Abstract:
In this paper, we introduce the concept of dense scene flow for visual SLAM applications. Traditional visual SLAM methods assume static features in the environment and th...Show MoreMetadata
Abstract:
In this paper, we introduce the concept of dense scene flow for visual SLAM applications. Traditional visual SLAM methods assume static features in the environment and that a dominant part of the scene changes only due to camera egomotion. These assumptions make traditional visual SLAM methods prone to failure in crowded real-world dynamic environments with many independently moving objects, such as the typical environments for the visually impaired. By means of a dense scene flow representation, moving objects can be detected. In this way, the visual SLAM process can be improved considerably, by not adding erroneous measurements into the estimation, yielding more consistent and improved localization and mapping results. We show large-scale visual SLAM results in challenging indoor and outdoor crowded environments with real visually impaired users. In particular, we performed experiments inside the Atocha railway station and in the city-center of Alcalá de Henares, both in Madrid, Spain. Our results show that the combination of visual SLAM and dense scene flow allows to obtain an accurate localization, improving considerably the results of traditional visual SLAM methods and GPS-based approaches.
Date of Conference: 14-18 May 2012
Date Added to IEEE Xplore: 28 June 2012
ISBN Information: