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Abstract— This paper presents a novel filtering technique
that uses contact detection data and environmental stiffness
estimates to register and localize a robot with respect to an
a priori 3D surface model. The algorithm leverages geometric
constraints within a Kalman filter framework and relies on two
distinct update procedures: 1) an equality constrained step for
when the robot is forcefully contacting the environment, and 2)
an inequality constrained step for when the robot lies in the free-
space of the environment. This filtering procedure registers the
robot by incrementally eliminating probabilistically infeasible
state space regions until a high likelihood solution emerges.
In addition to registration and localization, the algorithm can
estimate the deformation of the surface model and can detect
false positives with respect to contact estimation. This method
is experimentally evaluated with an experiment involving a
continuum robot interacting with a bench-top flexible structure.
The presented algorithm produces an experimental error in
registration (with respect to the end-effector position) of 1.1
mm, which is less than 0.8 percent of the robot length.

I. I NTRODUCTION

Minimally invasive surgery (MIS) reduces patient recov-
ery time and post-surgical infection. Robotic MIS has the
potential to improve surgical accuracy and enable deeper
anatomical reach through small incisions [1]–[3], but at
a price of limited sensory feedback and visualization of
the surgical field. In most surgical disciplines, physicians
typically rely on expertise to interpret preoperative images
and to correlate them with the surgical reality. More recently,
live medical imaging has been used to guide surgeons to
targeted anatomical locations (e.g. fluoroscopy [4], MRI [5],
CT [6], and 3D ultrasound [7]). Unfortunately, many of
these imaging modalities either have a limited field of view,
are incompatible with robotic systems or MIS, and/or emit
prolonged radiation.

A recent alternative to using medical images for surgical
guidance is to perform model-basedimage-guided surgery.
The goal is to create a virtualized rendered view of the
operation for visual feedback by combining tool tracking
with a 3D model of the anatomical structure [8]. Commercial
examples of this type of sensor-guided feedback are Ensite
NavX (St Jude Medical, St Paul, MN, USA) and Carto
XP/CartoMerge (Bio-Sense Webster, Diamond Bar, CA,
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Fig. 1. The experimental setup used for evaluating our constrained filtering
algorithm in the presence of surface deformation.

USA), which are used for cardiac mapping and ablation. For
successful model-based image-guidance, the tracked surgical
tool must be accurately registered to the coordinate frame
of the a priori 3D surface model [9]. A common approach
is to use an iterative closest point (ICP) algorithm [10]
that minimizes the difference between two point clouds.
Unfortunately, this can be computationally intensive in the
case of aligning a large number of points [11]. Another
method uses ultrasound to register a surgical tool inside
of a heart model using a particle filter [12]. In general,
achieving sufficiently accurate registration is a challenging
task, especially in the presence of tissue deformation.

This paper introduces a novel equality constrained filtering
approach that enables the automatic registration and localiza-
tion of a compliant surgical robot operating in a deformable
environment. The central idea of our method is that when
environmental contact is detected between the robot and the
surface [13], this information can be used to construct an
equality constraint on the state space of a Kalman filter.
Applying this constraint to the filter will eliminate infeasible
regions of the state space, and when a sufficient number of
constraints are applied, the true state will emerge that defines
the registration of the surgical tool to the deformable surface.

The advantage of this probabilistic approach is its potential
accuracy. By formulating this problem as a filtering task, we
are in a sense using a nonlinear state estimator as a means
to fuse all available sources of information (robot compli-
ance models, material stiffness, kinematic models, tracker
measurements, and prior surface models) with the hope of
resolving the most likely solution. Another advantage is
that the estimation algorithm naturally provides error-bounds,
thus one can easily determine if the registration result can
be trusted. Lastly, there are two favorable by-products of



our algorithm: the estimation of surface deformation and the
detection of false-positives with respect to contact estimation.

The ideas presented in this paper build upon our previous
work that investigated the use of constrained filtering for
surgical registration [14]. Our previous work ignored any
possible contact between the robot and its environment,
though, and it was also assumed that the surrounding surface
was rigid. Our new approach significantly improves upon our
previous work by relaxing these assumptions.

