
Optimal Decentralized Gait Transitions for Snake Robots

Greg Droge, Magnus Egerstedt

Abstract—Snake robots are controlled by implementing
gaits inspired from their biological counterparts. However,
transitioning between these gaits often produces undesired
oscillations which cause net movements that are difficult
to predict. In this paper we present a framework for
implementing gaits which will allow for smooth transitions.
We also present a method to determine the optimal time
for each module of the snake to switch between gaits in a
decentralized fashion. This will allow for each module to
participate in minimizing a cost by communicating with
a set of modules in a local neighborhood. Both of these
developments will help to maintain desired properties of
the gaits during transition.

I. I NTRODUCTION

Snake robots have the ability to traverse through tun-
nels, over flat ground, swim, and even crawl up crevices
(eg [1], [2]). However, this versatility comes at a cost.
Snake robots are highly underactuated nonholonomic
systems and the physics of snake locomotion are difficult
to model as the terrain can be quite complex [2]. To
reduce the complexity of controlling a robot snake,
researchers have turned to nature for inspiration (eg [1],
[2], [3]). Snakes use their entire body to execute gaits
such as slither or sidewind which can often be modelled
by a sinusoid wave which propagates down the length of
the snake [4]. By abstracting the movement of a robot
to execute these gaits, the dimensionality of the control
problem is greatly reduced. These net motions can then,
theoretically, be used with an array of motion planning
algorithms (see for example [5]).

Yet, a major difficulty lies in the transition between
gaits. Any type of unexpected oscillatory motion, which
often occurs during such transitions, can produce un-
desired net movements. This is due to the complicated
physical interaction with the snake and ground during
movement. Therefore, in this paper we present a frame-
work to reduce such unexpected oscillations.

There are two major sources of oscillations that we
will seek to eliminate in this paper. The first comes from
the implementation of these gaits using inherently time
dependent sinusoid generators which do not provide a
natural way to smoothly transition between gaits. An-
other major source of these undesired oscillations is the

Email: {gregdroge,magnus}@ece.gatech.edu.
School of Electrical and Computer Engineering, Georgia Institute of

Technology, Atlanta, GA 30332, USA.

failure for the snake to maintain certain properties during
transition. To address these two issues, we present a
decentralized framework building on limit cycle methods
to produce cyclic motion (eg [6]) as well as the theory of
switch time optimization (eg [7]) which will allow for
the gait transition to propagate down the snake while
satisfying desired properties by minimizing a cost.

The remainder of the paper will proceed as follows.
In the next section we will give a brief overview of
how gaits for the snake robot have been modelled. In
section III we will outline an approach for accomplishing
these gaits using a decentralized control scheme. We will
then present, in section IV, a decentralized switch-time
optimal control scheme to determine when to switch
gaits. We will end the paper by showing an example
of this framework in section V and some concluding
remarks in section VI.

II. SNAKE GAITS

As modeling snake locomotion can be difficult due
to the fact that snake movement is complicated and the
physics of the interaction forces in unknown environ-
ments can be virtually impossible to model, researchers
have turned to nature to find a suitable abstraction (eg
[1], [2], [3]). The authors in [4] showed that many gaits
of a snake can be modelled by a Serpenoid wave, which
is a sinusoidal wave that propagates down the length of
the snake’s body.

To utilize the Serpenoid wave on the Carnagie Mellon
robot, shown in Figure 1, [1] has shown that the wave
can be discretely approximated as two waves, one for
each set of joints. The angle of each joint is given by
the equation

θi(t) =

{

Be +Aesin(ωt+
4πk
N
i + δ) i even

Bo +Aosin(ωt+
4πk
N
i) i odd

,

(1)
wherek determines the number of cycles in each wave,
N is the number of modules,δ is the phase offset
between the even and odd waves,ω is the frequency
of the wave,Ae andAo are the oscillation amplitude of
the even and odd joints angles respectively, andBe and
Bo are the dc offsets of the even and odd joint angles
respectively. Gaits can then be designed by changing
parameters in the wave [2].

Fig. 1. The left figure shows a schematic of the snake robot design.
Each joint axis is orthogonal to its neighbors and has a rangeof ±90

◦.
The right image shows a picture of the snake created by the Biorobotics
Laboratory at Carnegie Mellon University that will be used as the
experimental platform [2], courtesy of Howie Choset.

III. D ECENTRALIZED IMPLEMENTATION OF THE

SERPENOIDWAVE

Despite the ease of using a sinusoid generator to
implement (1), as previously done [1] [2], it is un-
desirable for gait transitions as it inherently depends
on time. This dependence is detrimental because when
the snake changes gaits it must try and coordinate a
transition to another sinusoid wave which may have both
a different value and direction. A naive approach to
transition between sinusoid waves would be to blend the
sinusoid waves over a period of time in the following
manner

θi(t) = (1− g(t))θi1(t) + g(t)θi2(t) (2)

where θij denotes the desired angle value of theith

joint executing thejth gait and g(t) is some weight
function which transitions between0 and1 (for example
a sigmoid function).

However, as shown in Figure 2, during transition the
structure of the wave does not even appear sinusoidal.
Moreover, when switching between gaits, not only does
the module need to take into account its own sinusoid
wave, but it must also account for the transition to a new
phase offset between it angle and that of its neighbors.

As such, through a decentralized control scheme, we
have created a framework to allow for a smooth tran-
sition between two different Serpenoid waves with dif-
ferent parameters. This framework achieves (1) without
dependence on a time. Moreover, modulei depends only
on itself and modulei−1 which will allow the modules
to transition between gaits without communicating to a
central control. To realize this framework we introduce
a formulation for (1) based on limit cycles and give the
necessary dynamics to execute a transition from one gait
to another.

Fig. 2. The top figure shows the desired sinusoid waves, the middle
shows the result of using a sigmoid function as a weight to blend waves
during transition and the bottom shows using the limit cyclemethod.
The black and red waves show the leader for the first and secondgaits
respectively. The blue and turquoise waves are the follower.

A. A Limit Cycle Approach

To achieve the desired properties, we have drawn
inspiration from the area of Central Pattern Generators
(CPG) where there has been an extensive amount of work
on the design of cyclic motion (e.g. [6]). In particular,
we build on a method presented in [8] which gives
dynamics that can be written as the harmonic oscillator
with added terms to allow for stable limit cycles with
arbitrary frequency and radius.

We generalize the approach in [8] in two steps to allow
for implementation of (1). First, we modify it to allow
for arbitrary DC offset. We call the resulting dynamics
flead (ie dynamics for an agent which does not depend
on any neighbor). We then add a term which will allow
for the modules to achieve a desired phase offset from
their adjacent modules. We call the resulting dynamics
ffoll (ie dynamics for an agent which is “following”
another agent at a give phase offset). We can write both
sets of dynamics as

flead(xi) =

[

γi −ω
ω γi

]

x̂i (3)

ffoll(xi, xi−1) = flead(xi) + c2(xdi
− xi) (4)

where

xdi
= R(φdi

)
Ai

Ai−1

(

xi−1 +

[

Bi −Bi−1

0

]

)

,

x̂i = xi−
[

Bi 0
]T

,Ai andBi are the desired amplitude
and offset of modulei, R(φdi

) is a rotation matrix
with angleφdi

, φdi
is the desired phase offset between

modulesi and i − 1, ω is the frequency of oscillation,

Fig. 3. This shows the correlation between a transition between
different limit cycles using (3) and the corresponding sinusoidal output.
On the left, the state switches from orbiting the smaller limit cycle to
the large limit cycle. On the right is shown the resulting sinusoid wave.

