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Abstract—Snake robots are controlled by implementing failure for the snake to maintain certain properties during
gaits inspired from their biological counterparts. Howeve,  transition. To address these two issues, we present a
transitioning between these gaits often produces undesiie  yocantralized framework building on limit cycle methods

oscillations which cause net movements that are difficult ¢ d i ti 6 I the th f
to predict. In this paper we present a framework for o produce cyclic motion (eg [6]) as well as the theory o

implementing gaits which will allow for smooth transitions, SWitch time optimization (eg [7]) which will allow for
We also present a method to determine the optimal time the gait transition to propagate down the snake while
for each module of the snake to switch between gaits in a satisfying desired properties by minimizing a cost.
decentralized fashion. This will allow for each module to The remainder of the paper will proceed as follows
participate in minimizing a cost by communicating with h . il ai brief . f.
a set of modules in a local neighborhood. Both of these /N the next section we will give a brief overview o
developments will help to maintain desired properties of how gaits for the snake robot have been modelled. In
the gaits during transition. section Il we will outline an approach for accomplishing
these gaits using a decentralized control scheme. We will
- then present, in section IV, a decentralized switch-time
Snake robots have the ability to traverse through tugptimal control scheme to determine when to switch
nels, over flat ground, swim, and even crawl up crevicgfits. We will end the paper by showing an example

(eg [1], [2] ). However, this versatility comes at a coslpf this framework in section V and some concluding
Snake robots are highly underactuated nonholonontigmarks in section VI.

systems and the physics of snake locomotion are difficult
to model as the terrain can be quite complex [2]. To 1. SNAKE GAITS

reduce the complexity of controlling a robot snake, . . e
plextty 9 iAs modeling snake locomotion can be difficult due

I. INTRODUCTION

researchers have turned to nature for inspiration (e . .
. : P (eg [.][ ' the fact that snake movement is complicated and the
[2], [3])- Snakes use their entire body to execute gai ) ) . . .
ysics of the interaction forces in unknown environ-

such as slither or sidewind which can often be modelléd nts can be virtually impossible to model. researchers
by a sinusoid wave which propagates down the length y imp ) ’ ;
ve turned to nature to find a suitable abstraction (eg

the snake [4]. By abstracting the movement of a rob . .
to execute these gaits, the dimensionality of the cont J [2], [3]). The authors in [4] showed that many gaits

. . of a snake can be modelled by a Serpenoid wave, which
problem is greatly reduced. These net motions can then,” ~. :
IS 'a sinusoidal wave that propagates down the length of

theoretically, be used with an array of motion planninﬁ1e snake’s body
algorithms (see for example [5]). ", ) . :
gon ( xample [S]) To utilize the Serpenoid wave on the Carnagie Mellon

Yet, a major difficulty lies in the transition between bot. sh i Fi 1 M1 h h that th
gaits. Any type of unexpected oscillatory motion, whichPPO% shown In Figure ’_[ ] has shown that the wave
an be discretely approximated as two waves, one for

often occurs during such transitions, can produce uf o SRR
desired net movements. This is due to the complicat 80h set _Of joints. The angle of each joint is given by
physical interaction with the snake and ground durin e equation
movement. Therefore, in this paper we present a frame- B. + Acsin(wt + 275 + §) i even
work to reduce such unexpected oscillations. 0i(t) = { B, + Aosin(wt]:— dmki) i odd
There are two major sources of oscillations that we N (1)
will seek to eliminate in this paper. The first comes fromyherek determines the number of cycles in each wave,
the implementation of these gaits using inherently timg is the number of modulesj is the phase offset
dependent sinusoid generators which do not providepatween the even and odd waves,is the frequency
natural way to smoothly transition between gaits. Arof the wave,A. and A, are the oscillation amplitude of
other major source of these undesired oscillations is tfife even and odd joints angles respectively, &dand
Email: {gregdroge magny@ece.gatech.edu B, are _the dc offsets of the even an_d odd joint angl_es
School of Electrical and Comput'er Engi'neer'ing, Georgiditlite of respectively. Gaits can then be designed by changing
Technology, Atlanta, GA 30332, USA. parameters in the wave [2].
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Fig. 1. The left figure shows a schematic of the snake robdgdes 2 ‘ ‘ [ tmiGyele ‘ ‘
Each joint axis is orthogonal to its neighbors and has a rafge9d0°. ol <]
The right image shows a picture of the snake created by theButics ’\ /\\/
Laboratory at Carnegie Mellon University that will be usesl the Ov\ ]
experimental platform [2], courtesy of Howie Choset. 10 7= - = S = % e 5

