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Abstract
In this report, we present an approach to optimal planning and flexible execution

for a set of spatially distributed tasks related by temporal ordering constraints such as
precedence, synchronization, or non-overlapping constraints. We integrate an optimal
planner for task allocation and scheduling with cross-schedule dependencies with a
flexible, distributed plan execution strategy. The integrated system performs optimal
task allocation and scheduling for tasks related by temporal constraints, and ensures
that plans are executed smoothly in the face of real-world variations in operation speed
and task execution time. It also ensures that plan execution degrades gracefully in the
event of task failure. We demonstrate the capabilities of our approach on a team of
three pioneer robots operating in an indoor environment. Experimental results focus
on the flexible execution strategy and illustrate that it effectively enables execution
of the optimal plan and prevents constraint violations. The overall approach is thus
demonstrated to be effective for constrained planning and execution in the face of real-
world variations.
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1 Introduction
Multi-robot teams will increasingly be used to address heterogeneous spatially dis-
tributed tasks in domains where no single team member has the capabilities or the
reliability to effectively execute all tasks. As the complexity of the domain increases,
coordination becomes challenging given the mixture of spatial, temporal and team ca-
pability reasoning required. In these scenarios, robust coordination techniques are es-
sential for ensuring that tasks are successfully executed. The nature of the coordination
problem to be solved is highly domain dependent. In some cases, tasks are distributed
among robots for independent execution, whereas in others the robots require constant
and tightly-coupled interaction amongst themselves to successfully complete the tasks.
The work presented in this report enables task execution in domains that have spatially
distributed high-level tasks related by temporal constraints. Such problems fall in the
category of those with cross-schedule dependencies [1] due to the interdependence be-
tween the schedules of different agents. This is a rich and diverse category of problems
that spans domains such as emergency assistance, agriculture, construction, and plane-
tary exploration. Consider an example scenario involving emergency assistance where
individuals with special needs must be sheltered in the event of an emergency. Each
client with special needs might need to be visited by a medical agent and then moved
to an emergency shelter by a transportation agent. Consequently, there are temporal
constraints (precedence or synchronization) that must be satisfied between the medical
visit and subsequent transportation. Thus, the problem requires joint coordination of
transportation and medical agents, subject to cross-schedule constraints.

With a focus on plan quality, the goal is to optimally plan for task allocation and
scheduling for the heterogeneous team, and to subsequently execute the computed plan,
while ensuring the temporal constraints between the tasks are satisfied. These con-
straints must be satisfied even in the face of execution-time variations in the operating
domain.

The main contribution of this report is xBots – an integrated approach to optimal
planning and flexible execution for a collection of multi-robot tasks with cross-schedule
constraints. The system combines the optimal xTeam planner [1] for task allocation and
scheduling with a new flexible execution approach based on the plays paradigm [2].
We experimentally demonstrate the effectiveness of xBots in computing and executing
optimal plans without constraint violations on a team of indoor robots.

The organization of the remainder of the report is as follows. Section 2 presents
related work while Section 3 details of the xBots approach. Section 4 outlines the
experiment setup and present our results and analysis in section 5. Finally, we end with
a summary and discussion of future work in section 6.

2 Related Work
There is a diverse literature on multi-robot coordination, planning and execution. We
will briefly review some key planning and execution frameworks that address the is-
sue of multi-robot cooperation during execution. A review of the literature, however,
reveals a dearth of discussion on multi-robot execution of constrained optimal plans.
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Several approaches use negotiation to formulate team plans and ensure conflict-free
execution. For example, Alami et al. [3, 4, 5, 6] present a framework for multi-robot
cooperation comprising the M+NTA scheme for Negotiation for Task Achievement and
the M+CTA scheme for Cooperative Task Achievement. This framework focuses on
cooperation to achieve independent goals. The independent goals are first allocated to
robots using the market-based M+NTA scheme. The M+CTA scheme provides a means
for robots to detect and treat resource conflicts by inserting temporal order constraints
between two actions belonging to two robots. As another example, Joyeux et al [7]
present a shared “plan database” for building, negotiating, and executing plans in a
multi-robot context.

