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Abstract— Someday mobile robots will operate continually.
Day after day, they will be in receipt of a never ending stream
of images. In anticipation of this, this paper is about having a
mobile robot generate apt and compact summaries of its life
experience. We consider a robot moving around its environment
both revisiting and exploring, accruing images as it goes. We
describe how we can choose a subset of images to summarise the
robot’s cumulative visual experience. Moreover we show how
to do this such that the time cost of generating an summary is
largely independent of the total number of images processed.
No one day is harder to summarise than any other.

I. INTRODUCTION

Consider the following: a robot is sent out into the world
day after day continually taking pictures of its environment,
implicitly accruing an ever richer picture of its world. It
is gaining experience. The question we ask in this paper
is how should that robot summarise its day, its week or
even its working “life time” when asked? Immediately,
it is interesting to think of this as the flip side to the
vast amount of research which exists on metric workspace
mapping. That corpus of work summarizes the experience
of a mobile robot metrically - it produces crisp, sometimes
almost architectural drawings of the robot’s workspace. In
this work, however, we swap metric summaries for visual
summaries. We want the robot to produce a story board of
canonical images which capture the essence of the robot’s
visual experience - illustrating both what was ordinary and
what was extraordinary. Here, we systematically address this
question in a way that scales well with time and variation of
experience. We seek a summary that evolves incrementally
with the novelty of data - it should grow with saliency of
experience and not merely duration. To be sure, if the robot
stood still for a year in static world we would not welcome
a lengthy precis!

At a high level we proceed in the following way. Each
image is characterized as a mixture of visual topics, mapping
to a point in topic vector space. We incrementally organize
these images using an online graph clustering technique.
The structure of this graph is used to generate a visual
summary of a robot’s experience. Importantly, the graphical
organization evolves over time as new imagery is collected
by the robot. We show that this naturally yields an ever-
improving workspace summary.

II. RELATED WORK

The problem of generating visual summaries has been
explored within the computer vision community. Gong and
Liu [7] employ singular value decomposition to extract key-
frames for video summarization applications. The procedure
operates offline and requires batch access to the entire video
stream. Pritch et al. [11], present a method for generating
synopsis videos from static surveillance cameras. The pro-
cedure extracts moving objects tracks through background
subtraction and selects the optimal summary by minimizing
temporal and backgound consistency costs for object tracks.

In mobile robotics, Girdhar and Dudek [6], present a
method for online extraction of k-most novel images from
an image corpus using set-theoretic surprise, measuring the
fitness of an image as a summary image. The approach re-
quires the summary size to be specified and is aimed towards
identifying salient aspects of data. Note, in the context of
summary generation both the common and salient aspects
must be represented and learnt online. In [12], Ranganathan
et al. use bayesian surprise for identifying salient landmarks
for topological mapping with vision and laser features. In
another related work [10], Konolige et al. present view
based maps, an online large-scale mapping technique for
constructing topological maps with stereo data. The map
is pruned by extracting relevant keyframes using a distance
based heuristic causing the number of selected keyframes to
scale with map length.

III. IMAGE REPRESENTATION IN TOPIC SPACE

In this section, we discuss how an image can be encoded
as a vector in topic space. The techniques employed here
have their genesis in information retrieval and as such we
will leverage an anology between documents and images.
At the lowest level we can describe an image as a list of
visual words using the approach by Sivic et al. [13]. We
can now think of an image as a document of visual words
represented as a point in vector space where each dictionary
word represents an orthogonal axis.

Visual words in an image are not independent and arise
from objects characterizing the scene. Features emanating
from a common object, frequently co-occur across multiple
images. Topic models [8] represent documents as a mixture
of intermediate latent topics. Topics are distributions over
words and probabilistically capture co-occurring features.
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Fig. 1: Topic estimation and inference. Topics are distri-
butions over words and estimated once from an image
corpus. Learnt topics are used to estimate the vector of topic
proportions for a perceived image, mapping to a point in
topic vector space. Using a cosine similarity metric, online
star clustering is used to organize images into topical clusters.

