
A Real-Time Motion Planner with Trajectory Optimization for
Autonomous Vehicles

Wenda Xu, Junqing Wei, John M. Dolan, Huijing Zhao and Hongbin Zha

Abstract— In this paper, an efficient real-time autonomous
driving motion planner with trajectory optimization is pro-
posed. The planner first discretizes the plan space and searches
for the best trajectory based on a set of cost functions. Then
an iterative optimization is applied to both the path and speed
of the resultant trajectory. The post-optimization is of low
computational complexity and is able to converge to a higher-
quality solution within a few iterations. Compared with the
planner without optimization, this framework can reduce the
planning time by 52% and improve the trajectory quality. The
proposed motion planner is implemented and tested both in
simulation and on a real autonomous vehicle in three different
scenarios. Experiments show that the planner outputs high-
quality trajectories and performs intelligent driving behaviors.

I. INTRODUCTION

A. Background

In the last few decades, researchers have put considerable
effort into autonomous driving. Autonomous vehicles have
great potential to improve the performance and safety of the
transportation system. They can also free people from the
task of driving, which could save commuters considerable
time daily. To achieve this objective without affecting exist-
ing human drivers on the road, autonomous vehicles need
to have human-acceptable driving performance. The planner
also needs to meet strict real-time requirements to react fast
enough in emergency situations. In summary, it is important,
but difficult, to develop a practical high-performance real-
time motion planner for on-road driving.

B. Related work

Autonomous driving Systems: The NAVLAB project at
Carnegie Mellon University (CMU) has built a series of
experimental platforms which are able to run autonomously
on freeways [1]. In 2007, the DARPA Urban Challenge
provided researchers a practical scenario in which to test the
latest sensors, computer technologies and artificial intelli-
gence algorithms [2]. Basic interaction between autonomous
vehicles and human-driven vehicles was proven in low-
density, low-speed traffic. Most planners in the competition

This work was supported by NSF Grant CNS1035813 and NSFC Grants
No.90920304 and No.60975061.

Wenda Xu, Huijing and Hongbin Zha are with School of Electronics
Engineering and Computer Science, Peking University, Beijing, China
{xuwenda, zhaohj, zha}@cis.pku.edu.cn

Junqing Wei is with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
junqingw@cmu.edu

John M. Dolan is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA jmd@cs.cmu.edu

were designed aggressively to win the race, rather than being
focused on the trajectory’s quality and human acceptance.

In recent years, commercial driving safety assistance sys-
tems such as adaptive cruise control and lane assist systems
have been widely used in high-end volume-produced cars.
These systems are helpful in reducing accidents caused by
distractions, drowsiness or driver error. However, they cannot
perform complex driving behavior such as dealing with
merging vehicles, circumventing other cars, or responding
intelligently to unexpected dynamic obstacles. Also, these
systems still need constant human supervision.

Trajectory generation: Trajectory generation for au-
tonomous vehicles in road scenarios needs to consider
three constraints: kinematic, dynamic, and road shape. More
specifically, the rate of change of curvature and acceleration
should be continuous in the commanded trajectory to make
sure the car can execute it. The paths should also conform
to the road shape.

Kelly and Nagy ([3], [4]) propose an inverse path genera-
tion method, using curvature polynomials to ensure continu-
ous rate of change of curvature. Based on Kelly and Nagy’s
method, McNaughton et al. ([5], [6]) present a planner that
first samples endpoints along the road and then connects
them using curvature polynomials to make all paths conform
to the road shape. After that, a set of trajectories is generated
by specifying different acceleration profiles for each path.
Paths generated in [6] can be tracked very well by an
autonomous vehicle. But because the acceleration profile is
not continuous, it is hard for the vehicle to follow the profile
accurately and smoothly.

Werling et al. [7] deal with this problem using an alterna-
tive method. They generate the lateral and longitudinal tra-
jectory using quintic polynomials versus time, which ensures
continuous acceleration. In addition, they use a Frenet Frame
referenced to the road center line to combine lateral and
longitudinal motion. This makes the trajectory longitudinal
coincide with the road shape. However, the curvature of
every point on each trajectory needs to be computed and
verified, which is computationally expensive. Additionally,
although the curvature is continuous, the sign of the first
derivative of curvature (moving direction of the steering
wheel) changes very frequently, which leads to jerky steering
wheel movement.