γi = c1

(

Ai

||x̂i||
− 1

)

, c1 is a gain proportional to the rate
of convergence to the limit cycle, andc2 is a weight
proportional to the convergence rate of modulei to
achieveφdi

. The joint angle for modulei would then
be given byθi(t) =

[

1 0
]

xi(t).
All these parameters can be taken directly from (1)

except for the weights,c1 and c2, and the desired
phase offset,φdi

. The weights must be tuned to achieve
desired convergence characteristics, which depend on
the capacities of the motors at hand. We defineφdi

as
the desired offset between modulei and modulei − 1.
Observing (1), the value forφdi

can then be given by

φdi
=

{

4πk
N

+ δ i even
4πk
N

− δ i odd
. (5)

An example of the limit cycle approach implementing
a gait transition can be seen in Figure 3, which graphi-
cally depicts the limit cycle transition for a single agent,
and Figure 2, which shows the result of the cyclic persuit
term for achieving desired phase offset.

B. Gait Transitions

We now set up the structure of the dynamics which
will allow us to successfully implement gait transitions
using (3) and (4). As the gait transition propagates down
the snake, part of the snake will be executing the first gait
and part of the snake will be executing the second gait.
Therefore, when modulei−1 switches to the second gait,
module i must become the leader of the first gait (i.e.
module i switches fromffoll,1 to flead,1). Otherwise,
module i would be performing cyclic pursuit with a
neighbor that is executing a different gait with different
parameters for frequency and phase offsets.

With this in mind, we write the structure of the
transition as

ẋ1 =

{

f12(x1) t < τ1

f13(x1) t ≥ τ1
(6)

ẋi =











fi1(xi, xi−1) t < τi−1

fi2(xi, xi−1) τi−1 ≤ t < τi

fi3(xi, xi−1) t ≥ τi

, (7)

where τi denotes the time at which modulei will
switch from gate 1 to gate 2. We have replaced the
subscripts “foll” and “lead” in (3) and (4) for ease of
notation in Section IV. However, it should be noted that
fi1 corresponds to agenti executingffoll of the first
gate,fi2 corresponds toflead of the first gate, andfi3
corresponds toffoll of the second gate fori > 1 and
flead of the second gate fori = 1.

C. Convergence

For (3) and (4) to be a valid implementation of the
Serpenoid wave, we need to show that each module will
converge to the desired limit cycle and phase offset from
its leader agent.

Theorem 3.1: For sufficiently largec2, c1 > 0, ẋ1 =
flead(xi), and ẋi = ffoll(xi, xi−1) for i = 2, 3, ..., N ,
each module will converge to a stable limit cycle with
radiusAi, offsetBi, and xi = xdi

(xdi
defined as in

(4)).

Proof It can be verified that (3) is asymptotically stable
to the desired limit cycle by transforming it into polar
coordinates and evaluating the resulting linear system.
As x1 executes (3), it will converge to its desired limit
cycle.

The proof of convergence for the remainder of the
joint angles can be done in two steps. First, defining
ei = xdi

− xi, it can be shown thatVi1 = 1

2
||ei||

2 is
a Lyapunov function as long as||xi|| has some lower
bound andc2 is sufficiently large. It can then be shown
that Vi2 = 1

2
||xi||

2 is always increasing for someǫ and
δ s.t. ǫ ≤ ||xi|| ≤ δ for sufficiently largec1. This shows
that ||xi|| does indeed have a lower bound. Details can
be found in [9].

IV. D ECENTRALIZED SWITCH-TIME OPTIMIZATION

Smooth transitions are not enough to ensure a lack
of unwanted movement; the snake must maintain certain
properties to maintain the structure of the gait during
transition. To accommodate these properties, we build
upon current switch time optimization techniques (eg
[7]) to allow each module to compute the optimal time,
given some cost, to switch between two gaits in a decen-
tralized manner. In this section, we first set up the switch-
time optimization problem using Dual Decomposition
which allows a cost to be minimized in a decentralized
fashion [10]. We will then show the solution to the
problem using a technique called Uzawa’s Algorithm
[11].

A. Dual Decomposition

Dual Decomposition is an emerging tool for optimiz-
ing costs in multi-agent systems (eg [12], [13]). It allows
each agent to maintain its own version of the variables
that it needs for optimization and ensures the equality
with its neighbors’ versions through the introduction of
Lagrange multipliers. We use the notationτij denoting
module i’s version of τj and similarly xij denoting
modulei’s version ofxj .