Each document or an image is a distribution over topics and
different documents can possess varied topic proportions.
Topic distributions are estimated once offline from a large
corpus. Online, topic proportions are estimated for each
image, see Figure 1. The vector of topic proportions maps
an image to a point in topic-space. Typically, the number
of topics is much less than the vocabulary size leading to
considerable dimensionality reduction. Image similarity can
be measured via cosine distance in topic space. Since topics
provide a lower-dimensional thematic representation, images
with common topics can get associated even if they have few
words in common.

Latent Dirichlet Allocation (LDA) is a widely used prob-
abilistic topic model [3] for which topic estimation is
tractable. LDA is a hierarchical bayesian generative model
and describes document formation as: (i) picking a multi-
nomial distribution over topics specifying the likelihood of
each topic in the document and (ii) generating constituent
words by sampling topic proportions to obtain a topic
label followed by sampling the word from the selected
topic distribution over words. Inference involves reversing
the generative process to recover the topics and the topic
proportions per document. This is approximated using an
MCMC Gibbs sampling procedure in the state space of topic
labels for observed words with the update rule given in
Equation 1. Here, z variable is a topic indicator variable, one
for each observed word, w and α, β parameterize Dirichlet
priors placed on topic and topic proportion distributions. The
number of topics and vocabulary sizes are referred to as T
and W . After sufficient sampling iterations, topic labels are
recorded and used to form maximum likelihood multinomial
estimates for topic and topic proportion distribution, [8].

P (zi = j|z−i,w) ∝
[

n(wi)
−i,j + β

n(.)
−i,j + Wβ

] [
n(di)

j + α

n(di)
−i,. + Tα

]
(1)

After obtaining a suitable representation of images in topic
space, our next task is to incrementally organize the robot’s
imagery and generate a visual summary of the traversal.

IV. STAR CLUSTERING AND ONLINE ORGANIZATION

We use the star clustering algorithm [1] to compute a topic-
driven organization of the robot’s image collection. The star
cluster algorithm is an efficient clustering algorithm that
identifies the underlying thematic structure of a document
collection and organizes it using topic clusters, as long as
the documents can be compared using a similarity metric.
When the similarity metric is the cosine distance between
two feature vectors, the star clustering algorithm guarantees
a minimum similarity between any pair of documents in the
collection. Unlike the k-means algorithm, where the user has
to specify in advance k, the number of final clusters, the star
algorithm does not require as input the number of expected
clusters; instead it discovers this number depending on the
desired minimum similarity between the documents in the
cluster. The star clustering algorithm can be run online and
is computationally very efficient. The ability to incrementally
determine the topic organization of an image collection
makes it especially suitable for our problem setting, where
the data collection from a mobile robot is incremental in
nature. Next, we present a brief overview.

The image corpus is represented via a similarity graph,
G = (V,E,w) where vertices correspond to images and
weighted edges represent cosine similarity in topic space.
The similarity graph can be studied at various thresholds
of pair-wise document similarity, σ. The thresholded graph,
Gσ is obtained from G by removing edges with pairwise
similarity less than σ, Figure 2a. The clustering algorithm
covers Gσ with star-shaped subgraphs. A star-shaped sub-
graph on m + 1 vertices consists of a star center and m
satellite vertices, where edges exist between the star center
and each of the satellite vertices, Figure 2b.

The optimal clustering is obtained by forming a mimimal
vertex cover for the graph with maximal star-subgraphs,
Figure 2c, resulting in the following properties for each
vertex: (i) a star center is not adjacent to another star center
and (ii) every satellite vertex is adjacent to at least one center
vertex of equal or higher degree. The number of clusters is
naturally induced by the dense cover. For each cluster in
the graph, the cluster center acts as its exemplar. Satellite
vertices displaying multiple themes can be associated with
multiple clusters.

