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Abstract— This paper presents a novel filtering technique
that uses contact detection data and environmental stiffness
estimates to register and localize a robot with respect to an
a priori 3D surface model. The algorithm leverages geometric
constraints within a Kalman filter framework and relies on two
distinct update procedures: 1) an equality constrained step for
when the robot is forcefully contacting the environment, and 2)
an inequality constrained step for when the robot lies in the free-
space of the environment. This filtering procedure registers the
robot by incrementally eliminating probabilistically infeasible
state space regions until a high likelihood solution emerges.
In addition to registration and localization, the algorithm can
estimate the deformation of the surface model and can detect
false positives with respect to contact estimation. This method
is experimentally evaluated with an experiment involving a
continuum robot interacting with a bench-top flexible structure.
The presented algorithm produces an experimental error in
registration (with respect to the end-effector position) of 1.1
mm, which is less than 0.8 percent of the robot length. USA), which are used for cardiac mapping and ablation. For
successful model-based image-guidance, the trackeccalrgi
o . ) . tool must be accurately registered to the coordinate frame
ery time and post-surgical infection. Robotic MIS has thgs to use an iterative closest point (ICP) algorithm [10]
potential to improve surgical accuracy and enable deepgfat minimizes the difference between two point clouds.
anatomical reach through small incisions [1]-[3], but aynfortunately, this can be computationally intensive ie th
a price of limited sensory feedback and visualization ofase of aligning a large number of points [11]. Another
the surgical field. In most surgical disciplines, physisianmethod uses ultrasound to register a surgical tool inside
typically rely on expertl_se to mterpret prepperatlve ™39 of a heart model using a particle filter [12]. In general,
and to correlate them with the surgical reality. More relyent achieving sufficiently accurate registration is a challegg
live medical imaging has been used to guide surgeons {gsk especially in the presence of tissue deformation.
targeted anatomical locations (e.g. fluoroscopy [4], MR [5S  Thjs paper introduces a novel equality constrained filtgrin
CT [6], and 3D ultrasound [7]). Unfortunately, many of zpproach that enables the automatic registration andizaeal
these imaging modalities either have a limited field of viewsion of a compliant surgical robot operating in a deformable
are incompatible with robotic systems or MIS, and/or emignyironment. The central idea of our method is that when
prolonged radiation. _ o ~environmental contact is detected between the robot and the

A recent alternative to using medical images for surgicadyrface [13], this information can be used to construct an
guidance is to perform model-basedage-guided surgery equality constraint on the state space of a Kalman filter.
The goal is to create a virtualized rendered view of th@ppiying this constraint to the filter will eliminate infeilate
operation for visual feedback by combining tool trackingegions of the state space, and when a sufficient number of
with a 3D model of the anatomical structure [8]. Commerciagonstraints are applied, the true state will emerge thanetgfi
examples of this type of sensor-guided feedback are Ensiigs regjstration of the surgical tool to the deformable acef
NavX (St Jude Medical, St Paul, MN, USA) and Carto The advantage of this probabilistic approach is its poanti
XP/CartoMerge (Bio-Sense Webster, Diamond Bar, CAyccyracy. By formulating this problem as a filtering task, we
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Fig. 1. The experimental setup used for evaluating our caingd filtering
algorithm in the presence of surface deformation.

I. INTRODUCTION



our algorithm: the estimation of surface deformation arel th
detection of false-positives with respect to contact estiiom.

The ideas presented in this paper build upon our previous
work that investigated the use of constrained filtering for
surgical registration [14]. Our previous work ignored any NP PRI,
possible contact between the robot and its environment, P e

2
. . ’ b ' -
though, and it was also assumed that the surrounding surfacea) )

was rigid. Our new approach significantly improves upon oUgig. 2. with equality constrained Kalman filtering, seen in), (the

previous work by relaxing these assumptions. probability density function (PDF) will lie on the constmi With inequality
The main contribution of this work is the novel applicatiorfé’;;gfg”rigig'r'ﬁer'”g* seen in (b), the updated PDF will engass the

of equality constrained Kalman filtering to the problem

of surgical registration within a flexible environment. Our

approach uses elastic force models within a Kalman filter to At a given time-stepk, we seek to update the mean of

define constraints on the system and uses an iterative pseugte filter with the vectox that minimizes the following cost

measurement update method to apply each constraint durifaghction,

the registration process. We have validated our approach ex

perimentally with a bench-top experiment using a continuum

robot designed for MIS [3], [15], see Fig. 1. subject to g(x) = c.