Other relevant work on multi-robot plan execution includes CAMPOUT by Pirja-
nian et al [8], a distributed multi-robot control architecture that represents joint team
activities using a finite state machine augmented with synchronization primitives for
tight coordination of group activities. Additionally, Osherenko [9] proposes a plan rep-
resentation for multi-agent systems accomplishing cooperative tasks in the real world.
Their approach combines the ACT formalism [10] for representing hybrid (deliberative
and reactive) multi-agent plans with ICL [11], an inter-agent communication language.

None of these approaches address optimal planning and flexible execution of high-
level tasks related by temporal constraints. Furthermore, none of the existing strategies
can easily translate generated plans, optimal or otherwise, for flexible execution.

Simple Temporal Networks (STNs) [12] are often used to represent flexible time
plans. These networks, instead of representing the start time of tasks as fixed time
points, represent them as a time window, or a range of feasible times. A decision on
the exact start time of a task is not made during the planning stage, but is delayed until
execution time. As time progresses and tasks are completed, the STN is updated and
any changes to allowed time windows are propagated through the network. This has
the advantage that at any point in time, the consistency of the remainder of the plan can
be verified. Simple Temporal Networks have been used to enable flexible scheduling of
the plans of single agents [13], as well as individual agents operating as part of a team
[14]. While STNs are a fair representative of flexible plans, they do not by themselves
represent optimal plans. The use of STNs is complementary to our approach which
focuses on ensuring satisfaction of cross-schedule dependencies during execution of a
pre-computed optimal plan, with minimum communication between agents.

In summary, currently there exists no strategy for integrating optimal planning with
flexible execution strategies to ensure cross-schedule constraints satisfaction for multi-
robot teams.

3 Approach
In this section, we outline xBots, our approach for optimal planning and flexible plan
execution for multi-robot teams. The overall approach comprises a planning module
and an execution module, illustrated in Figure 1.

Given prior information, such as estimates of agent speeds and task execution times,
the planning module computes an optimal allocation of tasks to agents and a schedule
according to which the tasks must be executed. The current implementation of the
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Figure 1: xBots approach for optimal planning and flexible execution

xBots approach uses a specific optimal planner, xTeam [1] to generate the constrained
team plans for execution. The computed schedule for each agent includes task start
times, and corresponding waiting times needed to ensure that inter-task constraints
as well as time-window constraints are satisfied. This plan is then transferred to the
execution module.

In an ideal world where there is no variation in parametric values, the computed
plans could be executed as-is by the individual agents and would collectively satisfy
all the cross-schedule constraints. In reality however, rigid execution strategies are
susceptible to failure due to variations in the operating domain. It is thus necessary
for the agents to have an awareness of the relevant high-level constraints impinging
on their part of the team plan and a strategy to enable flexible and feasible execution
of the computed team plan. The agents do not, however, need to be tightly coupled
and can operate largely independently except when cross-schedule constraints need
to be satisfied. To achieve this, we implement a distributed plan execution strategy
in which agents are loosely-coupled and intermittently synchronize with each other.
This strategy is an extension of the plays [2] paradigm. We also outline an automated
approach for converting the generated optimal plans for a multi-robot team to a flexible
plan that can accommodate real-world execution-time variations. This is achieved by a
“Translator” sub-module that provides an interface for interaction between the planning
and execution, thereby allowing the execution strategy to be decoupled from the high-
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level planner and optionally used to with other solvers.
The remainder of this section briefly describes the xTeam planner used for plan

generation, the play-based plan execution approach, and the process of automated plan
translation for flexible execution.

3.1 Plan generation
Our implementation uses xTeam [1], a centralized mathematical programming based
planning approach that enables the computation of optimal plans for the task allocation
and scheduling problem with cross-schedule dependencies. xTeam is a custom branch-
and-price [15] algorithm that computes progressively better solutions, with bounds on
quality, until it returns a provably optimal solution. This optimal plan computed by the
planner specifies an assignment of tasks to agents, and an order and schedule by which
the agents should perform their assigned tasks. The schedule specifies precise task start
times to ensure that cross-schedule constraints are satisfied.