By examining the geometry of the star-subgraphs in the
topic vector space, Figure 2b, the expected similarity be-
tween satellite vertices can be obtained as Equation 2.
Here, cosα1 and cosα2 are the center-satellite similarities
for any two satellites in the star and cosγ represents the
expected satellite-satellite similarity. The expected pairwise
similarities are high and imply dense clustering of data.

cosγ ! cosα1cosα2 +
σ

σ + 1
sinα1sinα2 (2)

Star clustering is computationally efficient, asymptotically
linear in the size of the input graph. Further, the star cover
can be formed incrementally with each arriving data point
with potential re-arrangement of existing stars, see Figure
3. For each inserted vertex, its degree and adjacency list is



(a) The clustering procedure begins by computing a similarity graph, Gσ with
each image as a node with links indicating similarities exceeding a specified
threshold σ.
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(b) An example of a star-shaped subgraph with center C and five satellite
vertices (left). Each node in the graph maps to a point in a vector space
where pairwise similarity is endowed using cosine distance metric. By
construction, center-satellite similarities are atleast σ. The vector space
geometry with cosine distance ensures that expected satellite-satellite
similarities are also high, leading to dense clusters.

(c) The graph organized into clusters using a minimal cover with
star-shaped sub-graphs. The cluster centers compactly summarize the
visual experience of the robot. Note that an image (possessing varied
themes) can belong to mulitiple clusters.

Fig. 2: Incremental clustering with star-shaped subgraphs.

computed and the following cases are examined: If the new
vertex is not adjacent to a star center, then the inserted vertex
is added as a star center forming a new cluster. If the inserted
vertex is adjacent to a center vertex with higher degree, then
the inserted vertex becomes the satellite for the center vertex.
The graph is re-arranged in two cases: (i) when all centers
adjacent to the inserted vertex have degree lower than the
new vertex or (ii) vertex insertion increases the degree of
an adjacent satellite beyond the degree of its associated star
center. Under these conditioned, existing stars are broken
and satellites are re-examined. However, the number of re-
arrangement operations required are usually small (verified
experimentally). Further, we employed an optimized version
of the algorithm that saves operations by predicting the future
status of a satellite vertex or other star-satellite status changes
induced by the inserted vertex.

As images perceived the mobile robot are organized into

(a) A new data point may introduce additional links in the similarity
graph (green) affecting adjacency and hence the validity of current
minimal star cover.

(b) Inconsistent stars are broken and re-arranged to incorporate the new
point. The green circles indicate positions where graph modifications
took place. The number of stars broken determine the running time of
insertion. On real graphs, the avg. number of stars broken is small,
thereby yielding an efficient and incremental clustering approach.

Fig. 3: Star clustering re-organization upon insertion of a
new data point.

star clusters, at any time instant, the cluster centers form a
visual summary of the robot’s traversal. For each image in
the corpus, the associated cluster centers provide a thematic
annotation in terms of current summary images. Hence, the
robot’s trajectory can be understood as a combination of
segments, each annotated by summary images to which the
image are presently assigned. Since clusters adapt with each
new collected image, the summary and the thematic annota-
tion improves over time with increasing experience. Next,
we bring the described components together and present
experiments on data collected from a mobile platform.

V. RESULTS

A. Vocabulary and Topic Learning

A data set traversing streets and park areas was collected
consisting of 2874 images, recorded 10m apart and per-
pendicular to the robot’s motion. Image samples were non-
overlapping, excluded loop closures pairs and hence approxi-
mated independent samples from the observation distribution
and used for vocabulary and topic learning. A visual vocab-
ulary [13] of approximately 11k visual words was generated
by clustering SURF features [2] extracted from this data set.
Each image was represented as a multinomial of visual words
by first extracting SURF features and then quantizing against
the learnt vocabulary. Topic distributions were estimated
using a Gibbs sampling procedure outlined in section III.
The Markov chain was randomly intialized and was run
till convergence for varying number of topics: ranging from
3 till 100. Dirichlet priors were set to α = 50/T and
β = 0.1. Iterations required to ensure MCMC convergence
was experimentally obtained to be atleast 200 and was found
consistent across multiple re-starts. The number of topics



(a) Aerial view of New College with GPS plots
for the robot’s trajectory.
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(b) Summary after traversing the cloisters with images of large windows, medieval walls etc.
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(c) Summary at the start of the mid-section after traversing the quad and cloisters area.
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Modern building Entrance area

S3

(d) Summary at the end of the traversal including recent examples of parks, building and entrance areas.

