by imple-
menting a model-adaptive feedforward controller. An un-
moderated process of system identification quickly builds the
observation synergy S, activation synergy W , and an initial
estimate of the Jacobian J . The thumb is placed in the neutral
position where it is far from any of its joint limits. Each of
the 8 tendon/motor actuators are commanded a 5-ms impulse
at full torque and all of the resulting tendon displacements
are logged. After each pulse, the thumb is controlled back
to its initial posture. This process is repeated 10 times for
each tendon to observe the average movement in tendon
space caused by pulling a single tendon. For instance, pulling
one of the flexors on the thumb may result in a negative
displacement (contraction) of multiple flexors and a positive
displacement (extension) of multiple extensors.

Such regularities in the output are captured by Principal
Component Analysis (PCA). The matrix M of all tendon
displacements caused by the motor pulses is run through
PCA and the first two (s = 2) components are extracted
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Fig. 2. Observation synergies found through self-exploration of thumb
movement. Bars depict weighting of each tendon’s displacement for the two
components of synergy position, the rows of observation synergy matrix S.
Muscle names are abbreviated as in [22].
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Fig. 3. Activation synergies found through self-exploration of thumb
movement. Bars depict (non-negative) weighting of each tendon’s force
for the three components of synergy activation, the columns of activation
synergy W .
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Fig. 4. Estimated Jacobian shows the movement, in the observation synergy
frame represented by S1 and S2, that is expected when each activation
synergy component (W1, W2 and W3) is applied.
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t=0 sec t=300 sec t=400 sec t=500 sec

Fig. 5. Observed open-loop tracking of thumb posture in virtual space
as the initial model (t = 0) adapts over time. Circles were traversed in 1
second and cover approximately 4cm2 workspace at the fingertip.

as the strongest modes of thumb movement (see Figure 2).
These components are set as the rows of the observation
synergy S. PCA satisfies the requirement of orthonormality.

Similarly, regularities in the activation are found from the
same identification data set. However, PCA is not appropriate
in this case as the activations are non-negative. Instead,
the well known non-negative matrix factorization (NMF)
algorithm of alternating least squares [23] is used to extract
which tendons contract together. NMF is used to find three
(w = 3) components that well explain the variance of the
matrix N = max(−M, 0) of coupled tendon contractions.
We chose w to be the lowest possible while maintaining
virtual-space controllability as defined in Section II-E; w
must be at least s + 1 and should result in rank(J) = s.
As shown in Figure 3, thumb muscle groups are intuitively
separated.

Finally, the initial estimate of the Jacobian J0 is made
through the linear regression described in 10 and is full non-
negative rank (see Figure 4). Although the initial estimate is
poor, as shown by the initial (t = 0) feedforward tracking
results in Figure 5, a model-adaptive controller as described
in Section II-F revises the estimated Jacobian online.

Using the identified S, W , and J0, a fast 1Hz circle in
the 2-dimensional synergy position space was tracked by a
feedforward controller as the model was adapted in real-
time. The desired trajectory covers an approximately 4cm2

workspace at the fingertip. Using adaptation parameters N =
200, c = .01, the model was changed by more than an order
of magnitude to more accurately track the goal. Within ten
minutes, the performance plateaued to about 5% tracking
error as compared to nearly 100% using the initial estimate of
the Jacobian (see Figure 6). This result shows that dynamic
movements are possible with the synergistic controller and
demonstrates the utility of a reduced number of parameters
for fast model identification and adaptation.

Optimal open-loop tracking performance is limited by the
noise in the system. To verify that the adaptive controller
converges to the level of minimum error, the system noise
was identified by repeatedly applying a fixed sequence of
motor torques. The final estimate of J at t = 600sec was
used to track the circle 100 times; the standard deviation of
the normalized tracking error was calculated to be σ = 0.041.
As shown in Figure 6, the adaptive controller converged to
this 1σ level.
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Fig. 6. Mean squared error (MSE) of actual versus target positions for
circles in virtual space, normalized. The open-loop synergistic controller
began with a very poor initial model and converged to a plateau at about
5% error within 500 seconds. Also shown is baseline MSE for the tendon-
space PID controller (see Section III-C) and the 1σ level. The open-loop
synergistic controller adapts to outperform the closed-loop tendon-space
controller and reaches the estimated lower bound of open-loop tracking
error.