Constraint

N R, Pge) j N K. Pi)

)Aizlk = argm)zn [)A(k“f — X]TP];ﬁC[)A(k\k - X} (2)

The purpose of this optimization problem is to replace the

Kalman estimate with the statethat, out of the set of states
Constrained Kalman filtering is the problem of correctinghat comply with the equality constraint, has the highest

or constraining the Kalman update or Kalman prediction ttikelihood.

account for known constraints on the state vector [16]. With An equivalent problem to Eq. 2 can be defined instead

constrained filtering, the uncertainty of the state es@matising unconstrained optimization, as follows,

can be significantly reduced. This is particularly useful, ,

for our surgical application because preoperative surfactlk

models can directly provide geometric constraints. In thi§here 2 is defined to be the measurement noise of the

section, we will discuss our algorithms to handle equalitjmjated pseudo-measurement. This optimization problem
and inequality constraints within a Kalman filter. Then, ing soved foro2 — 0+ to simulate a perfect measurement
g

the following section, we will discuss the novel applicatio i order to strictly enforce the equality constraint. Gauss
of these algorithms to surgical estimation. Newton’s method can be used to minimize this cost function
numerically. The recursive procedure to compute the state

II. NONLINEAR CONSTRAINED KALMAN FILTERING

o —1ra -1
= argmin [Xk\k—X}TPk‘}C[XMk—X] + 02 [lg(x)—c||.

A. Equality Constrained Kalman Filtering vector follows,
When an equality constraint, such as, X0 = Rk
g(xx) =c, (1) K; = PG/ [GPy;G/]™"

Xit1 = X+ Kile—g(xi) — Gi(Xpp — x3)], (3)
can be defined with respect to théx1 system statex, i ) K ] [ (_ ) . (e )].
equality constrained Kalman filtering17]-[21] seeks to WhereG is the Jacobian of(x) Ilneanz_efj abouk;. Finally,
update the Kalman filter mean and covariafggy, Py ;) to ~ We update the mean of the Kalman filtef;, with the state

incorporate this information, thus producing a new estimatX: at convergence. The reason that our method relates to
(g(;r‘k, Pm)- the. pseudo—measurement techmqge for constrained fgtgnn
In [22], Simon and Chia present a method for equalit)YVh'Ch was pre_sented in [17]-[19] is that we are essentially
constrained Kalman filtering in which linear constraints ar Performing an iterated extended Kalman filter (IEKF) update
incorporated into the Kalman filter update by projecting thétep [24] with a zero variance pseudo-measureméxy.

unconstrained estimate onto the constraint hyperplane. An After updating the mean of the filter, the covariance
other method, which in [20], [21] is shown to be equivalenfnatr'x can then be updated with the conventional Kalman

to the projection approach, is to use a pseudo-measurem&Ryariance update equation,

technique that simulates a perfect measurement to enforce K = Pk|kGT[GPk|kGT +et (4)
equality constraints [17]-[19]. P+ - p o KGP/
We will now introduce our iterative algorithm, which is kle klk klks

related to the pseudo-measurement approaches developdtereG is the Jacobian of(x) linearized about the updated
in [17]-[19]. Our approach to this problem is similar tostate mearfc;fk. Additionally, as shown in Eq. 4, we adjust
the iterative method discussed by Julier in [23] and is ithe Kalman gain by inflating the simulated measurement
some ways similar to Wang’s maximum likelihood approachpoise bye. This can help prevent numerical issues that would
presented in [19], due to its use of iteration. occur with a singular covariance matrix, as discussed i [23



The benefit of our approach is that, despite a nonlinear :
constraint, the updated state estimate is forced to exactly s Feasible ey

nfeasible < Uncertainty ew
comply with the constraint equation in Eqg. 1. This is due to ' ! “ Oitrbution
the convergence of the optimization problem that we defined ﬂ
in Eg. 3. This compares to the use of an extended Kalman g b)

filter (EKF) for the pseudo-meaurement update, which would
not necessarily place the new estimate on the constraint deig. 3. In (a), a normally distributed random variable is showith a
to linearization issues. scalar constraint that defines the feasible and infeaségns. In (b), we

The example in Fig. 2- (a) ilustrates our equalit Conshow our uncertainty projection method [14] which projetts tail of the
p 9. q Yy ‘Gaussian onto the constraint and then computes the new meamriace.

