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Abstract— In this paper we investigate the effectiveness of
SURF features for visual terrain classification for outdoor flying
robots. A quadrocopter fitted with a single camera is flown
over different terrains to take images of the ground below.
Each image is divided into a grid and SURF features are
calculated at grid intersections. A classifier is then used to learn
to differentiate between different terrain types. Classification
results of the SURF descriptor are compared with results from
other texture descriptors like Local Binary Patterns and Local
Ternary Patterns. Six different terrain types are considered in
this approach. Random forests are used for classification on
each descriptor. It is shown that SURF features perform better
than other descriptors at higher resolutions.

I. INTRODUCTION

A. Motivation

For outdoor robots, it is very useful to know about ground
surfaces for many purposes. Employed for a variety of
outdoor assignments, such as rescue missions or surveil-
lance operations, a flying robot should be able to recognize
ground surfaces for successful completion of several outdoor
tasks. Terrain classification can be performed by a driving
robot [14], but it may not easily reach all areas and some
areas may be hazardous for a driving robot. A flying robot
is more appropriate for this purpose, since it can fly over
almost any area and is not harmed by ground hazards.
The classification data gives important information about
possible places to land, it can be used to guide a driving
robot along save paths, or it can be stored in a map for
later use of robots or humans. A robot can rely on the
environment’s geometry at short and long range acquired
using either LADAR sensors [22] or stereo cameras [1] for
surface analysis. However, terrain classification based solely
on geometrical reasoning gives rise to ambiguities which
cannot be resolved in some situations: For example, tall grass
and a small bush may have similar geometrical features.
Stereo cameras only yield little information at long range.
This information, however, is important for generating maps
of the environment or to help navigation on ground.

Hence, in this paper, we consider another type of terrain
classification which relies on texture descriptors acquired
from monocular cameras. Compared to geometrical features,
these texture features provide meaningful information about
the ground surface even at long-range distances. We extract
visual features from image patches as in [7], [13] which are
periodically sampled from a grid drawn across the acquired
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image. We apply a Random Forests based approach on the
extracted visual descriptors to solve the problem of terrain
classification, i.e., after learning a model which establishes
the relation between a visual feature and its corresponding
terrain class, this model is then used to predict the ground
surface of a respective visual clue. We perform terrain
classification on a patch-wise basis rather than on a pixel-
wise basis because the latter produces some noisy estimations
which complicate the recognition of homogeneous ground
surfaces [6].

The main motivation of our paper is to find out an
excellent texture descriptor for representing different terrain
types on a flying robot. Some approaches are present in
literature, yet it remains unclear which approach is suited
best for an application on a real outdoor robot in terms of
prediction accuracy. Our data originates from a real robot
flight whose camera images contain artifacts such as noise
and motion blur. In addition to Local Binary Patterns [17], we
investigate two further texture descriptors, the Local Ternary
Patterns descriptor (LTP) [21] and the SURF descriptor [2],
which, to our knowledge, have not been applied to the
domain of terrain identification for flying robots before.

B. Related Work

Hudjakov et al. [11] used an artificial neural network to
classify terrain from static aerial images, not from a moving
UAV. Patterns of 29 × 29 pixel size were taken from these
images and fed into a big neural network containing three
hidden layers, to be classified either as houses, roads, grass
or debris. This approach does not extract any features, rather
processes raw patches of the image. Sofman et al. [20] used
camera and laser range data to classify terrain from a UAV
into road, grass, tree, and building areas. Laser scanners are
generally much more expensive than cameras and have heavy
resource consumption especially when they return reflectance
data, thus requiring heavy duty UAVs.

Many authors have addressed the problem of representing
texture information in terms of texton-based approaches [23],
co-occurrence matrices [10], Local Binary Patterns (LBP)
[17] and Markov modeling [16], [24] to name a few. Our
dataset differ from the ones included in the Mcgill Calibrated
Colour Image Database or Brodatz dataset [5]. There, the im-
ages have been captured under controlled conditions lacking
dark shadows and overexposure. Note that these sources of
noise are often present in images taken outdoors. A mobile
phone mounted on a quadrocopter is used in [8] to perform
visual localization using GPS data as ground truth. [12] used
different visual descriptors to classify six different terrain



Fig. 1. Flying robot used for experiments

types, but on a driving robot. They obtain good results, but
no similarly good approach has been tested for flying robots.