We denote the cost assigned to modulei asJi and let
it take the form

Ji(x̄i) =

∫ τN+1

τ0

Ci(x̄i(t))dt (8)

whereCi(x̄i) is the instantaneous cost associated with
modulei which depends on itself and its neighbors,x̄i =
[xTij] ∀j ∈ Ii, Ii = {j|∂Ci

∂xj
6= 0 or ∂fik

∂xj
6= 0 for k =

1, 2, 3}, τ0 andτN+1 correspond to the initial and final
times respectively, andτi, i = 1, ..., N , corresponds to
the time at which agenti switches to gait 2.

Using this notation, where we have absorbed all
decision variables intoµ and τ , we can write the Dual
Decomposition problem as

max
µ

min
τ
J =

N
∑

i=1

Ji(x̄i) +

N
∑

i=1

∑

j∈Ii

µij(τij − τjj) (9)

s.t. ẋik =











fk1(xi,k, xi,k−1) t < τi,k−1

fk2(xi,k, xi,k−1) τi,k−1 ≤ t < τi,i

fk2(xi,k, xi,k−1) t ≥ τi,k

,

xik(τ0) = xk(τ0)

∀k ∈ Ii, i = 1, ..., N

However, we still have one problem dealing with
separability of costs as required by Dual Decomposition.
Despite the fact that we have said that the instantaneous
cost, Ci, only depends on a local neighborhood, this
does not imply thatJi depends on a local neighborhood.
Allowing ki = maxj s.t.j ∈ Ii, we will show that
∂Ji

∂τq
= 0 for q > ki. However, we will also show that

for q < ki, ∂Ji

∂τq
is not necessarily zero. This means that

Ji depends on allxj , j ≤ ki.
Therefore, to properly use Dual Decomposition, mod-

ule i must maintain versions ofxj and τj ∀j ≤ i, but
this is not decentralized as moduleN would then require
global information. One way around this is to let module
i assume that modulei − 1 is a leader agent and, as
such, it only maintains values of the variables indexed
by Ii. This is mathematically equivalent to assuming that
∂Ji

∂τq
= 0 ∀j /∈ Ii. This has produced good results, as

shown in Section V.

B. Uzawa’s Algorithm

Now that we have broken down the problem using
Dual Decomposition, it is in a form where we can
propose a solution. Uzawa’s algorithm allows for solving
both the min and max simultaneously by taking a step
in the gradient descent direction over the variables being
minimized and a step in the gradient ascent direction
over the variables being maximized [11]. In other words,
(9) can be solved iteratively by following the following
strategy

τk+1
mn = τkmn − η

∂J

∂τmn

(10)

µk+1

ql = µk
ql + η

∂J

∂µql

,

where the superscript denotes the iteration number and
η is a gradient step size.

This allows for a multi-agent system to solve the Dual
Decomposition problem given in (9). Modulei can use
(10) to update its values ofτij , j ∈ Ii. It can then
communicateτij to, as well as receiveτjj from, module
j. In this fashion each agent can then update its value
of the Lagrange multiplierµij . For modules to calculate
the solution, we give an explicit form for the gradients
which can be evaluated using Theorem 4.1.

∂J

∂τmn

=
∂Jm
∂τmn

+ µmn, m 6= n (11)

∂J

∂τmm

=
∂Jm
∂τmm

−
∑

{j:m∈Ij}

µjm

∂J

∂µql

= τql − τll

Theorem 4.1: With the dynamic structure of a di-
rected line graph, the gradient for∂Jm

∂τmn
found in (11)

can be written as

∂Ji
∂τij

=
(

λij
(

fj2 − fj3
)

+ λi,j+1

(

fj+1,1 − fj+1,2

))

|τij

(12)
where, allowingki = maxj{j|j ∈ Ii},

λ̇im = −
(∂Ci

∂xm
+ λim

∂fmlm

∂xm
+ λi,m+1

∂fm+1,lm+1

∂xm

)

,

λim(τN+1) = 0, ∀m ∈ {j|j ∈ Ii andj 6= ki}

λ̇iki
= −

(∂Ci

∂xki

+ λiki

∂fkilki

∂xki

)

, λiki
(τN+1) = 0

and

lj =











1 τ0 ≤ t < τj−1

2 τj−1 ≤ t < τj

3 τj ≤ t

Fig. 4. Snapshots of the snake during transition are shown while time increases from left to right. The propagation of theswitch from Straight
to Sidewind can be observed as the part of the snake that remains straight is still executing the first gait.