strained filtering method for a two-dimensional problem. In

Fig. 2-(a), a constraint tells us that the true state must lie

on the hyperplane shown with a dotted line. The algorithm 1. CONSTRAINED EILTERING FOR SURGICAL

updates the Gaussian probability density function (PDF) as ESTIMATION

sociated with the Kalman estimate to lie along that dimemsio

according to the constraint. Given a preoperative surface model of the surrounding

flexible environment and a continuum robot that is exploring

the environment with forceful contact, our filtering appba

seeks to combine information from on-board position sens-
When the system state is constrained to lie on one side @fg, kinematic models, and geometric constraints to preduc

a hyperplaneinequality constrained Kalman filtering [25]- accurate registration parameters for localization. Tatien

[28] seeks to update the Kalman state estimate to incogoratiscusses the overall technical approach including the- int

this information. One method is to use PDF truncation, whiclration of a contact detection algorithm for multisegment

is a technique that will update the filter with the mean andontinuum robots [13] and the application of the constrine

covariance of the region of the PDF that lies outside of thRalman filtering algorithms presented in Sec. Il to solves thi

constraint hyperplane [25], [26]. An alternative is to 3ppl surgical localization problem.

a method that we have termedcertainty projectionwhich

we previously presented in [14]. In this section, we willA. Contact Detection

briefly r_eview our L_mcertainty projection method for handli The robot used for experimental validation is a multi-

inequality constraints. backbone three segment continuum robot [3], [15], see Fig. 1
Let us assume that a Kalman filter, at time-stepis Each segment is constructed using three circumferentially

estimating the PDF of a state, by a mean vectokyx |ocated super elastic NiTi secondary backbones and one

and covariance matri¥ ;. Also, let us assume there is acentrally located super elastic NiTi primary backbone.tAct

B. Inequality Constrained Kalman Filtering

nonlinear inequality constraint defined as follows, ation is achieved by changing the lengths of the secondary
T - 5 backbones in order to actively bend the segments.
¢ alxi) = ar, ®) The innate compliance of this type of flexible robot allows

the robot’s natural shape to change due to interaction with
an obstacle. By capturing this change in shape, it is passibl
to detect that a forceful contact with the environment has oc
curred. To perform this contact detection, we are levegagin

algorithms described in [13].

As a consequence of Chasles’s theorem [29], the in-
stantaneous motion of the end disk of each segment of
the continuum robot is fully described by thiicker line
coordinatesof the Instantaneous Screw Axis (ISA) and the
screw pitch. The ISA is described by the unit axis and
To then update the PDF in the constraint space, we decouphe closest point on the axis to the origit

whereq;, is a scalar andp,, is an M x 1 vector.

Our uncertainty projection method first projects the stat
estimate to a Gaussian in theonstraint space s
N (8, Cy), according tos, = a(Xg) and C, =
AkPk‘kAkT, where A, is the Jacobian o&(xy) evaluated
at the current estimatey, ;.. This projection operation makes
the constraint linear on the random variabjg

T
¢ sk > ag.

the constraint and apply a one-dimensional PDF update b b X b

process that is detailed in [14]. Fig. 3 demonstrates thés on Wy /b, X (vg:/bs + g X wg;/b5>

dimensional constraint update. Ts = [wb ©)
Lastly, our algorithm takes the result from the one- b, 92/bs

dimensional update, reverses the transformation thatudeco N “gs/bs

S )

pled the constraint, and then projects the new PDF in the
constraint space back into the original state space torobtai
a new Kalman estlmatexgk, k) An example of our Wherev b andw », are the linear and angular velocities
uncertainty projection method applled to a two-dimendionaf the end disk of segmemtwnh respect to the base disk of
state space is shown in Fig. 2-(b) and more details of thmegments respectively. If contact occurs at any intermediate
algorithm are in [14]. vertebraebetween the base of each segment and its base

lwbs




comprised of registration parameters and the configuration
of the robot, as follows,

T TT
Xk:[t7 «, 67 v, ¢ki| .