. D | Fig. 2. The top figure shows the desired sinusoid waves, tloellmi
' ECENTRALIZED IMPLEMENTATION OF THE shows the result of using a sigmoid function as a weight todlgaves

SERPENOIDWAVE during transition and the bottom shows using the limit cyclethod.
The black and red waves show the leader for the first and segaitsl

. . . . respectively. The blue and turquoise waves are the follower
Despite the ease of using a sinusoid generator to

implement (1), as previously done [1] [2], it is un-
desirable for gait transitions as it inherently depend§ A | imit Cycle Approach
on time. This dependence is detrimental because when

the snake changes gaits it must try and coordinate, a!0 achieve the desired properties, we have drawn

transition to another sinusoid wave which may have bolfiSPiration from the area of Central Pattern Generators
a different value and direction. A naive approach t6CPG) where there has been an extensive amount of work
transition between sinusoid waves would be to blend tif8 the design of cyclic motion (e.g. [6]). In particular,

sinusoid waves over a period of time in the followingV® Puild on a method presented in [8] which gives
manner dynamics that can be written as the harmonic oscillator

with added terms to allow for stable limit cycles with
arbitrary frequency and radius.

We generalize the approach in [8] in two steps to allow
for implementation of (1). First, we modify it to allow
for arbitrary DC offset. We call the resulting dynamics
) : . fieaa (ie dynamics for an agent which does not depend
funf:t|on.wh|ch transitions betweehand1 (for example 5, any neighbor). We then add a term which will allow
a sigmoid function). for the modules to achieve a desired phase offset from

However, as shown in Figure 2, during transition thgheir adjacent modules. We call the resulting dynamics
structure of the wave does not even appear sinusoidﬁ}b” (ie dynamics for an agent which is “following”

Moreover, when switching between gaits, not only doegother agent at a give phase offset). We can write both
the module need to take into account its own sinusoiéts of dynamics as

wave, but it must also account for the transition to a new

0i(t) = (1 —g(t))0i1 () + g(t)0i2(t) 2

where ¢;; denotes the desired angle value of the
joint executing thej*" gait and g(t) is some weight

phase offset between it angle and that of its neighbors. Fread(z:) = [% —w} & 3)
As such, through a decentralized control scheme, we W
have created a framework to allow for a smooth tran- Fron(@is@i1) = freaa(®i) + cal@a, — ;) (4)

sition between two different Serpenoid waves with dif-

ferent parameters. This framework achieves (1) withothere

dependence on a time. Moreover, moduteepends only A; B; — B;_;

on itself and modulé — 1 which will allow the modules Td, = R(‘bdi)m (mi—l + { 0 ] )=

to transition between gaits without communicating to a

central control. To realize this framework we introducé; = =; — [Bl- O]T, A; andB; are the desired amplitude
a formulation for (1) based on limit cycles and give thand offset of modulei, R(¢4,) is a rotation matrix
necessary dynamics to execute a transition from one gaith angle¢,,, ¢4, is the desired phase offset between
to another. modulesi and: — 1, w is the frequency of oscillation,



15 Limit Cycle 20, Sinusoid Output fil(Ii,Iifl) t< Ti_1

10 15 ;= Q fiolwi, xim1) Tic1 <t <7, (7)

5 10 fis(wi,xim) t>7

9 5 where 7; denotes the time at which module will

5 0 switch from gate 1 to gate 2. We have replaced the

10 5 subscripts foll” and “lead” in (3) and (4) for ease of
notation in Section IV. However, it should be noted that

fin corresponds to agerit executing fy,; of the first

gate, f;» corresponds tqf;..q Of the first gate, ands
Fig. 3. This shows the correlation between a transition betw ;
different limit cycles using (3) and the corresponding swidal output. corresponds tqpfou of the second gate for > 1 and