Fig. 4: Incremental visual summary generation while traversing New College shown at three instants. The most recently
added cluster center image and the first encountered are marked with red and blue borders respectively. Parameters: σ = 0.6,
T = 50. The sections where the images were taken have been hand-labeled to facilitate interpretation. Note that clusters
evolve over time and capture the dominant visual themes encountered by the mobile robot.

was selected through the bayesian model selection approach
of maximizing the data-loglikelihood given topics [8] which
was found to peak for 50 topics.
B. Visual Summaries

The visual summarization algorithm was run on two data
sets: (i) New College data set consisting of 1355 images
from cloisters, quad area, parks and facades characteristic
medieval buildings in Oxford and (ii) City Center data
set comprising of 1683 images taken in dynamic urban
environments including roads, buildings, vehicles and pedes-
trians. There was no geographical overlap with the urban
data set used for vocabulary and topic learning. For online
experiments, images from the entire data set were presented
sequentially and were incrementally organized into star clus-
ters. Topic proportions for each image were estimated using
topic distributions learnt from the urban data set.

The visual summary at three time instants for the New
College data set is shown in Figure 4. The robot began
operation in the cloisters area and after covering two loops
took an exit into the adjacent quads. Figure 4b shows the
summary at that instant consisting of images of dominant
windows and stone walls seen in the area. The robot then
traversed the quad area and reached the middle section. New
clusters emerged as shown in Figure 4c containing varied
views of the explored area. Note that images of walls found
in the earlier summary are now absent. They were found
similar to walls in the quad area and hence now appear as
satellites. Figure 4d presents the summary at the end of the
data set, containing new images from the parks and modern
buildings seen later by the robot. The summary images are
shown with labels indicating the geographical region where
they were recorded. Note that the cluster centers summariz-



(a) Satellite image with overlaid
GPS tracks for the City Center data
set.

ParksParks Exit

S1

(b) Summary while exiting parklands after collecting 180 images

Road sideBuilding area Parks

S2

(c) Visual summary when the robot reaches Science Area buildings. New cluster centers for building features become promiment. Iteration 310.

ParksScience Area-I

Science Area-IIParks Road
S3

(d) Visual summary at the end of traversal, iteration 900.

Fig. 5: Incremental visual summary generation for City Center data set shown at three instants. The most recently added
cluster center image and the first encountered are marked with red and blue borders respectively. Parameters:σ = 0.6,
T = 50. The sections where the images were taken have been hand labeled to facilitate interpretation. Note that clusters
evolve over time and capture the dominant visual themes encountered by the mobile robot.

ing the traversal appear visually distinct indicating that the
star covers capture different appearance modes present in
the traversed environment. Figure 5 illustrates the summary
for the City Center data set. The initial summary consists
of foliage, parks and railings, Figure 5b. The robot then
explores roads and building areas and hence the summary is
refined with new representative clusters including vehicles,
roads, buildings etc.

Every image collected by the robot is assigned to clusters
in the collection, which can be considered as an annotation
in terms of topical themes (cluster centers) learnt from
exploration till now, see Figure 6. Since clusters evolve over
time, the thematic annotation also improves with increasing
experience. Note that star clustering permits multi-cluster
membership accounting for images that can be explained via

multiple themes in the data set.
C. Topical Clusters

Figure 7 illustrates three representative clusters obtained at
the end of the traversal. Cluster center image (indicated in
red) and five randomly picked satellite images are shown.
The cluster shown in Figure 7a typically consist of vehicles
which generate a large number of features. The topic model
learns that these feature co-occur and maps them to a
common theme. The cluster shown in Figure 7b consists
of similar images of foliage and trees in parks. Figure 7c
presents a cluster containing images of buildings and trees
as viewed from a sidewalk. Note that clusters possess a
common visual theme as opposed to exact matches and hence
topically organize images collected by the robot. Secondly, a
relatively small number of topics (50) yielded topical clusters



Observed Image Assigned Cluster Centers

Fig. 6: Example of images taken at three time instances
during traversal shown with the associated cluster centers
(using the final clustering at the end of traversal). The
assigned cluster centers accurately capture the visual theme
in the selected images (left column). Examine the first row.
The observed parkland image (top left) is assigned to two
cluster centers. The first center (middle) image was captured
prior to the observed image and the second cluster center
was collected later, indicating that the topical annotation for
each image on the trajectory improves with time.

compared to the dictionary size of 10k, indicating significant
dimensionality reduction.

