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Abstract
Previously we showed how delay communication between globally coupled self-propelled agents
causes new spatio-temporal patterns to arise when the delay coupling is fixed among all agents
[1]. In this paper, we show how discrete, randomly distributed delays affect the dynamical
patterns. In particular, we investigate how the standard deviation of the time delay distribution
affects the stability of the different patterns as well as the switching probability between coherent
states.

I. INTRODUCTION
Numerous recent investigations have been devoted to the study of interacting multi-agent or
swarming systems in various natural and engineering fields of study. Investigations of
interacting systems have revealed the emergence of highly complex dynamic behaviors in
space and time which arise even though the dynamics of a single agent is quite simple [2]. In
particular, these multi-agent swarms can self-organize in complicated spatio-temporal
patterns that depend on the details of the inter-agent interactions. These investigations have
been motivated by and had an impact on many diverse biological systems such as bacterial
colonies, schooling fish, flocking birds, swarming locusts, ants, and pedestrians [3], [4], [5],
[6], [7]. In this paper, we are interested in the application that biological analogies have on
the design of systems of autonomous, inter-communicating robotic systems [8], [9], [10],
[11] and mobile sensor networks [12].

There is great interest to design agent-interaction protocols to carry out robotic motion
planning, consensus and cooperative control, and spatio-temporal formation. One
methodology is to combine inter-agent potentials with external ones in order to achieve
multi-agent cooperative motion in a manner that is not too sensitive with respect the number
of agents. Some important applications making use of scalable numbers of agents are:
obstacle avoidance [10], boundary tracking [13], [14], environmental sensing [12], [15],
decentralized target tracking [16], environmental consensus estimation [12], [17] and task
allocation [18].
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Authors have employed very diverse approaches in the study of multi-agent systems. Some
authors have described the swarms at the individual level, writing their models in terms of
ordinary differential equations (ODEs) or delay differential equations (DDEs) to describe
their trajectories [19], [20], [9]. The addition of noise on the swarm’s dynamics introduces
even richer behavior, such as noise-induced transitions between different coherent patterns
[2], [1]. The study of noisy swarm dynamics has benefited from tools from statistical
physics applied to both first and second order phase transitions that have been found in the
formation of coherent states [21].

One important aspect of the understanding and design of space-time behavior in
communicating robotic systems is that of time delay. Time delay arises in latent
communication between agents, as well as actuation lag times due to inertia. Time delays
can have interesting and surprising dynamical consequences in a system, such as large-scale
synchronization [22], [23], [24], and have been used successfully for control purposes [25],
[26]. Many of the initial time-delay studies focused on the case of one or a few discrete time
delays. Recently, more complex situations have been considered such as the case of having
several [27] and random time-delays [28], [29]. Another interesting case is that of
distributed time delays, i.e. when the dynamics of the system depends on a continuous
interval in its past instead of on a discrete instant [30].

In the case of swarming systems in stochastic environments, it has been observed that the
introduction of a discrete communication time delay induces a transition from one spatio-
temporal pattern to another as the time delay passes a certain threshold [1]. It was shown in
[1] how the complex interplay exists between the attractive coupling and the time delay in
the transitions between different spatio-temporal patterns [31], [32]. Time delays in robotic
systems have been also studied in the contexts of consensus estimation [17] and task
allocation [18]; in the latter, the time delays originate from the period of time required to
switch between different tasks.

In this paper, we consider a swarming model with discrete, randomly distributed time
delays. We explicitly show how a distribution of delay times perturb the dynamics from the
single discrete case delay case analytically. We illustrate the dynamical effects of delay
distributions with varying width and show that the system is bistable, and very sensitive to
choice of initial starting conditions.

II. Swarm Model
We investigate the dynamics of a two-dimensional system of N identical self-propelling
agents that are attracted to each other in a symmetric manner. We consider the attraction
between agents to occur in a time-delayed fashion, due to the finite communication speeds
and information-processing times. Specifically, we focus on the situation in which the time-
delay is nonuniform across agents: there is one time delay for every pair of agents τij(= τji),
for particles i and j. The time delays τij’s are time-independent and are drawn independently
from a random distribution ρτ(τ). The swarm dynamics are described by the following
governing equations:

(1a)

(1b)
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for i = 1,2…, N. The position and velocity of the ith agent at time t are denoted by ri and vi,
respectively. Each agent has self-propulsion and frictional drag forces given by the
expression term (1 − |vi|2) vi. The coupling constant a measures the strength of the attraction
between agents and the communication time delay between particles i and j is given by τij.
Note that in the absence of coupling agents tend to move in a straight line with unit speed as
time tends to infinity.