Proof Using the cost in (8)and dynamics for the state as
defined in (9) we can augment the cost with the dynamics
as

Ĵi =

N
∑

j=0

∫ τj+1

τj

(

Ci(Xi) +

N
∑

k=1

λik(fklk − ẋik)
)

dt

Using standard variational arguments we varyτij →
τij + ǫvij which causes the state to vary asxik →
xik + ǫηik. We can write

1

ǫ

(

Ĵi(τ − ǫv)− Ĵi(τ)
)

=

=

∫ τN+1

τ0

N−1
∑

m=1

(∂Ci

∂xm
+ λim

∂fmlm

∂xm
+

λim+1

∂fm+1lm+1

∂xm
+ λ̇im

)

ηimdt

+

∫ τN+1

τ0

(∂Ci

∂xN
+ λiN

∂fNlN

∂xN

)

ηiNdt

+

N−1
∑

j=1

vij

(

(λij(fj2 − fj3)+

+λi,j+1(fj+1,1 − fj+1,2)
)

|τij

−

N
∑

k=1

λikηik|τN+1
+ o(ǫ)

So we allow the costate to be defined as

λ̇im = −
(∂Ci

∂xm
+ λim

∂fmlm

∂xm
+ λi,m+1

∂fm+1,lm+1

∂xm

)

,

λim(τN+1) = 0,m = 1, ..., N − 1

λ̇iN = −
(∂Ci

∂xN
+ λiN

∂fNlN

∂xN

)

, λiN (τN+1) = 0

and we obtain the gradient in (12).
Furthermore we can show through induction that for

q > ki, λiq = 0 ∀t (and thus ∂Ji

∂τim
= 0). First we

examineλiN which is straight forward to see that it is
always zero if ∂Ci

∂xN
= 0 using properties of the state

transition matrix (eg [14]). Using the same argument, it
is easy to show that for allq > ki λiq = 0 if λi,q+1 = 0.
This leaves us with the resulting costate equations given
in (12).

V. TRANSITION EXAMPLE

As mentioned throughout this paper, it is important
to maintain properties of the gait during transition. One
such property that has been shown to be important
is the phase difference between adjacent modules [1].
The implementation of the Serpenoid wave using limit
cycles easily allows for the calculation of the phase
between two modules. It is noted that the inner product
between two vectors can be calculated asxixTi−1 =
||xi||||xi−1|| cos(ψ) whereψ is the angle between the
two vectors. In our limit cycle approach,ψ = |φdi

|,
where φdi

is the desired phase between the angle of
modulesi and i− 1. Using this information, we design
the instantaneous cost to punish the difference between
desired and actual phase difference:

Ci(xi, xi−1) = k
(xTi x

T
i−1

||xi||||xi−1||
− cos(φdi)

)2

(13)

Straight To Sidewind

A transition from a Straight orientation a Sidewind
gait provides a good example for the utility of per-
forming the switch time optimization as the snake often
begins in a Straight orientation. Both gaits are straight
forward to implement. The Straight gait can be imple-
mented using a proportional control to move the angles
to zero (iex value where

[

1 0
]

x = 0 for the limit cycle
approach). A sidewind gait is a typical gait used by a
snake to move quickly sideways [2], [3]. It is designed by
using the Serpenoid wave with the phase offset between

Fig. 5. This figure shows the results of the transition between
a Straight gait to Sidewind gait. It shows the initial guess vs the
optimized values for the phase difference in black and blue respectively
of three of the modules of the snake. The vertical lines show when the
switch time occurred.

odd and even modules,δ, equal topi
4

andBo = Be = 0
[2].