The translation vectot essentially defines the location of
the robot origin in the coordinate frame of the preoperative
surface model. Alsoq, 3, and~ are the roll, pitch, and
yaw, respectively, that define the transformation from the
robot frame to the surface model. The vectpy, is the
configuration of the robot, as follows,

Fig. 4. Group of ISAs after the contact is appreciably sHifteward the

T
T T T
i = v vl ei]
end disk of the segment because of the smaller radius of cuevafuthe _ :
unconstrained portion of the segment. The closer the disloimact is to where eaChdJS for s = 1,2,3 defines the shape of each

the end disk, the closer the post-contact ISAs will be to the disk. segment of the continuum robot and is parameterized by two
angles: a bending angk,, and an angle that defines the
plane in which the bending occuds, thus, = [01,d,]" .

disk, theaxodeof motion (i.e. the group of infinitesimally- ) .

separated ISA's) shifts toward the end disk of the congachin & Equality Constraints

segment, as shown in Fig 4. When the screw motion deviation in Eq. 11 exceeds a

Assume that an extrinsic sensor (such as an electromdf¥eshold and the robot is thus declared to be in contact

netic tracker) provides the positiq?ig: and orientatiorf{g‘s’ with the flexible environment, this equates to a constraint

of the end disk of each segment with respect to a worldn where the robot can be (the robot must be touching the

reference frame{W}. The relative position, orientation, surface model). This constraint can be used to eliminate

linear velocity \‘;Zs/bs, and angular velocitybi’j of the feasible states from the PDF of the Kalman filter. At a first

end disk of segmen¢ with respect to the prew/ous one areglance, it may seem appropriate to apply a formsoft

given by, constraint to the filter estimate when contact is detectes du
~ to the possibility of the robot being positioned along a kng
p =Ry (f)g‘: — f’g:fl) (7) of states depending on the amount of surface deformation
Ro—1 — Rb — R@;‘IRW ®) that is expected. If such_ a c_onstra?nt could _be applied, it
9s 9s 9s would reduce the uncertainty in the filter but will not exgctl

ng Jbs = 1522 (9)  constrain the robot onto the surface nor will it allow for the

b = = inference of the surface deformation.
s — t Rgsfles 10 ; . .
“g. /b T VEC (Fg: 7ia): (10) Instead the solution that we adopt for our experiment is

where all entities marked with a bar (i.p) are based on t0 apply a strict equality constraint to the filter estimate t
extrinsic sensory measurements and the opevaittextracts ~ constrain the filtering problem using our equality constrai
the skew-symmetric vector from a skew-symmetric matrixtPdate algorithm from Sec. II-A. To do this, we leverage en-
By using the theoretical relative positiop):, orientation vironment stiffness and robot compliance models to express
R, linear and angular velocitieSr,Z: b a”d"-’ZZ/bs of the the following equality relationship,
robot [30], it is possible to define the following Screw Matio F.(x;) = F,(x5)
Deviation: ° " ’

fs = ||rs — Fsl|, (11) Wwhere Fy(x;) represents the elastic force caused by the

deformation of the surface ad.(x;) represents the elastic
wherer, is calculated using (6) based on sensor kinematidsrce caused by the compliance of the robot.
andr, is calculated using (6) based on the theoretical robot In the context of our equality constraint update algorithm,
kinematics. Contact is therefore detected independently fthe appropriate pseudo-measurement function is defined as
any segment whem, > €, for any of the three segments follows,
s=1,2,3.
9(xk) = |[Fs(xx) — Fr(xx)|[ = 0. (12)

Experimentally, we use a simplified model by, (x;) that

While an initial guess may exist, the exact parameters thassumes that the force is proportional to the magnitudeeof th
define the registration of the continuum robot to the flexibl@ifference between the configuration of the robot, accardin
structure are unknown at the start of an experiment. Usingta the current estimate, and the desired configuration of the
stochastic representation in the form of a Kalman filter, weobot according to the onboard controller. The parameters
seek to estimate these parameters recursively. The Kalmimm this simplified compliance model of the robot were
state that our filtering algorithm estimates, at time-stefs  determined empirically.

B. Filter Formulation
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Fig. 5. Equality constrained filtering will move the estimatg ,, onto the  Fig. 6. Inequality constrained filtering can significantlgduce the
surface and will properly balance the deformation of theam@fwith the uncertainty in the state estimate. The prior estimate (blsi€pirected (to
compliance of the robot. This example shows the new estimg}ﬁ near green) moving the PDF to the feasible region.

the ground truth configuration after the constraint update.