The main contribution of this work is the novel application
of equality constrained Kalman filtering to the problem
of surgical registration within a flexible environment. Our
approach uses elastic force models within a Kalman filter to
define constraints on the system and uses an iterative pseudo-
measurement update method to apply each constraint during
the registration process. We have validated our approach ex-
perimentally with a bench-top experiment using a continuum
robot designed for MIS [3], [15], see Fig. 1.

II. N ONLINEAR CONSTRAINED KALMAN FILTERING

Constrained Kalman filtering is the problem of correcting
or constraining the Kalman update or Kalman prediction to
account for known constraints on the state vector [16]. With
constrained filtering, the uncertainty of the state estimate
can be significantly reduced. This is particularly useful
for our surgical application because preoperative surface
models can directly provide geometric constraints. In this
section, we will discuss our algorithms to handle equality
and inequality constraints within a Kalman filter. Then, in
the following section, we will discuss the novel application
of these algorithms to surgical estimation.

A. Equality Constrained Kalman Filtering

When an equality constraint, such as,

g(xk) = c, (1)

can be defined with respect to theN×1 system statexk,
equality constrained Kalman filtering[17]–[21] seeks to
update the Kalman filter mean and covariance(x̂k|k,Pk|k) to
incorporate this information, thus producing a new estimate
(x̂+

k|k,P+

k|k).
In [22], Simon and Chia present a method for equality

constrained Kalman filtering in which linear constraints are
incorporated into the Kalman filter update by projecting the
unconstrained estimate onto the constraint hyperplane. An-
other method, which in [20], [21] is shown to be equivalent
to the projection approach, is to use a pseudo-measurement
technique that simulates a perfect measurement to enforce
equality constraints [17]–[19].

We will now introduce our iterative algorithm, which is
related to the pseudo-measurement approaches developed
in [17]–[19]. Our approach to this problem is similar to
the iterative method discussed by Julier in [23] and is in
some ways similar to Wang’s maximum likelihood approach,
presented in [19], due to its use of iteration.
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Fig. 2. With equality constrained Kalman filtering, seen in (a), the
probability density function (PDF) will lie on the constraint. With inequality
constrained filtering, seen in (b), the updated PDF will encompass the
feasible region.

At a given time-stepk, we seek to update the mean of
the filter with the vectorx that minimizes the following cost
function,

x̂+

k|k = argmin
x

[x̂k|k − x]T P−1

k|k[x̂k|k − x] (2)

subject to g(x) = c.

The purpose of this optimization problem is to replace the
Kalman estimate with the statex that, out of the set of states
that comply with the equality constraint, has the highest
likelihood.

An equivalent problem to Eq. 2 can be defined instead
using unconstrained optimization, as follows,

x̂+

k|k = argmin
x

[x̂k|k−x]TP−1

k|k[x̂k|k−x] + σ2
g
−1
||g(x)−c||.

where σ2
g is defined to be the measurement noise of the

simulated pseudo-measurement. This optimization problem
is solved forσ2

g → 0+ to simulate a perfect measurement
in order to strictly enforce the equality constraint. Gauss-
Newton’s method can be used to minimize this cost function
numerically. The recursive procedure to compute the state
vector follows,

x0 = x̂k|k

Ki = Pk|kG
T
i [GiPk|kG

T
i ]−1

xi+1 = x̂k|k + Ki[c− g(xi)−Gi(x̂k|k − xi)], (3)

whereG is the Jacobian ofg(x) linearized aboutxi. Finally,
we update the mean of the Kalman filterx̂+

k|k with the state
xi at convergence. The reason that our method relates to
the pseudo-measurement technique for constrained filtering
which was presented in [17]–[19] is that we are essentially
performing an iterated extended Kalman filter (IEKF) update
step [24] with a zero variance pseudo-measurementg(x).