The solution is somewhat intuitive, ie a module should
not start switching until the module in front of it is close
to the correct phase offset. This will leave the unswitched
portion of the snake in a Straight configuration while the
switching propagates down the snake, as shown in Figure
4. Figure 5 shows a comparison of the performance of
three of the sixteen modules with optimal switch times
with respect to arbitrarily chosen switch times. As can be
seen, the optimized version has a much smaller deviation
from the desired phase after the switch time than does
the unoptimized version.

VI. CONCLUSION

We have presented a method for decentralized switch
time optimization for gait transitions for a snake robot.
We have done this by presenting both a framework for
gaits which will allow for smooth transitions and theory
for optimal switch-times which will allow the snake to
determine the optimal time for each module to switch to
a new gait.

We demonstrated the utility of this method through an
example where it was evident that the switch-time opti-
mization was able to reach the desired phase difference
with less oscillation. To do so, the transition propagated
down the snake instead of having each module switch
at the same time. This provides for less undesired
oscillations during transition between gaits and expect
that this will make the movement of the snake during
transition more predictable, as this will be an area of
future work.

ACKNOWLEDGEMENTS

The authors are grateful to Howie Choset for helpful
comments and discussions. This work was sponsored by
the DARPA M3 program.

REFERENCES

[1] J. Gonzalez-Gomez, “Modular robotics and locomotion: Applica-
tion to limbless robot,” Ph.D. dissertation, Universidad Autonoma
de Madrid, 2008.

[2] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz,
and H. Choset, “Parameterized and scripted gaits for modular
snake robots,”Advanced Robotics, vol. 23, no. 9, pp. 1131–1158,
2009.

[3] J. Burdick, J. Radford, and G. Chirikjian, “A ‘sidewinding’
locomotion gait for hyper-redundant robots,” inRobotics and
Automation, 1993. Proceedings., 1993 IEEE International Con-
ference on, may 1993, pp. 101 –106 vol.3.

[4] Y. Umetani and S. Hirose, “Biomechanical study of serpentine
locomotion,” in Proc. 1st RoManSy Symp, vol. 73, 1974, pp.
171–184.

[5] S. M. LaVell, Planning Algorithms. Cambridge: Cambridge
University Press, 2006.

[6] A. Jan and Ijspeert, “Central pattern generators for locomotion
control in animals and robots: A review,”Neural Networks,
vol. 21, no. 4, pp. 642 – 653, 2008.

[7] M. Egerstedt, Y. Wardi, and F. Delmotte, “Optimal control of
switching times in switched dynamical systems,” inDecision and
Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 3,
dec. 2003, pp. 2138 – 2143 Vol.3.

[8] J. Buchli and A. Ijspeert, “Distributed central patterngenerator
model for robotics application based on phase sensitivity analy-
sis,” Biologically Inspired Approaches to Advanced Information
Technology, pp. 333–349, 2004.

[9] G. Droge and M. Egerstedt, “Optimal decentralized
gait transitions for snake robots,” School of Elec-
trical and Computer Engineering, Georgia Institute
of Technology, http://gritslab.gatech.edu/home/wp-
content/uploads/2012/01/DistGaits.pdf, Tech. Rep., January
2012.

[10] S. Boyd,Convex Optimization. Cambridge: Cambridge Univer-
sity Press, 2004.

[11] K. Arrow, L. Hurwicz, and H. Uzawa,Studies in Nonlinear
Programming. Stanford University Press, Stanford, CA, 1958.

[12] P. Giselsson and A. Rantzer, “Distributed model predictive con-
trol with suboptimality and stability guarantees,” inDecision and
Control (CDC), 2010 49th IEEE Conference on. IEEE, 2010,
pp. 7272–7277.

[13] P. Twu, R. Chipalkatty, A. Rahmani, M. Egerstedt, and R.Young,
“Air traffic maximization for the terminal phase of flight under
faa’s nextgen framework,” inDigital Avionics Systems Confer-
ence (DASC), 2010 IEEE/AIAA 29th, oct. 2010, pp. 2.C.1–1 –
2.C.1–14.

[14] W. L. Brogan,Modern Control Theory. New York: Quantum
Publishers, 1974.