On the left, the state switches from orbiting the smalleiitiioycle to  flead Of the second gate far= 1.

the large limit cycle. On the right is shown the resultingusioid wave.
9 Y 9 C. Convergence

M _ _ _ For (3) and (4) to be a valid implementation of the
vi =c1 (W - 1), c1 is a gain proportional to the rate Serpenoid wave, we need to show that each module will
of convergence to the limit cycle, ang is a weight converge to the desired limit cycle and phase offset from
proportional to the convergence rate of modudldo its leader agent.
achievegy,. The joint angle for module would then Theorem 3.1: For sufficiently largecs, ¢1 > 0, @1 =
be given byb;(t) = [1 0] z;(¢). fread(z:), and@; = fron(wi,xi—1) for i = 2,3,..., N,

All these parameters can be taken directly from (¥ach module will converge to a stable limit cycle with
except for the weights¢; and ¢z, and the desired radius A;, offset B;, andz; = x4, (x4, defined as in
phase offsetpy,. The weights must be tuned to achievég4)).
desired convergence characteristics, which depend
the capacities of the motors at hand. We defige as
the desired offset between modulend module; — 1.
Observing (1), the value fap,, can then be given by

Bfbof It can be verified that (3) is asymptotically stable
to the desired limit cycle by transforming it into polar
coordinates and evaluating the resulting linear system.
As x; executes (3), it will converge to its desired limit

7k + 5 ieven cycle.
Pdi =\ dmy s iodd " ®) The proof of convergence for the remainder of the
N

o _ _ joint angles can be done in two steps. First, defining
An_ exampl_e of the limit cycl_e ap_proach |mp!ementm%i = 24, — 7, it can be shown that;;, = %||€z'||2 is

a gait transition can be seen in Figure 3, which graphir | yapunov function as long asz;|| has some lower

cally erlcts the .I|m|t cycle transition for a smgl_e ageniyound and:, is sufficiently large. It can then be shown

and Figure 2, which shows the result of the cyclic persuifat v, — L|a,][? is always increasing for someand

term for achieving desired phase offset. § s.t.e < ||z;]| < 6 for sufficiently largec;. This shows
B. Gait Transitions that||z;|| does indeed have a lower bound. Details can
We now set up the structure of the dynamics WhiCHe found in [9]. u

W|I_I allow us to successfully |mple_rr_1ent gait transitions |\, eceENTRALIZED SWITCH-TIME OPTIMIZATION
using (3) and (4). As the gait transition propagates down

the snake, part of the snake will be executing the first gait SOt transitions are not enough to ensure a lack
and part of the snake will be executing the second gaﬂf unwanted movement; the snake must maintain certain
Therefore, when module-1 switches to the second gait’propertles to maintain the structure of the gait during

modulei must become the leader of the first gait (i_et_ransition. To accommodate these properties, we build

modulei switches fromffou1 t0 fieaq1). Otherwise, upon current switch time optimization techqique; (eg
module i would be perforr‘riing cyclicr pursuit with a[?]) to allow each module to compute the optimal time,

neighbor that is executing a different gait with differen'i?“’l_en Zome cost, to hS_W'tCh t_)etweer;_ two gaits 'E a de_cehn-
parameters for frequency and phase offsets. tralized manner. In this section, we first set up the switch-

With this in mind, we write the structure of thetime optimization problem using Dual Decomposition
transition as which allows a cost to be minimized in a decentralized
fashion [10]. We will then show the solution to the
- fra(z1) t<m (6) problem using a technique called Uzawa’s Algorithm

fis(z1) t>m [11].