After updating the mean of the filter, the covariance
matrix can then be updated with the conventional Kalman
covariance update equation,

K = Pk|kG
T [GPk|kG

T + ǫ]−1 (4)

P+

k|k = Pk|k −KGPk|k,

whereG is the Jacobian ofg(x) linearized about the updated
state mean̂x+

k|k. Additionally, as shown in Eq. 4, we adjust
the Kalman gain by inflating the simulated measurement
noise byǫ. This can help prevent numerical issues that would
occur with a singular covariance matrix, as discussed in [23].



The benefit of our approach is that, despite a nonlinear
constraint, the updated state estimate is forced to exactly
comply with the constraint equation in Eq. 1. This is due to
the convergence of the optimization problem that we defined
in Eq. 3. This compares to the use of an extended Kalman
filter (EKF) for the pseudo-meaurement update, which would
not necessarily place the new estimate on the constraint due
to linearization issues.

The example in Fig. 2-(a) illustrates our equality con-
strained filtering method for a two-dimensional problem. In
Fig. 2-(a), a constraint tells us that the true state must lie
on the hyperplane shown with a dotted line. The algorithm
updates the Gaussian probability density function (PDF) as-
sociated with the Kalman estimate to lie along that dimension
according to the constraint.

B. Inequality Constrained Kalman Filtering

When the system state is constrained to lie on one side of
a hyperplane,inequality constrained Kalman filtering [25]–
[28] seeks to update the Kalman state estimate to incorporate
this information. One method is to use PDF truncation, which
is a technique that will update the filter with the mean and
covariance of the region of the PDF that lies outside of the
constraint hyperplane [25], [26]. An alternative is to apply
a method that we have termeduncertainty projection, which
we previously presented in [14]. In this section, we will
briefly review our uncertainty projection method for handling
inequality constraints.

Let us assume that a Kalman filter, at time-stepk, is
estimating the PDF of a statexk by a mean vector̂xk|k

and covariance matrixPk|k. Also, let us assume there is a
nonlinear inequality constraint defined as follows,

φk
T
a(xk) ≥ αk, (5)

whereαk is a scalar andφk is anM×1 vector.
Our uncertainty projection method first projects the state

estimate to a Gaussian in theconstraint space, sk ∼
N (ŝk,Ck), according to ŝk = a(x̂k|k) and Ck =

AkPk|kAk
T , whereAk is the Jacobian ofa(xk) evaluated

at the current estimatêxk|k. This projection operation makes
the constraint linear on the random variablesk,

φk
T
sk ≥ αk.

To then update the PDF in the constraint space, we decouple
the constraint and apply a one-dimensional PDF update
process that is detailed in [14]. Fig. 3 demonstrates this one-
dimensional constraint update.

Lastly, our algorithm takes the result from the one-
dimensional update, reverses the transformation that decou-
pled the constraint, and then projects the new PDF in the
constraint space back into the original state space to obtain
a new Kalman estimate (x̂+

k|k,P+

k|k). An example of our
uncertainty projection method applied to a two-dimensional
state space is shown in Fig. 2-(b) and more details of the
algorithm are in [14].
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Fig. 3. In (a), a normally distributed random variable is shown with a
scalar constraint that defines the feasible and infeasible regions. In (b), we
show our uncertainty projection method [14] which projects the tail of the
Gaussian onto the constraint and then computes the new mean andvariance.

III. C ONSTRAINED FILTERING FOR SURGICAL

ESTIMATION

Given a preoperative surface model of the surrounding
flexible environment and a continuum robot that is exploring
the environment with forceful contact, our filtering approach
seeks to combine information from on-board position sens-
ing, kinematic models, and geometric constraints to produce
accurate registration parameters for localization. This section
discusses the overall technical approach including the inte-
gration of a contact detection algorithm for multisegment
continuum robots [13] and the application of the constrained
Kalman filtering algorithms presented in Sec. II to solve this
surgical localization problem.