Using a higher similarity threshold, σ causes higher intra-
cluster similarity, and generally results in smaller but more
numerous clusters. Figure 8 compares two clusters obtained
at σ = 0.6 and σ = 0.7, selected such that their respective
cluster center images were taken at the same location in the
New College quad. Both clusters possess a coherent visual
theme consisting of medieval buildings with some foliage
features. Cluster images for σ = 0.7 display higher similarity
and are primarily from the same quad area, compared to the
cluster at a lower threshold that consisted of images from
the quad, mid-section and other parts of the college, hence
possessing greater variability.

Next, we explored the cluster quality obtained at a specified
σ. For each cluster, the distribution of all pair-wise similari-
ties between satellite vertices was determined and probability
histograms (bin size 0.025) were plotted vertically in Figure
9 using threshold σ = 0.6 and σ = 0.7 for the New College
data set. To mitigate the effect of variable cluster sizes and
sampling error, probability estimates were smoothened [5].
As discussed in Section IV, Equation 2 gives the expected
similarity between satellite vertices in a star-subgraph. For
a clustering at threshold, σ, the center satellite similarities
are atleast σ. Hence, from Equation 2, the expected satellite-
satellite similarity is σ, and is plotted as a horizontal line
in Figure 9. Empirically, the expected similarity values for
clusters were found close to σ indicating that star clusters
are reasonably dense and imply high expected pairwise
similarities between satellites.

(a) Clustered images consist of feature sets on vehicles and the
horizon. City Center data set: Cluster 46, σ = 0.8.

(b) Thematic cluster of parkland images. New College data set:
Cluster 8, σ = 0.6.

(c) Images in the cluster display common feature sets appearing on
buildings and trees. City Center data set: Cluster 29, σ = 0.7.

Fig. 7: Representative clusters from City Center and New
College Data sets. Images in a cluster possess similar visual
topics. Cluster center is indicated in red. Images shown are
randomly sampled from the total cluster images.

D. Efficiency and Timing
Table I presents online clustering statistics for the data sets

with thresholds: 0.5, 0.6, 0.7 and 0.8. A higher similarity
threshold reduces the number of edges in the graph (increas-
ing sparsity) resulting in an increase in the number of clusters
(size of the mimimal cover). The number of clusters obtained
varied from 12 to 328 for the New College and from 14 to
454 for the city center data set for σ = 0.5 and σ = 0.8
respectively.

The average number of stars broken during insertion indi-
cates the work done to re-arrange the existing graph when
a data point is incorporated. Notably only a small number
of stars are broken per insertion on average. For example,
while inserting 1355 images in the New College data set at
σ = 0.6, a total of 707 stars were broken - approximately



(a) Cluster 29, σ = 0.6. Displaying 12 of 202 cluster images.

(b) Cluster 29, σ = 0.7. Displaying 8 of 55 cluster images.

Fig. 8: Two clusters with centers in the New College Quad
obtained with varying thresholds of σ = 0.6 and σ =
0.7. Cluster centers are marked with red. (a) Clustering at
lower thresholds results in larger clusters with less specific
visual themes. (b) Increasing the threshold results in smaller
clusters with higher similarity.
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Fig. 9: Distributions of all pair-wise similarities between
satellite vertices, (histogram plotted vertically) for each clus-
ter obtained thresholds σ = 0.6 (left) and σ = 0.7 (right),
indicated with horizontal red line, for the New College data
set. Expected similarity values are close to σ indicating that
star clusters are reasonably dense.

0.52 broken stars per insertion. The average number of stars
broken were less than 0.78 for all runs except for σ = 0.8
experiment with City Center data set where a total of 2579
stars were broken (1.53 per iteration) while inserting 1689
images. The running time depends on the size of the graph,
stars broken and the underlying similarity distribution for the
data set. Total insertion time ranged from 0.24sec to 13.44sec
yielding a small average insertion time of less than 10msec,
making the approach practical for online operation.