Search algorithm: After trajectories are generated, search
algorithms are often applied to find the optimal result.
Searches in state lattice planners are usually based on
heuristics (e.g. A* and ARA* [8]) or sampling (e.g. RRT
[9]). For heuristic-based algorithms, a good estimate of cost

Path Set

Velocity Set

Trajectory Set
The Best

Trajectory

Cost Function

Speed OptimizationPath Optimization

Fig. 1: Two-part trajectory planning framework.

from any vertex to the goal is essential. But the planning
problem for autonomous driving is complicated. Especially
when there are dynamic obstacles, it is very difficult to find
an appropriate heuristic that is suitable for all scenarios.

Some incremental replanning algorithms (e.g. D* Lite
[10]) are widely used in robotics navigation, but they only
work for typical planning problems with one fixed goal,
while in on-road scenarios the goal is changing all the time.
For sampling-based methods (e.g. RRT [9]) the results are
often not smooth enough for the car to execute.

In addition, because of the existence of dynamic obstacles,
time needs to be included in the search state space as an addi-
tional dimension. This makes the search space exponentially
increase, which leads to a low efficiency of the search-based
algorithm. Therefore, in this paper we apply a discretization
of the state space, then simply apply a straightforward and
fast exhaustive search.

Optimization method for planning: Dolgov et al. [11]
present a conjugate gradient method to smooth the prior
result, which is the path. However, the speed of the vehicle
is not planned or optimized. Therefore, this algorithm does
not work well in on-road environments, where speed is
very important for driving, especially dealing with dynamic
obstacles. Zucker et al. [12] propose a gradient optimization
method for motion planning to better avoid static obstacles.
However, their method also does not take the time dimension
or speed into account.

C. Contribution

Based on related work, a practical real-time motion plan-
ner is proposed in this paper. The planner has the following
features: trajectories generated by the planner are smooth
and continuous, and therefore kinematically feasible for the
vehicle to execute; the search for an optimal trajectory is
accelerated by efficient path and speed discretization; the
performance sacrificed by discretization is compensated by
a post-optimization process; the real-time performance is
improved by iteratively optimizating in both path and speed
space.

The algorithm framework is introduced in Section II. Sec-
tion II-A describes the trajectory generation method. A set of
cost functions that leads the planner to perform reasonable
and good driving behavior is introduced in Section II-B. The
iterative trajectory optimization mechanism is described and

evaluated in Section II-C and Section II-D. Implementation
details of the motion planner in a real autonomous vehicle
are given in Section III. Section IV focuses on motion
planner performance evaluation in both simulation and on-
road testing.

II. ALGORITHM FRAMEWORK

The framework of the proposed real-time motion planner
is shown in Fig. 1. It consists of two parts, trajectory planning
and trajectory optimization. In the first step, the path edges
are generated using the method described in [3]. Speed sets
are then generated for each path edge. After that, a set of cost
functions is applied to each trajectory and the best trajectory
is selected. The resultant trajectory is then passed to the
optimization module, where the path and speed are iteratively
optimized using a randomly-oriented simplex optimization
algorithm [13].

A. Trajectory generation

Path and speed edges are generated separately. Then, by
combining the path edges with the speed edges, a trajectory
set is obtained.

1) Path generation: Paths are generated by connecting
sampled endpoints using different kinds of curvature poly-
nomials. The sampling method in our planner is the same
as that in [5]. However, instead of cubic, quartic curvature
polynomials are used to ensure that the curvature change rate
at the start point of each planning cycle is continuous.

a) Endpoint sampling: To generate the vertices (end-
points) for each path, a sampling mechanism is implemented.
The function for the road center line is given as:

~r(`) = [xr(`) yr(`) θr(`) κr(`)] (1)

In (1), ` is the longitudinal offset, also called station.
We can define a point ~p(`, d) away from the road center
at a given longitudinal offset ` and lateral offset d as
~p(`, d) = [xp(`, d) yp(`, d) θp(`, d) κp(`, d)], where

xp(`, d) = xr(`) + d cos(θr(`) +
π
2)

yp(`, d) = yr(`) + d sin(θr(`) +
π
2)

θp(`, d) = θr(`)

κp(`, d) = (κr(`)
−1 − d)−1

(2)

Using (2), for each layer we sample Npath endpoints per-
pendicular to the center line.