III. Mean Field Approximation
We carry out a mean field approximation of the swarming system by switching to particle
coordinates relative to the center of mass and disregarding the noise terms. The center of
mass of the swarming system is given by

(2)

We can decompose the position of each particle into

(3)

where we’ll have

(4)

Inserting Eq. (3) into the second order system equivalent to Eq. (1) and simplifying we get

(5)

Summing Eq. (5) over i and using Eq. (4), we get

(6)

We now make some approximations on the terms with the double sums. For the
displacements from the center of mass, we have

(7)
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since  by Eq. (4). In passing from the discrete to the continuous averaging

above, we argue as follows. The expression  is the average of δrj(t) at
the N − 1 times t − τij. Since N ≫ 1 and the times τij are distributed with density ρτ(τ), this

is approximately equal to .

Similarly,

(8)

In a purely heuristic manner, we neglect all fluctuation terms δrj(t) in the dynamics of the
center of mass and obtain the mean field approximation:

(9)

where we approximated , since we are considering large numbers of agents.

IV. Bifurcations in the Mean Field Equation
The behavior of the system in the mean field approximation in different regions of
parameter space may be better understood by using bifurcation analysis. This mathematical
technique will allow us to show how the parameter plane of coupling constant a and mean
time delay μτ is divided into regions with different dynamical behaviors.

First we show that Eq. (9) has a uniformly translating solution R(t) = R0 + V0 · t, where R0
and V0 are constant, two-dimensional vectors. Inserting the uniformly translating state into
Eq. (9), we get

(10)

since . Hence, the speed |V0| of the uniformly translating state must satisfy

(11)

where μτ is the mean of the ρτ distribution. We note that the direction of motion and starting
point R0 are arbitrary.

The other state of interest is the stationary state R(t) = R0, for an arbitrary constant vector
R0. In the two-parameter space (a, μτ), the hyperbola aμτ= 1 is in fact a pitchfork bifurcation
line on which the uniformly translating states are born from the stationary state.

The linear stability of the stationary state is determined by the solutions to the characteristic
equation of Eq. (9):

(12)

and so involves the Laplace transform of the distribution ρτ.
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In our numerical simulations of system (1), we considered a truncated Gaussian distribution:

(13)

where  is the normalization constant. Note that because of the truncation, τ0 and τ1 are
only approximately equal to the mean and standard deviation of ρτ and  is only

approximately .

We approximate the Laplace transform of the truncated Gaussian distribution by extending

the integration range to the whole real line and taking . In addition, we
approximate the mean and standard deviation of ρτ as μτ ≈ τ0 and στ ≈ τ1, respectively. The
result is

(14)

We use the above approximation to the Laplace transform of ρτ to search for Hopf
bifurcation curves in the (a, μτ) plane, by taking λ = iω in the characteristic equation (12).
The equation  (iω) = 0 is equivalent to:

(15)

from which we obtain the Hopf curves parameterized by ω:

(16a)

(16b)

In the above expression for μτH(ω), the branch of tan in (0, π) should be used, since the
complex number on the left hand side of Eq. (15) is always on the top half plane. This
family of Hopf curves labeled by n, together with the pitchfork bifurcation curve aμτ = 1 are
shown in Figure 1, for various values of στ.

When στ = 0, the system exhibits a degenerate point at a = 1/2, μτ = 2 (Fig. 1(a)), where the
Hopf bifurcation frequency becomes zero. This is similar, but not equivalent to a Bogdanov-
Takens bifurcation as is known from previous work [31], [32]. Since the point on the Hopf
curve in a two-parameter bifurcation plane occurs when the Hopf frequency becomes zero,
we define this point as a Zero Frequency Hopf (ZFH) point.