Figure 10 plots the number of clusters and aggregate stars
broken during each insertion iteration. Overall, the number
of clusters increase over time as images are incrementally
added. The cluster count grows rapidly as the robot begins
exploring the environment. Over time, the clusters capture
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Fig. 10: Number of clusters and aggregate number of stars
broken during insertion iterations for (a) New College and
(b) City Centre data sets.

the topical modes in the visual data and hence the growth
rate shows a decline. Significant periods are observed when
perceived images are added to existing clusters without
increasing the total count and are interspersed with occasions
when the count marginally increases or decreases when clus-
ters are refined due to new vertices. The graph for a run with
a lower threshold shows a more prominent saturation effect
and always lies below the graph with a higher threshold.

Figure 11 plots the running time components for the City
Center data set with σ = 0.6. The topic proportion inference
time varies with the number of words in the scene and was on
average 10.6msec per scene. For each vertex to be inserted
the adjacency list is determined by computing its similarity
to all existing nodes in the graph. The similarity computation
time grows linearly with number of vertices and did not
exceed 12msec during the experiment. The overall running
time is dominated by the clustering algorithm and is low
for most insertions (under 30msec). A few large peaks are
observed during insertions when a large number of stars are
re-arranged.

Figure 12 highlights the advantage of topic space represen-
tation over a basic bag-of-words representation. The image
pair was taken during two visits to the same location. The
second image shows a large number of features appearing on
a bicycle which was absent during first visit. These images
were found to be in the same clusters using the topic model
representation (σ = 0.5) and in different clusters using
visual words representation (even for a threshold as low as
σ = 0.05). Since, the bag-of-words representation considers
words independently, a large number of features observed



TABLE I: Statistics for online insertion with varying thresholds (topics, T = 50).

New College Data set City Center Data set
Threshold σ = 0.5 σ = 0.6 σ = 0.7 σ = 0.8 σ = 0.5 σ = 0.6 σ = 0.7 σ = 0.8

Number of clusters 12 26 71 328 14 30 98 454
Number of edges (x105) 3.96 1.87 0.69 0.20 7.22 3.54 1.20 0.26

Insertion time/iter (msec) 4.12 9.92 0.95 0.17 5.19 5.53 4.59 0.27
Total insertion time (sec) 5.59 13.44 1.28 0.24 8.74 9.31 7.74 0.45

Avg. stars broken/iter 0.07 0.52 0.69 0.70 0.06 0.44 1.53 0.78
Total stars broken 100 707 935 954 112 749 2579 1309
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Fig. 11: Topic inference, similarity matrix computation time
(sec) during insertion (left) and insertion time, total running
time plots (right) for the City Center data set, σ = 0.6.
Running time is primarily determined by the online insertion
operation peaks are recorded in iterations when a large
number of stars are broken. Note the scale in both graphs.

Fig. 12: Image pair captured while revisiting a location
which was assigned to the same clusters using topic model
representation and different clusters with the bag-of-visual
words representation.

on the cycle makes the image pair highly dissimilar. As a
contrast, employing the topic representation probabilistically
captures co-occurring features and maps both images to
common topics, assigning images as highly similar and
consequently to the same clusters.

VI. FUTURE WORK

Future research will focus on scaling the algorithm to larger
data sets and online adaptation to incoming data. While
summarizing large topological maps [4] a major bottleneck
is the adjacency computation for an inserted image using
similarity to all previous images. We can approximate by
comparing the cosine distance of an incoming image with
only the cluster centers and using Equation 2 to infer the
expected similarity to satellite vertices. thereby discarding
clusters whose centers are highly dissimilar. Presently, visual
topics are learnt a-priori from an image collection. We would
like to adapt topics using online topic models [9] during
silent periods where the robot is not collecting new imagery.

VII. CONCLUSIONS

In this paper we demonstrated an online incremental
approach for generating visual summaries of a robot’s
workspace. We employed a topic vector space representa-
tion for images and an efficient graph-based star clustering
algorithm for online organization into thematic clusters form-
ing a compact summary for the robot’s visual experience.
Importantly, the thematic organization improves with new
data collected by the robot resulting in an ever improving
workspace summary.
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