The remainder of this paper is organized as follows: In
Sect. II, we provide details of our experiments. Sect. III
summarizes the adopted techniques for representing acquired
terrain patches in terms of meaningful texture descriptors.
These texture descriptors constitute the basis on which
the terrain classifier works. Results of our experiments are
presented and discussed in Sect. V. Finally, Sect. VI gives
conclusions.

II. EXPERIMENTAL SETUP

A. The UAV Platform

The images were acquired using an AscTec X3D-BL Hum-
mingbird quadrocopter which has a diameter of 53 cm and
weighs 0.5 kg. It has been equipped with a PointGrey FireFly
USB color camera with VGA resolution and a Gumstix Overo
Fire single-board computer with a 600 MHz ARM processor.
Pictures were taken during manually controlled flight with
a framerate of 1 Hz and stored on a MicroSD card for later
offline processing.

By varying the speed of the four motors, the aircraft can
tilt, roll, yaw and change its altitude. The quadrotor and
its peripheral devices are powered by a 2000 mAh lithium-
polymer battery and allow a flight time of up to 15 minutes,
depending on the flight maneuvers. The X3D-BL Humming-
bird platform comes with a circuit board, including two
60 Mhz 32 bit ARM microcontrollers, a three-axis gyroscope,
an accelerometer, a compass module, a GPS sensor and
pressure sensor.

B. Terrain Types

We flew the robot outdoors in our detached campus in
the “Sand“ area at Tübingen and observed the terrain types
below the robot through the camera. The outdoor area of
the campus consists of roads, meadows, bushes and some
parking areas covered with gravel or tiles as shown in Fig 2.

Fig. 2. Campus area for experiments

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Images of various terrain types: (a) grass, (b) asphalt, (c) gravel,
(d) big-tiles (left), (e) small-tiles and (f) bushes

We were able to identify six different classes: asphalt, gravel,
grass, bushes, big-tiles and small-tiles. The robot was flown
at varying heights between 1m to 5m. Images were captured
at a resolution of 640× 480.

While flying in the campus we found that all terrain types
contained many different features depending on the location
and time at which the pictures were acquired. Figure 3 shows
different terrain types to indicate the artifacts introduced
under different scenarios. For example, Fig. 3(a) shows an
image of the grass terrain type along with small plants and
their flowers. Figure 3(b) shows the asphalt terrain type with
a line formed from a recent construction. In Fig. 3(c) the



Fig. 4. Difference of scale for grass

Fig. 5. An image and the corresponding ground truth containing three
terrain types: bushes, grass, asphalt

gravel terrain type is depicted which contains a lot of soil as
well. Figure 3(d) shows a sample image from the big-tiles
terrain type on the left side along with some other terrains
on the right. Similarly, Fig. 3(e) shows an image from the
small-tiles terrain type. Finally Fig. 3(f) shows one type of
bush that we observed.

Figure 4 shows the grass terrain type at two different
heights of the quadrocopter. The image on the left is taken
at a height of about 1m, whereas the image on the right
is taken at several meters height. Both of these scenarios
were included in the dataset for all terrain types. Also note
that under similar conditions, color based descriptors can
misjudge the shaded and open parts of the same terrain type.
Color will only accurately distinguish grass and bushes from
other terrain types as is obvious from the sample terrain
images, but not within similarly colored terrain types.

All images are characterized by the presence of not only
one but multiple terrain types. These images were labeled
manually to generate training images for each class. Almost
all of the images contained diagonal or irregular boundaries
between two terrain types. Hence many images contained
multiple terrain types. Note, that this interferes with the
terrain descriptors which are based on a rectangular grid and
hence results in a decrease in classification accuracy. Images
containing blur were not filtered out, except in extreme cases
where the blur artifacts were too dominant.

Ground truth was generated by labelling the images based
on the terrain type. We chose different labelling colors for
each terrain type. When visual descriptors for a patch of the
image were generated, the corresponding patch in the ground
truth image was observed to find out the current terrain type.
If the patch contained more that 40 % of a specific terrain
type, the patch was labelled with that terrain type for training
and testing. So the images were not clipped and many images
had multiple terrain types. Figure 5 shows an image with
multiple terrains and the corresponding ground truth image.

In our approach we divide each image in a grid and use the
generated patches or sub-windows to calculate the descrip-
tors. Each image patch is then classified individually. For our
experiments we tried different grid sizes for each descriptor
to determine the best descriptor for each resolution. The
patch size was varied between 10×10 to 100×100. Note that
high resolution means that the image is divided into more
patches, meaning that each grid patch is very small and so we
get a lot of patches. For example, a 640×480 image divided
into a 20 × 20 grid gives 32 × 24 = 768 patches. On the
other hand, low resolution means that the image is divided
into lesser number of patches and that the size of each patch
is large. So in this case, a 640× 480 image divided into an
80× 80 grid gives just 8× 6 = 48 patches.