A. Contact Detection

The robot used for experimental validation is a multi-
backbone three segment continuum robot [3], [15], see Fig. 1.
Each segment is constructed using three circumferentially
located super elastic NiTi secondary backbones and one
centrally located super elastic NiTi primary backbone. Actu-
ation is achieved by changing the lengths of the secondary
backbones in order to actively bend the segments.

The innate compliance of this type of flexible robot allows
the robot’s natural shape to change due to interaction with
an obstacle. By capturing this change in shape, it is possible
to detect that a forceful contact with the environment has oc-
curred. To perform this contact detection, we are leveraging
algorithms described in [13].

As a consequence of Chasles’s theorem [29], the in-
stantaneous motion of the end disk of each segment of
the continuum robot is fully described by thePlücker line
coordinatesof the Instantaneous Screw Axis (ISA) and the
screw pitch. The ISA is described by the unit axisω̂s and
the closest point on the axis to the originrs :

rs =
ωbs

gs/bs

×
(

vbs

gs/bs

+ pbs

gs

× ωbs

gs/bs

)

‖ωbs

gs/bs

‖2
(6)

ω̂s =
ωbs

gs/bs

‖ωbs

gs/bs

‖
,

wherevbs

gs/bs

andωbs

gs/bs

are the linear and angular velocities
of the end disk of segments with respect to the base disk of
segments respectively. If contact occurs at any intermediate
vertebraebetween the base of each segment and its base



Fig. 4. Group of ISAs after the contact is appreciably shifted toward the
end disk of the segment because of the smaller radius of curvature of the
unconstrained portion of the segment. The closer the disk in contact is to
the end disk, the closer the post-contact ISAs will be to the end disk.

disk, theaxodeof motion (i.e. the group of infinitesimally-
separated ISA’s) shifts toward the end disk of the constrained
segment, as shown in Fig 4.

Assume that an extrinsic sensor (such as an electromag-
netic tracker) provides the position̄pW

gs

and orientation̄RW
gs

of the end disk of each segment with respect to a world
reference frame{W}. The relative position, orientation,
linear velocity v̄bs

gs/bs

, and angular velocitȳωbs

gs/bs

of the
end disk of segments with respect to the previous one are
given by,

p̄bs

gs

= R̄
gs−1

W

(

p̄W
gs

− p̄W
gs−1

)

(7)

R̄gs−1

gs

= R̄bs

gs

= R̄
gs−1

W R̄W
gs

(8)

v̄bs

gs/bs

= ˙̄pbs

gs

(9)

ω̄bs

gs/bs

= vect( ˙̄Rgs−1

gs

R̄gs

gs−1
), (10)

where all entities marked with a bar (i.e.p̄) are based on
extrinsic sensory measurements and the operatorvectextracts
the skew-symmetric vector from a skew-symmetric matrix.
By using the theoretical relative positionpbs

gs

, orientation
Rbs

gs

, linear and angular velocities,vbs

gs/bs

andωbs

gs/bs

of the
robot [30], it is possible to define the following Screw Motion
Deviation:

µs = ‖rs − r̄s‖, (11)

wherer̄s is calculated using (6) based on sensor kinematics
andrs is calculated using (6) based on the theoretical robot
kinematics. Contact is therefore detected independently for
any segment whenµs > ǫs for any of the three segments
s = 1, 2, 3.

B. Filter Formulation

While an initial guess may exist, the exact parameters that
define the registration of the continuum robot to the flexible
structure are unknown at the start of an experiment. Using a
stochastic representation in the form of a Kalman filter, we
seek to estimate these parameters recursively. The Kalman
state that our filtering algorithm estimates, at time-stepk, is

comprised of registration parameters and the configuration
of the robot, as follows,

xk =
[

tT , α, β, γ, ψT
k

]T

.

The translation vectort essentially defines the location of
the robot origin in the coordinate frame of the preoperative
surface model. Also,α, β, and γ are the roll, pitch, and
yaw, respectively, that define the transformation from the
robot frame to the surface model. The vectorψk is the
configuration of the robot, as follows,

ψk =
[

ψT
1 ,ψT

2 ,ψT
3

]T

,

where eachψs for s = 1, 2, 3 defines the shape of each
segment of the continuum robot and is parameterized by two
angles: a bending angleθLs

and an angle that defines the
plane in which the bending occursδs, thusψs = [θLs

, δs]
T .