For στ > 0, this ZFH point shifts and a second ZFH point appears at a → ∞ and μτ → 0. The

location of the two ZFH points in the (a, μτ), plane is given by ( ), where

.

When στ = 0, the behavior of the mean field in the vicinity of the ZFH point is relatively
well understood [32], [31] and is as follows (see Fig. 1(a)). In the region between the
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pitchfork and the first member of the Hopf family, the stationary state is stable. A simulation
of the full system (1) with parameters in this area reveals that indeed the center of mass of
the agents comes to rest as time progresses and the particles spread themselves along a ring

with radius . Roughly half of the particles move clockwise and the other half
counterclockwise. Along the first Hopf curve, a stable limit cycle is born and the center of
mass begins to oscillate periodically on a circular orbit. Below the pitchfork bifurcation
curve aμτ = 1, the translating state is stable. Finally, we mention that there is a region of
bistability in the parameter region above the ZFH point (1/2, 2) between the pitchfork curve

aμτ = 1 and the curve  (not shown), where the center of mass can either translate or

rotate. On the curve  there is a global bifurcation where the radius of the orbit
diverges and the limit cycle disappears.

The above discussion helps us understand the bifurcation planes in Figs. 1(b) through 1(d).
Most significantly, we see that the parameter region where the stationary state is stable
decreases in size as the width of the time delay distribution widens. Hence the system has a
higher tendency to behave in an oscillatory manner for wider time delay distributions. This
effect has been corroborated in numerical simulations (results not shown).

V. Numerical Simulations
We analyze the dynamics of system (1) by solving the system of DDEs numerically. We use
Heun’s method together with quadratic Lagrange interpolation to evaluate the time-delayed
terms of Eqs. (1). Overall, the numerical method is second order with respect to the step-size
Δt. For all simulations we take the agents to be uniformly distributed in a random fashion
within the unit box 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and each particle is initially at rest vj = 0.
Moreover, since we are interested in investigating the time-asymptotic behavior, for all
numerical experiments the time of integration is long enough to allow transients to decay.

In [31], [32] it was shown that for the parameter set a = 2, τ = 2 (fixed delay) that the system
exhibited a bistable set of solutions. In the rotating state solution, all particles collapse to a
point and that cluster of particles rotates around a fixed center in a circular orbit. The other
possible stable solution is a ring state, in which all particles distribute themselves uniformly
along a circle and orbit around its center at unit speed. Interestingly, not all particles traverse
the ring in the same direction; roughly half move clockwise and half move anti-clockwise.
We will now examine these two states, but with random delays given by the truncated
Gaussian distribution in Eq. (13).

Figure 2 shows the two final particle distributions after transients in a simulation with an
initial state of N = 150 randomly placed particles, and where μτ = 2 and στ = 0.15. In this
case, depending upon the random selection of delays, either stable solution (ring or rotating)
is possible. To understand the effects of increasing the standard deviation of the random
delays, we use a Monte Carlo method. At 100 different values of στ in the range 0 ≤ στ ≤
0.5, we generate random time delays from the distribution in Eq. (13), we then simulate the
system starting from the same initial condition and we determine what state is acquired by
the swarm in the long-time limit. To determine this, we first measure the time-averaged
distance of particle j to the center of mass over the interval (t1, t2):

(17)

where the size of the interval (t1, t2) is long enough to include several periods of oscillation.
The ensemble average of Eq. (17) is then
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(18)

A value  will indicate1 that the system has converged to the ring state,

while  shows that the rotating state has been adopted instead2.

Figure 3(a) demonstrates the effect of increasing στ on the final state. The blue circles show
that for στ small, this initial condition converges to the rotating state. However, for στ ≳ 0.2
the same initial collection of particles will converge to the ring state with high probability.
In between, there is a transition region where both states are commonly observed; the state
that occurs depends on the random choice of time delays. The black dashed lines of 3(a)
show two simulations, one which starts near the rotating state (the lower curve), and one
which starts near the ring state (the upper curve) as στ is increased. These curves
demonstrate the stability of these steady states, and the effect of random delays near these
states.

Figure 3(b) shows the conditional probability of ending up in the ring state as a function of
στ. As expected, for this choice of initial conditions, for στ small enough, there is zero
probability of leaving the rotating state; however, as σ τ is increased, the probability
increases to one.