C. Experiment 2: Hybrid Force/Position Control

Whereas thumb posture tracking was achieved using syn-
ergies built from self-experience of the system dynamics,
application of the synergistic control framework to specific
tasks may require a human demonstration to provide the
initial identification data. For instance, a more complex
task such as handwriting involves coordination of multiple
fingers and is not well described by kinematic trajectories
alone. In order to control the motion of the pen endtip
on a piece a paper, the hand must apply forces not only
to induce movement but also to maintain grip on the pen.
Observation and activation synergies were built from separate
demonstrations of each 1) pen endtip horizontal displacement
(East-West), 2) pen endtip vertical displacement (North-
South), and 3) squeezing on the pen to maintain grip. These
movements utilize all 20 motors of the ACT hand’s thumb,
index, and middle finger.

Again, PCA was the primary tool for extracting the
observation synergy S from the kinematic demonstrations
(1 and 2). As PCA maximizes the variance captured by
each successive component, simultaneously reducing both of
the datasets is likely to cause an undesired mixing of the
demonstrated modes of motion. For instance, the first com-
ponent may capture Northeast-Southwest endtip motion and
the second Northwest-Southeast. To avoid this mixing and
enforce the required orthogonality of components, PCA was
used to sequentially extract the strongest component from
each demonstration and Hotelling’s deflation[24] was used
between the datasets. This process is amenable to selecting
any number of components from many demonstrations and
also gives a priority to earlier demonstrations.

An alternative NMF method was used to find the activation
synergy W . S is separated into its negative and positive parts
and then rectified to give w = 2s non-negative activation

components. That is, W =

[
max(S, 0)

−1 ∗min(S, 0)

]
. Intuitively,
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this method weights tendon tension during a movement in
the virtual space by the amount that tendon contracts. This
method was used because the resulting Jacobian was found
to be better-conditioned than the corresponding factorization
found by alternating least squares.

The Jacobian J is found by repeating the identification
process from Section III-B for all 20 motors with the hand
in a pen-holding posture but without the pen in place. J is
again estimated by the linear regression from Equation 10
and has full non-negative rank.

A prior demonstration of synergistic control for hand-
writing used PID control on tendon lengths to meet targets
specified in the virtual space [12]. As mentioned in Sec-
tion II-A, this system may not be controllable and showed
limited dynamic response accordingly. In this experiment we
show that incorporating non-negative activation synergies,
the Jacobian, and optimal controller allows much better
dynamic tracking of trajectories in the virtual space.

Controller 1 uses a PID controller acting on tendon lengths
to follow trajectories in the virtual space. Control torques are
clamped to be non-negative and integrators were saturated at
75% of max torque. Equation 3 is used to find the tendon
length setpoints for each synergy position setpoint. Selecting
feedback gains is difficult: 20 tendons × 3 gains (P, I, and D)
= 60 variables to tune, tendon coupling means that tuning
cannot be done on each tendon independently.

Even careful selection of all the gains provides little intu-
ition into task-relevant controller performance. Essentially,
there exist tendons for which good tracking performance
may not be critical to the overall task. On the hand tracking
performance plays very important role in tendons with big
excursion changes. Given these limitations, we chose iden-
tical PID gains for all tendons and used a Kalman filter on
each tendon to smooth noisy velocity measurements and give
the best achievable tracking in the virtual space. To track a
particular motion in virtual space, it is more intuitive to work
in the virtual space, tuning gains that reflect the movement
of groups of tendons in synchrony; the synergistic controller
gives access to the system at this level.