C. Equality Constraints

When the screw motion deviation in Eq. 11 exceeds a
threshold and the robot is thus declared to be in contact
with the flexible environment, this equates to a constraint
on where the robot can be (the robot must be touching the
surface model). This constraint can be used to eliminate
feasible states from the PDF of the Kalman filter. At a first
glance, it may seem appropriate to apply a form ofsoft
constraint to the filter estimate when contact is detected due
to the possibility of the robot being positioned along a range
of states depending on the amount of surface deformation
that is expected. If such a constraint could be applied, it
would reduce the uncertainty in the filter but will not exactly
constrain the robot onto the surface nor will it allow for the
inference of the surface deformation.

Instead the solution that we adopt for our experiment is
to apply a strict equality constraint to the filter estimate to
constrain the filtering problem using our equality constraint
update algorithm from Sec. II-A. To do this, we leverage en-
vironment stiffness and robot compliance models to express
the following equality relationship,

Fs(xk) = Fr(xk),

where Fs(xk) represents the elastic force caused by the
deformation of the surface andFr(xk) represents the elastic
force caused by the compliance of the robot.

In the context of our equality constraint update algorithm,
the appropriate pseudo-measurement function is defined as
follows,

g(xk) = ||Fs(xk)− Fr(xk)|| = 0. (12)

Experimentally, we use a simplified model forFr(xk) that
assumes that the force is proportional to the magnitude of the
difference between the configuration of the robot, according
to the current estimate, and the desired configuration of the
robot according to the onboard controller. The parameters
for this simplified compliance model of the robot were
determined empirically.
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Fig. 5. Equality constrained filtering will move the estimatex̂k|k onto the
surface and will properly balance the deformation of the surface with the
compliance of the robot. This example shows the new estimatex̂

+

k|k
near

the ground truth configuration after the constraint update.

In Fig. 5, we show an example of an equality constraint
shifting the Kalman estimatêxk|k so that the new estimate
x̂+

k|k is both contacting and appropriately deforming the
surface. In this figure, we have drawn spheres to model the
width and shape of the end-effector of the robot. The estimate
is shown moving toward the true statextrue because of the
added information provided by the equality constraint.

It is through this equality constrained problem that we can
estimate the expected deformation of the surface. Essentially,
by inferring the configuration of the robot that properly
balances the elastic forces in Eq. 12, we are simultaneously
solving for the force that is applied on the surface at the
point of contact. Given the stiffness of the material, we
can then compute the expected deformation by assuming a
linear elastic model. It can be seen in Fig. 5 that determining
the configuration of the robot directly provides the surface
deformation.

D. False-Positive Detection

It is possible for the contact detection algorithm in Sec. III-
A, due to modeling uncertainty and actuator noise, to report
false-positives. This means that the equality constraint update
procedure might be invoked when in fact the robot is not
actually contacting the environment. This could have drastic
consequences on the convergence of the filtering algorithm.

To avoid a diverging state estimate, it is important to
detect these false-positives, and when one occurs, temporar-
ily ignore the equality constraint that is imposed by the
preoperative surface model. To detect false-positives, wecan
preemptively apply the equality constraint update algorithm
assuming the contact detection is correct, and then evaluate
the likelihood of the result with a Mahalanobis test,

[

x̂+

k|k − x̂k|k

]T

P−1

k|k

[

x̂+

k|k − x̂k|k

]

> ζ. (13)

In Eq. 13,x̂+

k|k is the resulting state mean after performing
the equality constraint update,x̂k|k is the prior mean before
applying the update,Pk|k is the prior covariance, andζ
is a user chosen threshold. When the Mahalanobis distance
exceeds this threshold, we report a false-positive for contact
detection. Incorporating this test allows for a more robust
estimation process.