The decoupling of the planning and the execution modules in the xBots approach
makes it possible to accommodate other planners in the future. The choice of the xTeam
planner for the initial implementation is due to the capability of optimal planning for
problems with cross-schedule constraints.

3.2 Plan execution
As mentioned above, our plan execution strategy builds on the notion of plays, orig-
inally developed for the robot soccer domain. A play represents a deliberative multi-
agent plan as a coordinated sequence of team actions [2]. A play specifies a number of
roles, and a role represents a sequence of actions to be executed by a single agent. Each
agent on the team has a PlayExecutor, for executing actions, and a PlayManager, for
monitoring current play participation and for handling all intra-play communications.
For a given play, only one robot’s PlayManager can have ownership of the play, with
each of the other robots participating in the play responsible for reporting their status
to the play owner. Although initially formulated as a centralized, synchronous system
in which the actions performed by each role are executed in lock step with other roles
in the play, the most recent implementation allows for a more distributed approach
in which plays are represented through a play specification strategy based on the Ruby
scripting language [16]. This provides the flexibility for dynamic on-the-fly scripting of
plays during execution. In this work, We further extend the plays paradigm to support
communication between roles to satisfy synchronization and precedence constraints
when required while allowing each agent to otherwise execute its role independently.

3.3 Plan translation for flexible execution
To make play execution flexible to operational variations, we need to be able to syn-
chronize between different roles of the play when cross-schedule constraints need to
be satisfied. We achieve this by one or more of the following synchronization-related
actions:
send-message(key, msg): Sends a given message to a specified team member.
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read-message(key): Checks for receipt of a specified message, waiting (up to a con-
figured timeout) if that message has not yet been received. For this purpose, each
agent has a messaging daemon that receives and stores messages on its behalf until the
messages are needed.
check-message(key): Checks for receipt of a specified message, but does not wait if
that message has not yet been received.
read-message-by-time: Checks for receipt of a specified message, waiting up to a spec-
ified maximum end time, if that message has not yet been received.
wait-for-time: Waits until a specified time, if that time has not already been reached,
before beginning execution of the subtask.

Using the synchronization actions, the computed plans can be transformed to en-
sure satisfaction of cross-schedule temporal and time window constraints, as follows:
Precedence Constraints: For a precedence constraint such that task A must be per-
formed before task B, the agent that performs task A sends a message, once that task
is complete, to the agent assigned to task B. Conversely, the agent assigned to task
B waits to receive a message concerning the successful completion of task A before
beginning execution of task B. If the message indicates that task A was successful,
then the agent begins execution of task B. Otherwise, if task A was not executed suc-
cessfully, it does not attempt to execute task B but moves on to the next task in its
schedule, removing from its schedule any additional tasks that depend on B and also
notifying any other agents scheduled to execute tasks for which B is a pre-requisite.
This enables graceful degradation of the plan in the event of task failure.
Synchronization Constraints: For a synchronization constraint such that tasks A and
B must be performed at the same time, the agent assigned to each task sends a message,
once it is ready to execute its task, to the agent assigned to the other task. Each agent
then waits to receive the corresponding “Ready” message from the other agent, before
beginning execution of its task. Similar to the precedence scenario, a message other
than ”Ready” indicates failure and the synchronized task is not executed. A configured
timeout value indicates how long an agent will wait for a synchronization message.
Non-overlapping Constraints: For a non-overlapping constraint, the executions of
tasks A and B must not overlap, although it does not matter which is done first. In
the plan computed by the xTeam planner, however, a commitment has been made as
to which of the two tasks will be performed first. As such, at execution time, non-
overlapping constraints can be treated like precedence constraints.
Time window Constraints: If there are time window constraints for a given subtask,
the wait-for-time action is used to ensure that a subtask is not executed before the
beginning of its allowed time window. Similarly, a task will not be executed if an agent
arrives at the location of the task after its time window. In the event that the task is the
second task in a precedence constraint, or is involved in a synchronization constraint,
a read-message-by-time action is used instead of the read-message action, to avoid
waiting beyond the end of the allowed time window.