Controller 2 uses a PID controller in the virtual space that
acts directly on synergy position, the same space in which
trajectories are defined. The gains were tuned to enable
dynamic movements while maintaining good disturbance re-
jection and stability. To allow increased stiffness through the
proportional term, the derivative term acts on an estimated
synergy velocity calculated by a Kalman filter that smooths
out noisy measurements. The Kalman filter considers each
component of the synergy velocity to be independent and
does not operate on the tendon lengths, but on the synergy
velocity measurement directly. Future extensions of the filter
to include automatic parameterization of covariance matrices,
outlier rejection, and coupling of each component may allow
higher PID gains and improved trajectory tracking. Figure 8
shows the much improved performance of the virtual-space
controller versus the tendon length controller in tracking a
virtual-space trajectory.

In addition to improved tracking, the synergistic controller
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Fig. 7. A Kalman filter acting on measurements of virtual-space velocity
produces a smoothed estimate that allows stiffer PID gains. The estimate
shows minimal lag while attenuating the high frequency noise.
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Fig. 8. Performance of virtual-space synergistic controller (black) versus
tendon-space PID controller (gray) while tracking a handwriting trajectory
in virtual space. Shown on the left is a slower 1/6 Hz circle, on the right
a 1 Hz circle. In both cases the synergistic controller tracks much better,
because of simpler gain tuning and the application of a grip force.
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is simultaneously maintaining a grip force to keep the pen
from slipping out of the hand, stabilizing the pen while
the virtual-space trajectory is tracked. With the addition of
force-sensitive skin on the fingers or instrumentation on the
pen, the grip force could further be be controlled through
feedback. Notably, because the tendon-space PID controller
does not account for the grip force, the controller is not
appropriately designed to manipulate the pen; as shown in
8 there is a large offset resulting from the stiffness of the
pen. Stiffer PID gains that would allow force development
on the pen would also result in instability when moving out
of the pen. Such considerations are easily handled by the
synergistic controller.

Performance of the two controllers was compared over a
dynamic range. For each test, a small circular motion at con-
stant frequency was tracked and both magnitude and phase
of the response were calculated using the FFT. As shown
in Figure 9 both controllers show decreased magnitude and
increased phase lag at higher speeds, as expected, but the
synergistic virtual-space controller is substantially better.

IV. DISCUSSION

Control of the tendon-driven biomimetic ACT robotic
hand is complicated by the system’s high dimensional-
ity, underactuation, redundancy, and nonlinearities. System
identification, model-predictive control, and planning are
greatly simplified by dimensionality reduction through the
synergistic control framework. Applying a first-order virtual-
space model quickly enabled adaptive controller performance
surpassing the model-free full dimensionality controller. The
complex task of dynamic handwriting is also more easily
described through the use of task-relevant observation and
activation synergies. Handwriting movements in the virtual
space are well tracked while simultaneously maintaining a
grip force on the pen, providing a foundation for future
exploration of closed-loop control of the pen position on the
tablet.

In this work we have demonstrated the challenges when
PID control in tendon space is considered. In a system
with many tendons, gain tuning is not intuitive and is task
dependent; each tendon has different tracking requirements.
With the synergistic control framework we can reduce the
high-dimensional control space into a low-dimensional space
where gain tuning, identification, and trajectory definition are
more intuitive.

Further work within the structure of the synergistic control
framework will include refinement of the system model, the
optimal controller, and the Kalman filter for state estimation.
We are planning to improve high-speed tracking performance
by incorporating gain scheduling methods and using filtering
techniques that automatically reject outliers.

Future research will also consider the use of the proposed
framework as the underlying controller for learning new tasks
based on a reward feedback specified in task-relevant space.
We are aiming to take advantage of policy gradient methods
and the iterative path integral control framework [25]. Our
goal is to investigate whether or not reinforcement learning

with synergistic control has better performance and is faster
than learning in tendon space.
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