(xk|k Pk|k )^ ,

(xk|k Pk|k )^ ,+
+

relaxed

surface

Fig. 6. Inequality constrained filtering can significantly reduce the
uncertainty in the state estimate. The prior estimate (blue) is corrected (to
green) moving the PDF to the feasible region.

E. Inequality Constraints

When a false-positive is detected for the contact estimation
algorithm based on the likelihood of the filtering estimate,we
can assume that the robot is not contacting the environment.
Thus, we can say with certainty that the forward kinematic
model of the robot must lie outside of the surface model. This
equates to an inequality constraint when applied locally.

Assuming that the end-effector position of the robot can
be defined as a function of the state,f(xk), according to its
kinematic models, we can define local inequality constraints,

φT
k f(xk) < αk,

where φk and αk are obtained by assuming the nearest
triangular face of the surface model is a plane. The constraint
equation forces the end-effector to lie outside of that plane.

In Fig. 6, we show an example of an inequality constraint
shifting the estimate so that it lies within the free-space.The
ellipses shown in the figure depict the uncertainty of the state
(at the end-effector position) before and after the update.

F. Filtering Algorithm

Alg. 1 is a high-level description of the the entire filtering
process. As with a conventional Kalman filter, our algorithm
performs a prediction step and a correction step. Then, using
the geometric constraints provided by the robot’s interaction
with the surface model, we perform our novel constraint
update procedure to reduce the uncertainty in the Kalman
estimate and to resolve the true registration parameters.

IV. EXPERIMENTAL EVALUATION

The experimental setup is shown in Fig. 1. The robot
is a three segment continuum robot with electromagnetic
(EM) tracking coils at the base of each segment to measure
the local positioning of the robot. There is also an EM
tracking coil at the end-effector. The embedded electromag-
netic tracking system that we are using is the Ascension
Technology 3D Guidance trakSTARTMwith coils that are
0.9mm in diameter. The RMS position error of this system
is 1.5mm and the RMS orientation error is0.5 degrees. For
this experiment, the end-effector of the robot was driven
into forceful contact with a bench-top phantom consisting
of a box lined with deformable foam. A Faro 7-axis laser
scanner was used to capture ana priori surface model of
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Fig. 7. In (a), multiple hypotheses are shown, each of which runs the constrained filtering algorithm for registration. In(b), some hypotheses have
diverged. In (c), the result shows proper alignment between the estimated robot configuration and ground truth.

Algorithm 1 Constrained Filtering for Surgical Estimation

1: (x̂+

0|0, P+

0|0) ← InitializeEstimate()
2: for k ← 1 to∞ do
3: (x̂k|k−1, Pk|k−1) ←Prediction(̂x+

k−1|k−1
,P+

k−1|k−1
, uk)

4: (x̂k|k, Pk|k) ← Correction(̂xk|k−1, Pk|k−1, zk)
5: if DetectContact(µ1,µ2,µ3) then
6: (x̂+

k|k,P+

k|k)←EqualityConstrain(̂xk|k, Pk|k)
7: if (x̂+

k|k − x̂k|k)T P−1

k|k(x̂+

k|k − x̂k|k) > ζ then
8: (ŝk, Ck)←ProjectToConstraintSpace(x̂k|k, Pk|k)
9: (ŝ+

k , C+

k )←UncertaintyProjection(̂s,C,φk, αk)
10: (x̂+

k|k,P+

k|k)←ProjectBack(̂s+

k,C+

k, x̂k|k,Pk|k)
11: end if
12: end if
13: end for

the phantom. The stiffness of the material was measured by
assuming axial stiffness of a uniform material with Young’s
modulus. To obtain ground truth data with which to compare
the performance of our localization algorithm, we used a
laser scan that captured the relative positioning of the robot
to the phantom and extracted the necessary ground truth
registration parameters from the geometry of the object.