b) Path model: Paths are generated by connecting: 1)
pairs of sampled endpoints; 2) endpoints and the current
vehicle pose. There are two kinds of path models used by
this motion planner: cubic and quartic curvature polynomials.
For cubic curvature polynomials, the curvature of the path is
a cubic polynomial function of arc length.

k(s) = γ0 + γ1s+ γ2s
2 + γ3s

3 (3)

So the problem becomes to find the parameters satisfying the
endpoint constraints. There are 5 parameters in the function:
γ0, γ1, γ2, γ3, and s. The corresponding five constraints are
relative x,y motion and orientation difference from the start

Fig. 2: Path set. The blue vehicle represents the current
vehicle pose, and grey vehicles represent sampled endpoints.
The red paths are quartic curvature polynomials and the
green paths are cubic ones.

point to the end point, the start point curvature and the end
point curvature. Following [3], we use a gradient descent
algorithm to solve this problem.

In the previous work [5], only cubic curvature polynomials
are used for common scenarios. This method works well
in any individual planning cycle, where the rate of change
of curvature is always continuous. However, a discontinuity
may occur at the junction point of two plan cycles. The
motion planner is replanning at a very high frequency. As a
result, the curvature of the actual planning result may be far
from smooth. Fig. 3 shows that a typical result using quartic
curvature polynomials (red solid line) is much smoother than
that using cubic polynomials (blue dashed line).

Hence, for the paths between the current vehicle pose
and endpoints, a new constraint needs to be added, i.e.,
the first derivative of curvature at the current vehicle pose
point. To satisfy this additional constraint, the polynomial
needs to be quartic rather than cubic. This improvement
leads to a smooth path even when we are doing frequent
replanning as shown in Fig. 2, in which red paths represent
quartic curvature polynomials and green paths are cubic
ones. However, quartic polynomials take longer to generate.
Therefore, to limit computation time, quartic polynomials are
only used for trajectory segments starting from the current
vehicle pose.

2) Speed generation: After the path edges are generated,
candidate speed profiles are built for each individual path.
Unlike many previous works, such as [5] and [14], that
use a forward method to generate speed profiles, our work
uses an inverse method. That is, the speed space is first
discretized, and then a polynomial is generated to satisfy

230 240 250 260 270 280 290

−0.01

0

0.01

0.02

0.03

0.04

s (m)

c
u
rv

a
tu

re
 (

m
−

1
)

cubic

quartic

Fig. 3: Quartic curvature polynomial (red solid) vs. cubic
curvature polynomial (blue dashed).

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

s (m)

s
p
e
e
d
 (

m
/s

)

Fig. 4: Speed set. The green points are sampled speeds, the
red curves are beyond the acceleration limit, and the grey
curves are valid ones.

the vertex constraints. Our method is also different from
the inverse method proposed in [15] and [7], which use
polynomial functions of time to generate speed profiles.
In the implementation, we use polynomial functions of arc
length, which is more consistent with our path generation
method. The polynomial equation is:

v(s) = ρ0 + ρ1s+ ρ2s
2 + ρ3s

3 (4)

Speed state is defined as Q = (s, v, a), where s is arc
length, v is speed, and a is acceleration. For each path,
we choose the start speed state Qinit = (s0, v0, a0) from
the start point of the path, and end speed state Qgoal =
(s1, v1, a1) from the end point of the path. In (4), there
are four unknown parameters ρ0, ρ1, ρ2 and ρ3, and the
corresponding four constraints are v0, a0, v1 and a1. For
all vertices, v0 and v1 are from corresponding discretized
vertices, and a0 and a1 are set to 0. The vehicle current state
(v0, a0) is special in that it is obtained from real vehicle
sensors. Denoting maximum and minimum speed as vmax
and vmin, respectively, and the number of discretized speeds
as Nspeed, the discretized speeds can be found as follows:

vi = vmin +
vmax − vmin
Nspeed − 1

i, i = 0, 1, . . . , nv − 1 (5)

By setting s0 = 0, the parameters can be obtained:

ρ0 = v0

ρ1 = a0

ρ2 = −2a0
s1
− a1
s1
− 3v0

s21
+

3v1
s21

ρ3 =
a0
s21

+
a1
s21

+
2v0
s31
− 2v1

s31

(6)

The discretization of speed and candidate speed profiles is
shown in Fig. 4, where the green points are sampled speeds,
the red curves are beyond the acceleration limit, and the grey
curves are valid ones. This speed generation method ensures
continuous acceleration.