At a resolution of 10 × 10, each terrain type had about
30 thousand sample points. At 100× 100 resolution, we had
290 sample points for most of the descriptors.

III. TEXTURE DESCRIPTORS

A. SURF

Speeded Up Robust Features (SURF) [2] are a modifi-
cation of the famous SIFT features .In this paper, we used
SURF features for a new application: texture classification.
SURF is used to detect interest points in a grayscale image
and represent them using a 64- or 128-dimensional feature
vector. In SURF, first interest points are detected across the
image using the determinant of the Hessian matrix. We,
however, do not use the key-point extraction capabilities
of SURF in our application. This is because the interest
points detected by SURF are usually concentrated around
areas containing sharp gradients, which are likely not present
within most homogeneous terrain patches. Instead we fix the
interest point locations and scales from which the SURF
descriptors are determined. This renders our approach much
faster. The interest points are calculated on the intersections
of the grid lines that we draw across the image.

The computed SURF descriptor describes how the pixel
intensities are distributed within a scale dependent neighbor-
hood of each fixed interest point. Haar wavelets are used to
increase robustness and speed.First, a square window of size
20σ is constructed around each interest point, where σ is the
scale of the descriptor. The descriptor window is divided into
4 × 4 regular subregions. Within each resulting subregion,
Haar wavelets of size 2σ are calculated for 25 regularly
distributed sample points. If x and y wavelet responses are
referred by dx and dy respectively, then for the 25 sample
points

vsubregion =
[∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|

]
are collected. Thus, each subregion contributes four val-
ues to the descriptor vector resulting in a final vector of
length 64 (4× 4× 4).

In our approach, 64-dimensional Upright-SURF (U-
SURF) descriptors have been used, where the rotation invari-
ance factor is removed. We don’t need rotation invariance,



since the robot flies over the terrain in multiple directions
and thus captures the terrain at multiple angles. U-SURF is
still rotation invariant up to +/- 15 degrees. Furthermore, we
consider a single scale for descriptor extraction in the whole
image, which was determined experimentally using a grid-
search approach. We call this modified approach TSURF or
Terrain-SURF.

B. Local Binary Patterns

Local Binary Patterns (LBP) [17] are very simple, yet
powerful texture descriptors. A 3 × 3 window is placed
over each pixel of a grayscale image and the neighbors are
thresholded based on the center pixel. Then the thresholded
neighbors are concatenated in any direction to create a binary
code which defines the texture at the center pixel.

We divide the image into a grid of patches and calculate
a histogram of binary patterns of all pixels within a patch.
Thus each patch yields a histogram which is then used to
assign a terrain class to the respective patch. Since the 8-
bit binary pattern can have 256 possible values, we get a
histogram containing 256 dimensions for each patch.

Below is an example of a 3×3 pixel pattern of an image.

44 28 52
31 48 91
27 75 19

0 0 1
0 1
0 1 0

Binary Pattern = 00110100

C. Local Ternary Patterns

Local Ternary Patterns (LTP) [21] are a generalization of
Local Binary Patterns. A ternary pattern is calculated by
using a threshold k along with the value c of the center
pixel to threshold the neighboring pixels. The threshold is
applied as follows:

T =

 1 T ≥ (c+ k)
0 T < (c+ k) and T > (c− k)
−1 T ≤ (c− k)

where c is the intensity of the center pixel.
Instead of using a ternary code to represent the 3 × 3

matrix, the pattern is split into two separate matrices. The
first matrix contains the positive values from the ternary
pattern and the second contains the negative values. From
each matrix an LBP is determined resulting in two individual
matrices of LBP codes. Using these codes two separate
histograms are computed.

Here, we also divide the image into a grid of patches and
calculate histograms for each patch. The two histogram parts
are concatenated to form a histogram of 512 dimensions.

IV. CLASSIFIERS

We performed the classification task using several classi-
fiers. We used the machine learning software Weka [9] to
train and test these classifiers. The tested classifiers were
Random Forests, Support Vector Machine (SVM) using the
Sequential Minimal Optimization (SMO) training algorithm,
the Multilayer Perceptron (MLP), LIBLINEAR, J48 Deci-
sion Tree, Naı̈ve Bayes and k-Nearest Neighbour. From this

set, Random Forest gave the best overall performance. So
we only provide results of the Random Forest classifier due
to lack of space.