We ran the continuum robot to random desired target
configurations that were out of reach due to the robot being
obstructed by the phantom. This forced the robot to contact
the surface at many different points. The data was saved and
the algorithm was post-processed using Matlab, although we
chose to only update the filter when the robot was relatively
stable (its velocity was below a threshold). This was to aid
in the stability of the filtering algorithm and we note that
this is something that we will relax in our future work.

In Fig. 7, we show the result of a registration experiment.
In Fig. 7-(a), a set of initialized hypotheses are shown before
the data is processed. Each of these hypotheses was evalu-
ated and updated using the constrained filtering algorithms
presented in this paper. In Fig. 7-(b), it can be seen that
many of the hypotheses for the registration and localization
have begun to move toward the ground truth configuration.
Some hypotheses, though, have diverged due to a poor initial
alignment and the local affect of the filtering updates. In
Fig. 7-(c), the resulting configuration of the robot, estimated

with our filtering algorithm, is shown overlapping with the
ground truth configuration. This estimate emerged with the
highest likelihood after imposing all of the constraints due
to contact with the environment.

The initial guess for the registration assumed a14.6mm
error at the position of the robot end-effector. This equates
to an approximately10 percent error with respect to the
length of the robot. The error was mostly associated with
a largely erroneous yaw angle. After processing the contact
data and applying the constraints with the Kalman filter,
our final registration error was reduced to1.1mm (with
respect to the end-effector position), which equates to a
less than0.8 percent positional error with respect to the
length of the robot. We believe this result demonstrates
the feasibility of our approach for accurate registration in
compliant environments.

In the experiment, we show that some of the initialized
hypotheses diverge over time. While this shows that the
individual result of each hypothesis is sensitive to its initial-
ized estimate, it does not suggest that the final performance
of the entire filtering scheme is necessarily sensitive to the
initial guess for registration. Instead, the divergence ofthese
hypotheses shows that the act of filling the state space
with initial hypotheses is in fact serving its purpose: the
hypotheses that are somewhat close to the true alignment
will converge to the true state and the ones that are out of
alignment will drop in likelihood. The significance is that
as long as we adequately cover the initial state space with
initial hypotheses, the true state will emerge.

V. CONCLUSIONS

The goal of the algorithm that we have presented is to aid
in the creation of fully representative rendered models for
surgical image-guidance. For medical procedures that cannot
utilize direct vision, a surgeon can refer to the rendered
visualization for visual feedback. Thus, it is important that
the surgeon trusts the registration and alignment of the robot
relative to the organ surface models.

To solve registration, we present a novel filtering algorithm
that leverages geometric constraints within a Kalman filter
framework to automatically register and localize a compliant
surgical robot with respect to ana priori 3D deformable
surface model. Our method relies on an equality constrained



update step for when the robot is forcefully contacting the
environment and an inequality constrained update step for
when a false-positive is detected and thus the robot is lying
in the free-space of the environment. With this filtering
procedure, we can incrementally eliminate regions of the
state space that are decidedly infeasible, eventually resolving
the true state that defines the registration of the robot. The
theoretical contributions of this work are its use of equality
constrained Kalman filtering to localize a surgical robot and
the consideration of elastic force models within a Kalman
filter for applying equality constraints.

For future work, we will incorporate an improved com-
pliance model for the robot that relaxes our somewhat
over-simplified model for computingFr(xk) in Eq. 12.
Despite our simplified model, though, the filtering algorithm
performed well and localized the robot. We attribute the
success to the inherent stochasticity of the approach, which
means that despite noisy sensing and imperfect models, there
was still enough information acquired through constraints
to produce a likely final registration. Also for future work,
we will adopt a more sophisticated stiffness model for the
environment. For this paper, we assumed a linear model but
admit that when modeling tissue for surgical applications,a
linear stress-strain relationship is less than ideal.

We have shown with a successful experiment that accu-
rate registration can be achieved automatically using our
proposed algorithm. In the future, we intend to test this
algorithm with in vivo experiments and will also extend the
approach to account for uncertainty in thea priori surface
models. Future experiments will focus on testing the robust-
ness of our approach under real-time conditions, realistic
environments, varying stiffnesses, and organ movement.
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