E. Inequality Constraints

In Fig. 5, we show an example of an equality constraint \ypen 5 false-positive is detected for the contact estimation
§Tﬂ|qg the Kalman estimat&y,; so that the new estimate 54 qithm based on the likelihood of the filtering estimate,
X, is both contacting and appropriately deforming thg g assume that the robot is not contacting the environment.

surface. In this figure, we have drawn spheres to model thg, ;s e can say with certainty that the forward kinematic
width and shape of the end-effector of the robot. The eséma, e of the robot must lie outside of the surface model. This

is shown moving toward the true state.,.. because of the gqates to an inequality constraint when applied locally.
added information provided by the equality constraint. Assuming that the end-effector position of the robot can
It is through this equality constrained problem that we cage gefined as a function of the staféx,), according to its

estimate the expected deformation of the surface. Esfigntiajnematic models, we can define local inequality constsaint
by inferring the configuration of the robot that properly

balances the elastic forces in Eq. 12, we are simultaneously o f(xk) < ou,

solving for the force that is applied on the surface at thﬁ/here . and a, are obtained by assuming the nearest

point of contact. Given the stiffness of the material, W(?riangular face of the surface model is a plane. The comgtrai

can then cpmpute the expected dgformatmn by assum'ngeauation forces the end-effector to lie outside of that @lan
linear elastic model. It can be seen in Fig. 5 that deterrginin In Fig. 6, we show an example of an inequality constraint

the configuration of the robot directly provides the Surfac%hifting the estimate so that it lies within the free-spakiee

deformation. ellipses shown in the figure depict the uncertainty of theesta

D. False-Positive Detection (at the end-effector position) before and after the update.

Itis possible for the contact detection algorithm in Seke. Il F. Filtering Algorithm
A, due to modeling uncertainty and actuator noise, to report Alg. 1 is a high-level description of the the entire filtering
false-positives. This means that the equality constrgidte process. As with a conventional Kalman filter, our algorithm
procedure might be invoked when in fact the robot is noperforms a prediction step and a correction step. Thengusin
actually contacting the environment. This could have drastthe geometric constraints provided by the robot’s intéoact
consequences on the convergence of the filtering algorithmyith the surface model, we perform our novel constraint
To avoid a diverging state estimate, it is important taipdate procedure to reduce the uncertainty in the Kalman
detect these false-positives, and when one occurs, temporastimate and to resolve the true registration parameters.
ily ignore the equality constraint that is imposed by the
preoperative surface model. To detect false-positives;ame IV. EXPERIMENTAL EVALUATION
preemptively apply the equality constraint update alganit ~ The experimental setup is shown in Fig. 1. The robot
assuming the contact detection is correct, and then eealud a three segment continuum robot with electromagnetic

the likelihood of the result with a Mahalanobis test, (EM) tracking coils at the base of each segment to measure
T the local positioning of the robot. There is also an EM
[’A‘:\k - )A(k|k} P;ﬁC [x;lk — ﬁk\k} > (. (13) tracking coil at the end-effector. The embedded electremag

netic tracking system that we are using is the Ascension
In Eq. 13,5(,% is the resulting state mean after performingTechnology 3D Guidance trakSTARwith coils that are
the equality constraint updatg;,;, is the prior mean before 0.9mm in diameter. The RMS position error of this system
applying the updateP,; is the prior covariance, and is 1.5mm and the RMS orientation error @s5 degrees. For
is a user chosen threshold. When the Mahalanobis distarités experiment, the end-effector of the robot was driven
exceeds this threshold, we report a false-positive foramint into forceful contact with a bench-top phantom consisting
detection. Incorporating this test allows for a more robustf a box lined with deformable foam. A Faro 7-axis laser
estimation process. scanner was used to capture arpriori surface model of



Fig. 7. In (a), multiple hypotheses are shown, each of whiafs ihe constrained filtering algorithm for registration. (b), some hypotheses have
diverged. In (c), the result shows proper alignment betwbenrestimated robot configuration and ground truth.

Algorlthm 1 Constrained Fllterlng for Surgical Estimation with our f||ter|ng a|g0rithm, is shown Over|apping with the

1 (f‘aov Paf‘o) — InitializeEstimate() ground truth configuration. This estimate emerged with the
2 for k — 1 to oo do highest likelihood after imposing all of the constraintsedu

3 (i, Prjpor) « Prediction(c,j o PZ‘ S to contact with the environment.
- SNEEAY The initial guess for the registration assumed4asmm

40 (Xg|k, Prx) < Correctionyr—1, Pyjr1, 2x) o< :
5. if DetectContaci(,u2,u3) then error at the position of the robot end-effector. This egsiate
6: (fcak,PZM)<—Equa|ityC0nStrairﬁk\k, Pik) to an approximatelyl) percent error with respec_t to the.