The synchronization actions must be used in a specific order to ensure feasible exe-
cution of the plan. Consider a segment of the computed plan that comprises traveling to
a subtask location, optionally waiting for a specified amount of time, then performing
the subtask:
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travel-to <subtask location>
wait-till <subtask start time>
execute <subtask>

This plan segment is augmented with the synchronization actions as follows:

travel-to <subtask location>

for each precedence constr (A,B) where <subtask>=B
read-or-wait-for-message("A-done")

for each synchronization constr (<subtask>,B)
send-message ("<subtask>-ready", agent(B))

for each synchronization constr (<subtask>,B)
read-or-wait-for-message("B-ready")

execute <subtask>

for each precedence constr (A,B) where <subtask>=A
send-message ("<subtask>-done", agent(B))

If the subtask has an allowed time window, a wait-till action is inserted right af-
ter the travel-to action, and the read-message-by-time action is used instead of the
read-message action. Note that for multi-way synchronization constraints (between
more than two agents), the synchronization constraints between all pairs of agents in
the group must be represented. Graceful degradation of the plan is enabled by skipping
a subtask if the communicated message indicates that its required preceding or simul-
taneous subtasks cannot be executed. The agent then moves on to the next subtask
in its plan. Furthermore, whenever a read-message or read-message-by-time action
is prior to performing a task, the agent uses a check-message action before traveling
to the task location, in order to avoid unnecessary travel if a message has been sent
reporting unsuccessful completion of the task in question.

As the number of messages sent is proportional to the number of pairwise inter-
task constraints in the problem, and the size of each message is only a few bytes, the
bandwidth requirements of the approach is negligible. Furthermore, if there are no time
window constraints on a subtask, no initial clock synchronization is required between
the agents, thereby further reducing the communication overhead. Additionally, the
approach is agnostic to the robot control architecture and, as such works well with
heterogeneous agents. It can be further extended to handle imperfect communication
between pairwise agents whose schedules are related by temporal constraints.

In our domain, each agent largely executes its role independently, and we use in-
termittent communication between roles, as described, to enable synchronized and co-
ordinated behavior when required for specific subtasks. The computed plan is auto-
matically translated into a play whose roles comprise the individual single-agent plans
computed by the planner, augmented with the synchronization constructs previously
described.
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4 Experimental setup
To demonstrate our approach, we use the previously outlined scenario of providing
transportation assistance to clients with special needs in the event of an emergency. For
our tests, we use a team of three (3) Pioneer P3-DX robots (Figure 2), one of which rep-
resents a medical agent while the other two (2) represent transportation agents. There
are five (5) clients that require transportation assistance. In the first scenario, the medi-
cal visit is a two-part activity, the second part of which had to be scheduled at the same
time as the pickup of the transportation service, modeling a situation where the agent
performing the medical visit task also helps load the client into the transportation vehi-
cle. This is modeled as a synchronization constraint between the second subtask of the
medical visit subtask and the pickup subtask. In the second scenario, the medical visit
precedes the transportation service, resulting in precedence constraints.

Figure 2: Pioneer robots

The experiments were run in a roughly 10m x 15m indoor space. Based on prior
experimentation, robot capabilities and operational domain, we determined an average
operational speed of the robots (0.2 m/s) to be used by the xTeam planner towards
optimal plan generation. Furthermore, to reduce wait time and increase operational
efficiency, the expected execution times for each part of the medical visit tasks were
scaled down to be comparable to the travel times. Consequently, the expected execution
times for each part of the medical visit tasks was 3 seconds and for a total medical visit
time of 6 seconds per client. The pickup and drop-off tasks were each specified to
require 3 seconds each.