B. Cost function set

For each trajectory, we define both static cost and dy-
namic cost to evaluate the safety, comfort, efficiency, energy
consumption and behavior. We extract n points from each

TABLE I: Static Costs

Cost Formula Physical Interpretation Impact

c` ` ` is path length efficiency

ck
n∑

i=0
|ki| ki is curvature comfort

cdk
n∑

i=0

∣∣∣k̇i∣∣∣ k̇i is rate of change of curvature comfort

co
n∑

i=0
|oi| oi is lateral offset with the closest

center line
behavior

csobs

n∑
i=0

si si is the transformed distance to
static obstacles (see (7))

safety

TABLE II: Dynamic Costs

Cost Formula Physical Interpretation Impact

ct t t is time duration of a trajectory efficiency

ce
n∑

i=0
v2i vi is speed energy

ca
n∑

i=0
a2i ai is acceleration comfort

cj
n∑

i=0
j2i ji is jerk (the rate of change of

acceleration)
comfort

cca
n∑

i=0
v2i ki cca is centripetal acceleration comfort

cdobs

n∑
i=0

di di is transformed distance to
dynamic obstacles (see (8))

safety

trajectory to represent the cost. The formulas for static and
dynamic costs are shown in Table I and Table II, respectively.

The static and dynamic obstacle cost csobs and cdobs are
also used to perform a collision check for each candidate
trajectory. Based on the method proposed by [16], we use
Mcir circles to cover the area of the vehicle. If the distance
from the circle to the obstacle is smaller than a threshold
dminAllowed, then the cost is infinite. Otherwise, the cost is
computed using the equation below, where λsobs and λdobs
are the bandwidth of exponential cost functions for static
and dynamic obstacles, respectively, and gj is the distance
between the obstacle and jth circle covering the car.

si =

Mcir∑
j=1

exp(− 1

λsobs
gj) (7)

di =

Mcir∑
j=1

exp(− 1

λdobs
gj) (8)

The total cost for one trajectory is the weighted sum of
all terms:

ctotal = w`c` + wkck + · · ·+ wcacca + wdobsc
d
obs (9)

C. Trajectory optimization

For most lattice planners, proper discretization is necessary
to ensure real-time performance. However, this affects the
optimality of the planning result. To make autonomous driv-
ing perform like human drivers, the optimality and quality
of the trajectory are important, so we seek to post-optimize
the trajectory to improve performance.

p1

Lateral offset

Heading offset

Curvature offset
p2

p3

p0

Fig. 5: Path optimization process. Relaxing lateral offset,
heading and curvature for in-between sampled endpoints
(p1 and p2), and generating new paths between the new
endpoints.

center line

history path

obstacle

original path

optimized path

Fig. 6: Result for path optimization.

A straightforward approach is to optimize the trajec-
tory path and speed simultaneously. However, this is time-
consuming for a real-time application. The computation
expense is O(opt(M +N)), where M is the number of path
parameters, N is the number of speed parameters, and opt()
is the computational complexity of the optimization algo-
rithm, which is usually O(N2). As the dimension increases,
it is also harder for the optimizer to find the global optimal
solution.

Therefore, we propose an iterative trajectory optimization
mechanism. Its computational complexity is O(opt(M)) +
O(opt(N)). If the trajectory found in the planning phase is
close to a real optimum, using this mechanism allows us to
converge to this real optimum in a few iterations.

1) Path optimization: The path discretization limits the
optimality of the path. For example, the lateral offset,
heading and curvature for the sampled endpoints are fixed
and have some relationship to the center line. Therefore,
relaxing these constraints (see Fig. 5) and generating new
paths between the new endpoints allows the trajectory quality
to be improved. Since the gradient for cost versus lateral
offset and heading is very hard to compute, a non-derivative
optimization algorithm, the Simplex algorithm [17], is used
for path optimization. As shown in Fig. 6, the path after path
optimization (red line) is smoother.

2) Speed optimization: The speed discretization and the
constraint of the acceleration at endpoints also limit the
optimality of the speed profile. Similar to path optimization,
parameters of the speed profile nodes are being optimized.
For the nodes that generate the current lowest-cost speed
profile, we optimize their values of speeds and accelerations.
Therefore, connecting the new nodes allows the speed profile
to remain smooth.