A. Dual Decomposition B. Uzawa's Algorithm

Dual Decomposition is an emerging tool for optimiz- Now that we have broken down the problem using
ing costs in multi-agent systems (eg [12], [13]). It allow®ual Decomposition, it is in a form where we can
each agent to maintain its own version of the variablggopose a solution. Uzawa'’s algorithm allows for solving
that it needs for optimization and ensures the equaliboth the min and max simultaneously by taking a step
with its neighbors’ versions through the introduction oin the gradient descent direction over the variables being
Lagrange multipliers. We use the notatio) denoting minimized and a step in the gradient ascent direction
module i's version of 7; and similarly z;; denoting over the variables being maximized [11]. In other words,

modulei’s version ofz;. (9) can be solved iteratively by following the following
We denote the cost assigned to modués J; and let  strategy
i oJ
it take the form i, I "5 (10)
+1 Tmn

Ji(Z;) =/ Ci(z4(t))dt (8)

. o , _ H = Hg s
where C;(Z;) is the instantaneous cost associated with Hql
modulei which depends on itself and its neighbats= where the superscript denotes the iteration number and
[zL] Vi e L, I = {j|‘gTC;‘ #£ 0 or %fo‘]’? # 0 for k = 7 is a gradient step size.

1,2,3}, 70 and 71 correspond to the initial and final  This allows for a multi-agent system to solve the Dual
times respectively, and;, i = 1,..., N, corresponds to Decomposition problem given in (9). Modulecan use
the time at which agent switches to gait 2. (10) to update its values of;;,j € I;. It can then
Using this notation, where we have absorbed aflommunicater;; to, as well as receive;; from, module
decision variables intg. and 7, we can write the Dual ;. In this fashion each agent can then update its value
Decomposition problem as of the Lagrange multiplief:;;. For modules to calculate
the solution, we give an explicit form for the gradients

N N
maxmin J = Z Ji(%) + Z Z pij (15 — 7i5) (9) which can be evaluated using Theorem 4.1.

m T

i=1 i=1jel; aJ 0Jm
for @ik, Tig—1) t<Tig—1 OTmn T
Sit.diy = Q fre(@ig, Tin—1) Tir—1 <t <Tii, 0J _ 0Jm _ Z 1
— im
fro(@ik, Tig—1) t>Tik O OTmm (j:mel;}
zik(10) = Tx(70) aJ
T =T —Tu
Vkel,i=1,..,N Opiql

However, we still have one problem dealing with Theorem4.1: With the dynamic structure of a di-
separability of costs as required by Dual DecompositiofECted line graph, the gradient fef: found in (11)
Despite the fact that we have said that the instantane(gé" be written as
cost, C;, only depends on a local neighborhood, this?/i _ .\ . . o ‘ .
does not imply that/; depends on a local neighborhood.d7;; (Vg (fi2 = fia) + Aigr (fiern = fie12)) |y
Allowing k; = max;s.t.j € I;, we will show that _ (12)
§2 = 0 for ¢ > k;. However, we will also show that where, allowingk; = max;{j|j € I;},

d

for g < k;, gi;’ is not necessarily zero. This means that o _( oC; Y O fmi,, ey 8fm+l,lm+1)

J; depends on alk;, j < k;. im Oxm " Oz S S,
Therefore, to properly use Dual Decomposition, mod- s )

T . . ' Nim = O, Y I; and k;
ule ¢ must maintain versions of; andr; Vj < ¢, but (1) m €4l € 77 ki}
this is not decentralized as modulewould then require [ ~( 0C; Y O frty, ) ik (1) = 0
global information. One way around this is to let module ¢ — Oxy, ks oxy, ' thi \IN+1) =

i assume that modulé— 1 is a leader agent and, as
. o ; . %Pd
such, it only maintains values of the variables indexe

L : ; ) I 19<t<T7j
by I;. This is mathematically equivalent to assuming that [T P
% = 0 V5 ¢ I;. This has produced good results, as J == J
q . . .
shown in Section V. 3 1<t



S A

Fig. 4. Snapshots of the snake during transition are showile Wime increases from left to right. The propagation of #vétch from Straight
to Sidewind can be observed as the part of the snake thatneretaight is still executing the first gait.