The results of these numerical studies strongly suggest that even though there is bi-stability
between the ring and the rotating states, the size of their respective basins of attraction is
changing dramatically as the standard deviation στ increases.

VI. Discussion
In this paper we studied the dynamics of a self-propelling swarm with time-delayed inter-
agent attraction. In contrast to the previously considered case of uniform time delay across
agents, we considered the situation in which the time delay between every pair of agents is
drawn randomly from a distribution ρτ.

Using a mean-field model of the swarm, we showed how the two parameter bifurcation
plane of coupling strength and mean time delay changes with respect to the case in which all
time delays are equal. The full implications of these bifurcation results are the subject of our
ongoing work. In particular, it is unclear what the stable solutions are. Nevertheless, the
dramatic changes seen in the two parameter bifurcation plane as the standard deviation στ
increases suggest that the basins of attraction of each attractor undergo big changes as well.

Our numerical experiments show that the swarm displays bi-stable behavior between the
ring and rotating states, at the parameters considered. Interestingly, however, our work
suggests that the basin of attraction of the ring state greatly expands as the distribution of
time-delays ρτ widens. Thus, in a sense, widening the distribution of time-delays stabilizes
the stationary state of the swarm center of mass.

Even though in our model the attractive force among agents is linear, we believe this work is
useful since it represents a first approximation for other, more general forms of attractive
interaction. Here, we have limited our focus to the case where the delays between agents are

1When the delays are uniform, the ring state has a radius of  [32].
2This is true for the range of values of στ considered here.
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symmetric and constant. However, one important generalization of this system involves
incorporating time dependent delays, including those which vary as a function of the
distance between the two agents. This particular refinement of our model is the subject of
ongoing work and beyond the scope of the current paper.

Finally, although we did not consider repulsion between agents, preliminary research leads
us to believe that the patterns observed in this investigation persist when the characteristic
repulsion strength between robots is small compared to global attraction parameters. For
these reasons, our results indicate how to exploit time-delayed actuation when designing
swarm robotic systems with desired tasks and functionalities.
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VII. Appendix Video Description
The purpose of this research is to investigate the effects of randomized communication delay
on emerging patterns in swarming dynamics. This short video captures the transition
between two different stable patterns for a swarm as a function of the standard distribution
of the delays.

The two coordinate axes in the video show a scatter plot of the positions of the particles
animated in time. The initial positions are identically randomly distributed particles in the
unit box. The temporal state of the swarm is updated in time using a numerical scheme
called Heun’s Method, and a snapshot is captured at every discrete time interval. Here, the
left coordinate axis uses a standard deviation of the delays στ = 0.1 while the right axis uses
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a standard deviation of στ = 0.3. The mean delay for each simulation is set to be μτ = 2, and
the number of particles for both is N = 50. The vectors at each particle give the velocity
associated with that particle. The two simulations are run side by side to demonstrate the
dynamics involved in converging to the “rotating” final state on the left, and the “ring” final
state on the right. The video demonstrates the dynamics over the time interval from t = 0 to t
= 45, and so includes transients.
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Fig. 1.
Hopf (blue) and pitchfork (red) branches in a and μτ space. The standard deviations of the
time-delay distribution ρτ for the panels (a) through (d) are 0, 0.2, 0.4 and 0.6, respectively.
Note the change of scale in the abscissae.
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Fig. 2.
Two stable attractors for the swarm dynamics. Here a = 2, μτ = 2, and στ = 0.15. The
number of particles is set to be N = 150. The final state shown for both simulations is t =
300. Panel (a) depicts the rotating state at three snapshots at times t =297.6, 298.8, 300, in
red, green and blue, respectively. Panel (b) depicts the ring state.
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Fig. 3.
As στ is increased, we see a bifurcation from the stable rotating state. Panel (a) captures the
transition from the rotating state to the ring state as the standard deviation of the random
delay increases. Panel (b) shows the probability of converging to the ring state for a given στ
of the delays. These results were compiled using a Monte Carlo simulation with 100 random
distributions of delays for 100 uniformly-spaced values of στ and for N = 50 particles. See
accompanying online movie and Appendix to see the agents converge to each stable pattern.
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