. £ ot o T p-1/o+ - length of the robot. The error was mostly associated with
5 1 (R = Ruie)” Py (Rggpe = Xawe) > € then a largely erroneous yaw angle. After processing the contact
8: (8%, Ci)+—ProjectToConstraintSpace(, Px) 9ely ous y gie. P 9 :

. at o+ ; I data and applying the constraints with the Kalman filter,
9: (8, C;.) + UncertaintyProjectios( C, ¢, oy,) . ' _ .

) A : + ot oo our final registration error was reduced tolmm (with
10: x; k,Pk“) —ProjectBackg;, C.|, Xy 1, Pr)s) - .

1 end i# respect to the end-effector position), which equates to a
12: end if less than0.8 percent positional error with respect to the
13: end for length of the robot. We believe this result demonstrates

the feasibility of our approach for accurate registration i
compliant environments.

, it does not suggest that the final performance

| h d the relafi o  the be the entire filtering scheme is necessarily sensitive & th
aser scan that captured the relative positioning of th@rob; iy guess for registration. Instead, the divergencéheke

to the phantom and eﬁtracteg the necessa}ryh grotl)J_nd "Ylpotheses shows that the act of filling the state space
registration parameters from the geometry of the object. it initial hypotheses is in fact serving its purpose: the
We ran the continuum robot to random desired targg}yotheses that are somewhat close to the true alignment

configurations that were out of _reach due to the robot being converge to the true state and the ones that are out of
obstructed by the phantom. This forced the robot to contagfiqnment will drop in likelihood. The significance is that

the surface at many different points. The data was saved ag long as we adequately cover the initial state space with

the algorithm was post-processed using Matlab, although W& hypotheses, the true state will emerge.
chose to only update the filter when the robot was relatively

stable (its velocity was below a threshold). This was to aid V. CONCLUSIONS
in the stability of the filtering algorithm and we note that The goal of the algorithm that we have presented is to aid
this is something that we will relax in our future work. in the creation of fully representative rendered models for
In Fig. 7, we show the result of a registration experimenturgical image-guidance. For medical procedures thatatann
In Fig. 7-(a), a set of initialized hypotheses are shown ilgefo utilize direct vision, a surgeon can refer to the rendered
the data is processed. Each of these hypotheses was evaigualization for visual feedback. Thus, it is importanatth
ated and updated using the constrained filtering algorithntke surgeon trusts the registration and alignment of thetrob
presented in this paper. In Fig. 7-(b), it can be seen thatlative to the organ surface models.
many of the hypotheses for the registration and localinatio To solve registration, we present a novel filtering algonith
have begun to move toward the ground truth configuratiothat leverages geometric constraints within a Kalman filter
Some hypotheses, though, have diverged due to a poor inittehmework to automatically register and localize a comylia
alignment and the local affect of the filtering updates. Irsurgical robot with respect to aa priori 3D deformable
Fig. 7-(c), the resulting configuration of the robot, estieth. surface model. Our method relies on an equality constrained



update step for when the robot is forcefully contacting the[9]
environment and an inequality constrained update step for
when a false-positive is detected and thus the robot is lying
in the free-space of the environment. With this filtering1o]
procedure, we can incrementally eliminate regions of the
state space that are decidedly infeasible, eventuallyviego [11]
the true state that defines the registration of the robot. The
theoretical contributions of this work are its use of edqyali
constrained Kalman filtering to localize a surgical robod an
the consideration of elastic force models within a Kalman2]
filter for applying equality constraints.

For future work, we will incorporate an improved com-
pliance model for the robot that relaxes our somewhais)
over-simplified model for computind.,.(x;) in Eq. 12.
Despite our simplified model, though, the filtering algamith [14]
performed well and localized the robot. We attribute the
success to the inherent stochasticity of the approach,hwhic
means that despite noisy sensing and imperfect modelg, th?f5
was still enough information acquired through constraints
to produce a likely final registration. Also for future work,
we will adopt a more sophisticated stiffness model for the g
environment. For this paper, we assumed a linear model but
admit that when modeling tissue for surgical applicatians,
linear stress-strain relationship is less than ideal. (7]

We have shown with a successful experiment that accu-
rate registration can be achieved automatically using ol#8]
proposed algorithm. In the future, we intend to test this
algorithm within vivo experiments and will also extend the[19]
approach to account for uncertainty in thepriori surface
models. Future experiments will focus on testing the robust,,
ness of our approach under real-time conditions, realistic
environments, varying stiffnesses, and organ movement. 211

[22]
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