Proof Using the cost in (8)and dynamics for the state asxamine); which is straight forward to see that it is
defined in (9) we can augment the cost with the dynamiesvays zero ifgm—cj\j = 0 using properties of the state

as

. N pria N
Ji = Z/ (C’i(XZ—) + Z Aik(frr, — x'ik))dt
j=0"Ti k=1

Using standard variational arguments we vagy —
Ti; + ev;; which causes the state to vary ag, —
Tik + engk. We can write

%(Ji(T —ev) — jZ(T)) =

e I 9

:/To mzzl (8xm +

afm-ﬁ-llerl
0T,
™+ 90,

~/7- (817]\[ A

0
1

afmlm
0T,

)\im +

/\im+1 + }\im) nimdt

) aleN
1N aSCN

+

)nz'zvdt

+ ) v (()\ij(fﬂ — fiz)+

J=1

+Ai 1 (fjr11 — fj+1,2)) |72

N
- Z /\iknik|TN+1 + O(E)
k=1

So we allow the costate to be defined as

\ _ aC; 0 fmi,, 8fm+1,lm+1

)\lm T (axm axrn aiCm )7
Aim(TN41) =0,m=1,..,N -1

+ Aim

+ Xiom+1

and we obtain the gradient in (12).

transition matrix (eg [14]). Using the same argument, it
is easy to show that for afl > k; \jg = 0if A; 441 = 0.
This leaves us with the resulting costate equations given
in (12). ™

V. TRANSITION EXAMPLE

As mentioned throughout this paper, it is important
to maintain properties of the gait during transition. One
such property that has been shown to be important
is the phase difference between adjacent modules [1].
The implementation of the Serpenoid wave using limit
cycles easily allows for the calculation of the phase
between two modules. It is noted that the inner product
between two vectors can be calculated ;a8 ; =
[|zi||||zi-1]| cos(v)) where1) is the angle between the
two vectors. In our limit cycle approach; = |¢q4,|,
where ¢4, is the desired phase between the angle of
modules; andi — 1. Using this information, we design
the instantaneous cost to punish the difference between
desired and actual phase difference:

T,.T
Ty Ti_1

TR TIT— (13)
IEAIEZY]

Ci(xi,xi—1) = k( - COS(¢di))2

Straight To Siddewind

A transition from a Straight orientation a Sidewind
gait provides a good example for the utility of per-
forming the switch time optimization as the snake often
begins in a Straight orientation. Both gaits are straight
forward to implement. The Straight gait can be imple-
mented using a proportional control to move the angles
to zero (iex value wherg1 0] z = 0 for the limit cycle
approach). A sidewind gait is a typical gait used by a

Furthermore we can show through induction that fasnake to move quickly sideways [2], [3]. It is designed by
q > ki, \ig = 0Vt (and thus% = 0). First we using the Serpenoid wave with the phase offset between



) ] (1]

0 0.5 1

L
35 4

3 Par ) ST AN 2
% 05 / 15 2 25 3 35 1 [3]

Fig. 5.  This figure shows the results of the transition betwee
a Straight gait to Sidewind gait. It shows the initial guess the
optimized values for the phase difference in black and bdseectively
of three of the modules of the snake. The vertical lines shtvenathe
switch time occurred.

(4

(5]
(6]

odd and even module§, equal to%i andB, = B, =0 -
[2].

The solution is somewhat intuitive, ie a module should
not start switching until the module in front of it is close
to the correct phase offset. This will leave the unswitched®
portion of the snake in a Straight configuration while the
switching propagates down the snake, as shown in Figure
4. Figure 5 shows a comparison of the performance df!
three of the sixteen modules with optimal switch times
with respect to arbitrarily chosen switch times. As can be
seen, the optimized version has a much smaller deviation
from the desired phase after the switch time than dogsg

the unoptimized version.
[11]

VI. CONCLUSION [12]

We have presented a method for decentralized switch
time optimization for gait transitions for a snake robot.
We have done this by presenting both a framework for3]
gaits which will allow for smooth transitions and theory
for optimal switch-times which will allow the snake to
determine the optimal time for each module to switch to
a new gait. (14]

We demonstrated the utility of this method through an
example where it was evident that the switch-time opti-
mization was able to reach the desired phase difference
with less oscillation. To do so, the transition propagated
down the snake instead of having each module switch
at the same time. This provides for less undesired
oscillations during transition between gaits and expect
that this will make the movement of the snake during
transition more predictable, as this will be an area of
future work.
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