A. Random Forest

Decision Trees [19] have shown their applicability in var-
ious classification tasks [3]. Random forests [15], [18] try to
reduce their problem of over-fitting by injecting randomness
into the tree generation procedure and combining the output
of multiple randomized trees into a single classifier. The
trees are established by recursively bisecting the data set into
smaller subsets at each inner node Ri. As splitting criterion
the Gini-index is employed which is defined by:

IG(i) =

k∑
j=1

p̂ij(1− p̂ij),

where k is the number of classes to discriminate and p̂ij
denotes the probability of observing a measurement of class j
with respect to all instances provided for node Ri. At
each splitting step, the remaining data is separated into two
distinct subspaces or subnodes, Rc1 and Rc2 , using a random
feature subset.The splitting procedure is recursively adopted
until a maximum tree depth is reached. Random Forests
classifiers grow trees of maximum depth without performing
subsequent pruning stepsAfter tree generation, each leaf node
stores several instances along with their respective class
membership. The latter can be adopted to assess the posterior
distribution p(c = k∗|xi):

p(c = k∗|xi) = F ({t1, . . . , tN}, xi, k∗)

=
1

N
·

N∑
j=1

Nr + f(tj , xi, k
∗)

K ·Nr +
∑K

l=1 f(tj , xi, kl)
,

where f(tj , xi, kl) denotes the number of estimation exam-
ples which belong to class kl and which are assigned to the
same leaf as instance xi in tj . In this work the approaches
of [4] have been followed which suggest to choose the
estimation examples to be identical to the original set of
training examples. If an instance assigned to a specific leaf
node is not encountered during training, the inclusion of the
additional terms assign a non-zero value to the corresponding
probability.

During the recall phase, the test pattern traverses each
random tree until a leaf node is reached. The posterior dis-
tributions assigned to the respective nodes are then averaged
over all members of the ensemble. Finally, the class k∗ which
maximizes p(c = k∗|xi) is chosen to be the classification
result of the test pattern.

Using a larger number of trees reduces the generalization
error for random forests. However, this also increases the
run-time complexity of the classification process. Hence, a
compromise has to be found between accuracy and speed
by varying the number of trees. We found that in our case
50 trees gave adequate accuracy without a significant loss
in speed. We adopted a 10-fold cross-validation scheme to
verify the accuracy of the results.



Grid-size LBP LTP TSURF
10 33.6% 38.9% 99.6%
20 48.4% 55.7% 96.8%
30 59.4% 67.3% 88.7%
40 66.7% 73.6% 81.5%
50 71.0% 78.1% 76.6%
60 74.8% 80.3% 71.9%
70 77.3% 81.7% 71.2%
80 78.2% 83.3% 66.0%
90 79.6% 84.7% 67.7%
100 79.5% 84.4% 63.3%

TABLE I
CLASSIFICATION ACCURACY OF THE THREE DESCRIPTORS AT

DIFFERENT GRID-SIZES

Fig. 6. Graph of descriptor accuracies at different grid-sizes

V. RESULTS

We tested different classifiers on each descriptor and
obtained the true positive rate (TPR) of the entire dataset.
The TPR is the ratio of the correctly classified instances
to the total number of test patterns. Since Random Forests
performed the best, only those results are described here.
Table I presents accuracy results of the three approaches on
the six terrain types with 10-fold cross-validation.

Fig. 6 shows a plot of accuracies for visualization. Here it
is clear that, although at lower resolutions (less patches) the
texture classifiers such as Local Binary Patterns and Local
Ternary Patterns perform the best, at higher resolutions,
TSURF features produce much better results. At a grid-size
of 50× 50, TSURF lags the performance of the best texture
descriptor LTP by only 1.5 %. For higher resolutions, TSURF
performs better than LTP. At a grid-size of 10× 10, TSURF
has a performance of 99.6 %, whereas LTP only gives a
performance of 38.9 %.

It is to be noted that for grid-sizes lower than 40×40, the
performance of the LBP and LTP decreases sharply. This is

Fig. 7. Graph of ROC area under the curve at different grid-sizes

big- small-
gravel grass tiles bush tiles asphalt

gravel 6,497 62 29 103 87 44
grass 29 6,255 223 103 6 206
big-tiles 5 125 6,606 14 0 72
bush 16 13 7 6,750 35 1
small-tiles 20 7 1 11 6,781 2
asphalt 2 70 38 13 0 6,698

TABLE II
CONFUSION MATRIX FOR TSURF AT GRID SIZE 20× 20

due to the fact that such a small patch doesn’t include enough
neighborhood information for adequate feature description.