In this optimization, the speed changes at nodes will affect

0 5 10 15 20 25 30
5

5.5

6

6.5

7

7.5

s (m)

s
p
e
e
d
 (

m
/s

)

original speed

optimized speed

Fig. 7: Result for speed optimization.

the time of each point on the trajectory, which changes the
position of dynamic obstacles on the trajectory and prevents
the use of the gradient method. Therefore, the non-derivative
Simplex algorithm is used for speed optimization, too. The
speed optimization result is shown in Fig. 7. Because the
constraints for endpoints’ acceleration are relaxed, the speed
change is smoother and the amplitude of the speed at
endpoints are not disceitized any more.

D. Optimization performance evaluation

In this section, we analyze the performance of the pro-
posed iterative trajectory optimization algorithm. There are
two performance evaluation matrics: average trajectory qual-
ity Cave (represented by the cost defined in Section II-B),
and total planning time Ttotal, which is the sum of planning
time and optimization time. Table III shows the performance
comparison and the weights for static and dynamic costs
defined in Table IV. The tests are implemented on an x86
PC with Intel i5 760 (quad core 2.8GHz) and 4GB memory.

Tests #1 to #4 show the performance using different path
and speed discretization granularity, in which Npath and
Nspeed are the number of samples in each layer, amd Cstd
is the average cost of test #1. We can see that when the
granularity is finer (Npath or Nspeed is larger), the cost is
lower, which means the quality of trajectory is improved. But
at the same time, the planning time increases dramatically.

In tests #5 to #8, iterative optimization is applied with
1 to 4 iterations, respectively. The results show that, using
iterative optimization, within a few iterations, the trajectory
quality can be improved a lot more than by using finer
discretization. The optimization converges within 3 itera-
tions. The additional optimization time is proportional to the
number of iterations, which is more acceptable.

In test #9, instead of iteratively optimizing the path and
speed, we optimize them at the same time. The result shows
that the quality of trajectory is better than without opti-
mization. But it is not as efficient as iterative optimization.
That’s becasue this optimization is of higher computational
complexity O((M + N)2). The larger optimization space
with both speed and path in it also has many more local
optima, which are difficult for the optimzer to overcome.

In summary, experiments show that the proposed planner
with an iterative optimization framework is very promising.
It is able to generate a higher-quality trajectory within much
shorter time compared to alternative planning mechanisms or
configurations. Compared with non-optimization result from

TABLE III: Performance Comparison

Num Iteration Npath Nspeed Cave/Cstd Ttotal (ms)

#1 0 7 5 1.000 85.60
#2 0 11 5 0.949 233.00
#3 0 7 9 0.997 301.05
#4 0 11 9 0.937 888.20

#5 1 7 5 0.988 92.33
#6 2 7 5 0.856 108.21
#7 3 7 5 0.853 112.08
#8 4 7 5 0.853 136.13

#9 non-iterative 7 5 0.867 162.00

TABLE IV: Weights

Static costs Weight Dynamic costs Weight
wl 1 wt 10
wk 10 we 1
wdk 10 wa 0.1
wo 10 wj 0.1
ws

obs 0.01 wca 0.1
wd

obs 0.1

test #2, the iterative optimization result from test #7 is of
52% reduction in time and 10% improvement in quality. In
our implementation, we use the configuration of test #7 based
on the result from Table III. The planner is running at 8Hz.

III. SYSTEM IMPLEMENTATION

A. Interfacing with Autonomous Vehicle

An autonomous vehicle from Carnegie Mellon Univer-
sity’s autonomous driving laboratory was used to test the
motion planner. The vehicle is equipped with a high-fidelity
localization system. It also uses lidar and radar to perceive
the real-time surrounding environment. The vehicle’s lower-
level control is designed to perform high-accuracy trajectory
tracking. Therefore, the motion planner only needs to gen-
erate an executable trajectory with both a path and speed
profile.

The interface between planner and lower-level controller
is built so that during each plan cycle, the first partition of
the trajectory, which is 8-50 meters depending on the vehicle
speed, is sent. This gives the lower-level controller enough
look-ahead to perform a predictive control algorithm. It also
increases the reliability of the system, because the lower-level
controller always has a relatively long trajectory to execute,
even if the higher-level computer stops working for a few
cycles.

B. Robust replan mechanism

To react to a dynamically changing environment in the
real world, the motion planner needs to replan continually.
If the planner starts to plan from the current vehicle state,
then when the planning is finished, usually around 100
milliseconds later, the vehicle will be at a different position,
and the original plan will no longer be valid. To solve
this problem, [18] propose a PMP (partial motion planning)
scheme. In short, their approach is to plan from the future

(a)

30 40 50 60 70 80 90 100 110 120 130
3.5

4

4.5

5

5.5

6

6.5

7

s (m)

s
p

e
e

d
 (

m
/s

)

(b)

Fig. 8: Result for lane driving.

state. When the planner is running, the vehicle executes a
trajectory from the last plan cycle.

Based on [18], a queue in ascending order of arc length
is implemented to preserve the trajectory from the last plan
cycle. For every cycle, first a point Pclose with arc length
sc which is closest to the vehicle’s position is found in the
queue. Then the planner looks for point Pfuture with arc
length sf in the queue which is at a later position compared
to Pclose. The equation to calculate sf is:

sf = sc + vcurrtspan + 1
2amaxt

2
span (10)

where vcurr is the vehicle’s current speed, amax is the
maximum acceleration the vehicle can reach, and tspan is
the basic time span between the current time and the start
time of next replan, which should be longer than the replan
interval. This equation ensures the planning is finished before
its result is needed. Finally, the planner replans from Pfuture
and updates the trajectory queue using the latest planned
trajectory.

A special case is that when the vehicle is in manual driving
mode, instead of planning from a future position Pfuture,
it replans from its current state (position and speed). This
ensures that the vehicle always has a feasible trajectory
to execute when switching from manual to autonomous
mode, even when the vehicle is moving. The smoothness
of transition between autonomous and manual mode is also
satisfactory in real-world tests.

IV. EXPERIMENTAL RESULTS

To test the performance of the motion planner, we im-
plemented three different test categories: lane driving, static
obstacles and dynamic obstacles. The proposed motion plan-

(a)

30 40 50 60 70 80 90 100 110 120 130
3.5

4

4.5

5

5.5

6

6.5

7

s (m)

s
p

e
e

d
 (

m
/s

)

(b)

Fig. 9: Result for lane driving with static obstacles.

ner was tested both in simulation for all three scenarios, and
on the real vehicle except for dynamic obstacle scenario.

A. Lane driving

The lane driving test was performed on an S-shaped
curved road. This test was implemented to verify the motion
planner’s ability to deal with sinuous driving, where human
drivers are often able to select a shorter and smoother route.
The result is shown in Fig. 8. The autonomous vehicle
moves on the inner part of the road to get a shorter path
length, and it slows down when entering and speeds up when
exiting curves. This lane driving test was also implemented
on the real vehicle running on the exact same map. The
autonomous vehicle was able to track the trajectory generated
by the planner with an average cross track error less than
10cm, maximum tracking error of around 40cm and average
speed error around 0.5m/s. The road test verifies that the
performance of the whole autonomous driving system. It also
shows that the trajectory generated by the planner is feasible
for the car to execute.

B. Static obstacles

In a road environment, autonomous drivers need to deal
with multiple static obstacles, including curbs, parked cars,
and road blockages. In this planner, undrivable areas on
the road, e.g. broken pavement, are also modeled as static
obstacles. Here we test the planner’s performance of dealing
with a curved road and multiple static obstacles together.
The result is shown in Fig. 9, and the red points are static
obstacles. To avoid the static obstacles, instead of doing
short-cuts on curves, the autonomous vehicle selected a
longer, but still smooth, path.

C. Dynamic obstacles

For autonomous vehicles, dynamic obstacles are usually
moving obstacles such as cars, pedestrians, bicyclists or
motorcyclists. As shown in Fig. 10, in this test the vehicle
encounters a slower car in its preferred (upper) lane. Because
the slower vehicle in front of it limits the autonomous
vehicles progress, the planner selects a lane change trajectory
to circumvent it. The autonomous vehicle speeds up at the
beginning of the pass, then keeps approximately uniform
speed while passing the slower car, and speeds up after
the pass. Because of the lateral distance cost, when it is
overtaking the slower car, it also tends to keep in the center
of the circumventing lane, which is reasonable.

V. CONCLUSION

In this paper, a practical real-time autonomous driving
motion planner with trajectory optimization is proposed and
implemented. The trajectories generated by the planner are
smooth and continuous so that the autonomous vehicle is
able to execute with very small path and speed tracking
error. A proper discretization is applied to the speed and
path space, which makes the search for an optimal trajectory
faster. To further improve the quality of the trajectory, an
iterative optimization on the speed and path state space is
designed and implemented. Experiments show that, with the
iterative optimization framework, the performance of the
resultant trajectory is improved by 10% and the planning
time is reduced by more than 50%. The planner has been
tested in simulation and a real vehicle in three scenarios. Its
ability to deal with a sinuous road with sharp turns, avoid
multiple on-road static obstacles, and perform lane changing
and circumvention of slower cars was verified.