The ROC area is plotted in Fig. 7. This graph shows the
ROC area under the curve plotted for all grid sizes for the
three descriptors.

In terms of descriptor size, the TSURF descriptor is the
smallest descriptor consisting of only 64 dimensions. The
LTP descriptor has the longest descriptor consisting of a 512
dimensional vector. LBP is an intermediate length descriptor
with 256 dimensions. This has a big impact on training times
for the classifier.

For TSURF based classification, different scale levels (σ)
described in section III-A ranging from 2 to 20 were tried.
Higher values of this scale parameter for descriptor calcu-
lation close to 20 gave the best result in all of the cases.
For LTP-based classification, we also tried different values
for the threshold value k described in section III-C having
values between 2 and 20. It was observed that small values of
the threshold close to 5 gave better results. These parameters
were optimized by grid search.

Table II shows an example confusion matrix. This matrix
is resulted from the validation of TSURF descriptors on a
grid of 20 × 20 and a scale of 20. Here it is evident that



Grid-
size LBP LTP TSURF
10 79,156 109,123 37,981
20 12,830 19,364 6,025
30 4,544 7,038 2,090
40 2,328 3,794 990
50 1,217 1,763 464
60 891 1,219 336
70 504 713 148
80 451 643 154
90 291 427 92
100 185 260 46

TABLE III
TIME TAKEN IN SECONDS FOR CROSS-VALIDATION

there was some confusion between grass and big-tiles and
between grass and asphalt. Other than that, there was not
much difficulty.

The time taken for 10-fold cross-validation for all of the
image patches is described in Table III. These times are in
seconds and are for training and classification through the
random forests classifier used for validation. Here we can
observe that for all grid-sizes, TSURF takes the least amount
of time. The most amount of time is taken by LTP. This is
natural, since TSURF has the smallest descriptor vector as
described before.

VI. CONCLUSION

In this paper, we investigated the performance of different
image descriptors at varying resolutions in an attempt to
find the best descriptor for visual terrain classification on
outdoor flying robots. Many of the current texture classi-
fication approaches use sharp images containing a single
texture captured from a fixed camera angle under controlled
conditions. We used images from real flights of the robot
containing blurred images and consisting of multiple terrains.
Along with two texture-based descriptors, LBP and LTP, we
have tested another descriptor SURF. SURF is modified to
be calculated on a grid placed on the image. LBP and LTP
performed best at low resolutions only. LTP gave the best
low resolution performance, however, it has one of the largest
feature vectors. At higher resolutions TSURF performs much
better than the other two descriptors. In addition TSURF has
one of the smallest feature vectors and is fast to train. Hence,
we have demonstrated that visual terrain classification can be
performed at high resolution using TSURF.
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scale and rotation invariant texture classification with local binary
patterns. IEEE Transactions on Pattern Analysis Machine Intelligence,
24(7):971–987, 2002.

[18] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten
lines of code. In Proceedings of the Conference on Computer Vision
and Pattern Recognition, pages 1–8, 2007.

[19] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986.

[20] Boris Sofman, J. Andrew (Drew) Bagnell, Anthony(Tony) Stentz, and
Nicolas Vandapel. Terrain classification from aerial data to support
ground vehicle navigation. Technical Report CMU-RI-TR-05-39,
Robotics Institute, Pittsburgh, PA, January 2006.

[21] X. Tan and B. Triggs. Enhanced local texture feature sets for face
recognition under difficult lighting conditions. In Proceedings of
the 3rd international conference on Analysis and modeling of faces
and gestures (AMFG 07), pages 168–182, Berlin, Heidelberg, 2007.
Springer-Verlag.

[22] N. Vandapel, D. Huber, A. Kapuria, and M. Hebert. Natural terrain
classification using 3-d ladar data. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA 2004),
pages 5117–5122, New Orleans, LA, April 2004.

[23] M. Varma and A. Zisserman. A statistical approach to texture
classification from single images. International Journal of Computer
Vision, 62(1-2):61–81, 2005.

[24] P. Vernaza, B. Taskar, and D.D. Lee. Online, self-supervised terrain
classification via discriminatively trained submodular Markov random
fields. In IEEE International Conference on Robotics and Automation
(ICRA 2008), pages 2750–2757, 2008.