For future work, more on-road experiments need to be
done to verify the planner’s performance in dealing with
complicated real traffic scenarios. The performance of the
planner can also potentially be improved by applying more
efficient pruning in both the speed and path space. Further,
though the cost functions determine the choice of the final
trajectory, it is difficult and subjective to find the appropriate
form and weight for cost functions manually. Therefore,
future studies will also focus on learning cost functions from
human driver demonstrations.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of Jarrod
Snider, Tianyu Gu and Matthew McNaughton.

REFERENCES

[1] D. Pomerleau, “ALVINN: An autonomous land vehicle in a neural
network,” Advances in Neural Information Processing Systems I,
vol. 1, p. 305, 1989.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, et al., “Autonomous driving in urban envi-
ronments: Boss and the urban challenge,” Journal of Field Robotics
Special Issue on the 2007 DARPA Urban Challenge, Part I, vol. 25,
pp. 425–466, June 2008.

[3] A. Kelly and B. Nagy, “Reactive nonholonomic trajectory generation
via parametric optimal control,” The International Journal of Robotics
Research, vol. 22, no. 7-8, p. 583, 2003.

(a)

0 5 10 15 20 25 30 35 40 45
5

5.5

6

6.5

7

7.5

8

s (m)

s
p

e
e

d
 (

m
/s

)

(b)

Fig. 10: Result for circumventing a slower car.

[4] B. Nagy and A. Kelly, “Trajectory generation for car-like robots using
cubic curvature polynomials,” Field and Service Robots, vol. 11, 2001.

[5] M. McNaughton, C. Urmson, J. Dolan, and J. Lee, “Motion planning
for autonomous driving with a conformal spatiotemporal lattice,” in
Robotics and Automation (ICRA), IEEE International Conference on,
vol. 1, pp. 4889–4895, 2011.

[6] M. McNaughton, Parallel Algorithms for Real-time Motion Planning.
PhD thesis, Robotics Institute, Carnegie Mellon University, July 2011.

[7] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in Robotics
and Automation (ICRA), IEEE International Conference on, pp. 987–
993, 2010.

[8] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” Advances in Neural Information
Processing Systems (NIPS), vol. 16, 2004.

[9] S. LaValle and J. Kuffner Jr, “Randomized kinodynamic planning,” in
Robotics and Automation (ICRA), IEEE International Conference on,
vol. 1, pp. 473–479, 1999.

[10] S. Koenig and M. Likhachev, “Improved fast replanning for robot
navigation in unknown terrain,” in Robotics and Automation (ICRA),
IEEE International Conference on, vol. 1, pp. 968–975, 2002.

[11] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” in Proceedings
of the First International Symposium on Search Techniques in Artificial
Intelligence and Robotics (STAIR-08), (Chicago, USA), AAAI, June
2008.

[12] M. Zucker, J. Bagnell, C. Atkeson, and J. Kuffner, “An optimization
approach to rough terrain locomotion,” in Robotics and Automation
(ICRA), IEEE International Conference on, pp. 3589–3595, 2010.

[13] B. Gough, GNU Scientific Library Reference Manual. Network Theory
Ltd., 2009.

[14] J. van den Berg and M. Overmars, “Roadmap-based motion planning
in dynamic environments,” Robotics, IEEE Transactions on, vol. 21,
no. 5, pp. 885–897, 2005.

[15] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast tra-
jectory planning in dynamic on-road driving scenarios,” in Intelligent
Robots and Systems (IROS), IEEE/RSJ International Conference on,
pp. 1879–1884, 2009.

[16] J. Ziegler and C. Stiller, “Fast collision checking for intelligent
vehicle motion planning,” in Intelligent Vehicles Symposium (IV), IEEE
International Conference on, pp. 518–522, 2010.

[17] J. Nelder and R. Mead, “A simplex method for function minimization,”
The computer journal, vol. 7, no. 4, p. 308, 1965.

[18] S. Petti and T. Fraichard, “Safe motion planning in dynamic en-
vironments,” in Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, pp. 2210–2215, 2005.