The routes computed by the planner were the same for both the synchronization and
the the precedence scenarios (see Figure 3(a)). The medical visit agent, A2 follows the
route from its start location through the sequence of client locations, C3, C1, C2, C4, C0.
The transportation agent A0 picks up clients C3 followed by C1, and drops them both
off at the shelter S0. The second transportation agent, A1, picks up the clients C2, C4,
and C0, and drops them off at the shelter S1. Although both scenarios have the same
computed routes, they have different timelines. The computed timeline for the syn-
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chronization scenario, showing travel time, waiting time, and task service/execution
time for each agent, is illustrated in Figure 3(b), while that for the precedence scenario
is shown in Figure 3(c).

In prior work [1], we have performed detailed analysis on the optimality of the
generated plans and hence focus our testing on execution performance. To validate
that the constraints are not violated despite deviations from the plan conditions during
execution, the robots were tested for three different execution cases using the same
generated optimal plan for all three cases. In the first, the durations of both types of
tasks were as expected. In the second, the first part of each medical visit task was
shorter than expected (resulting in a total visit time per client of 4s instead of 6s), while
in the third, the first part of each medical visit task was longer than expected (resulting
in a total visit time per client of 8s). The agents executed their plans in one of 3 modes:
Flex mode: This mode represents the flexible execution strategy described in this re-
port, in which the agents relax the precise schedules computed by the planner and
exchange synchronization messages as needed to determine when subtasks can be fea-
sibly executed.
Fixed-start mode: In the second execution strategy, the agents do not exchange syn-
chronization messages during plan execution. Each agent instead attempts to adhere to
the subtask start times specified by the plan. If an agent reaches a location before the
specified start time of the task, it waits until the specified start time before beginning
execution of the subtask. If it arrives at a location after the specified start time of the
subtask, it immediately executes the subtask and then moves on to the next item in its
plan.
Fixed-wait mode: In the third execution strategy as well, the agents do not exchange
synchronization messages during during plan execution. Instead, the agents adhere
strictly to the subtask wait times specified by the plan. Whenever an agent arrives at a
location, it waits for precisely the amount of waiting time, if any, specified by the plan.
It then executes the subtask and moves on to the next item in the plan.

For each of the two (2) problem scenarios (synchronization and precedence) and
each of the three (3) execution cases (normal-length visits, shorter-length visits, and
longer-length visits), the team of robots conducted three (3) runs in each of the three
(3) possible execution modes (flex mode, fixed-start mode, and fixed-wait mode), for
a total of 54 experimental runs. During execution, the agents’ travel speeds varied
slightly, due to “real world” mobility considerations such as an obstacle in the environ-
ment, path interference between the robots, noisy sensors etc.

5 Results and analysis
To evaluate the performance on our execution strategy, we analyze the system under
two operational modes, that of constraint satisfaction and graceful degradation.

5.1 Constraint satisfaction
Figure 4 shows the timelines for sample runs of each of the three execution strategies
for the case with synchronization constraints and normal-length visits. In the sample
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run using the flex mode, the relevant subtasks were perfectly synchronized. To achieve
this, it can be seen that a short wait time was inserted between the two parts of the
medical visit to client C3, which is the first client visited by the medical agent (Agent
2). Similarly, waiting time was inserted between the two parts of the visit to client C4,
because the travel time of the transportation agent, Agent 1, with which the medical
agent had to synchronize, was longer than expected. For the sample runs using the
“fixed-start” and “fixed-wait” execution modes respectively, most of the subtasks to be
synchronized were considerably mis-aligned, due to execution time variations in travel
speed.
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Figure 4: Sample execution timelines for the synchronization scenario

Figure 5 shows the timelines for sample runs of each of the three execution strate-
gies for the case with precedence constraints and normal-length visits. For these sample
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Figure 5: Sample execution timelines for the precedence scenario

runs, all the precedence constraints were satisfied using all three execution strategies.
This was because the medical agent’s travel time was as expected or better than ex-
pected in all three runs, so the medical agent was always able to complete its task
before the transportation agent performed the corresponding pickup task. However,
the plan was completed earlier in the “flex” execution mode than it was in the other
two modes and therefore was more efficient.

In the event of a constraint violation, we computed an associated “constraint viola-
tion time”, given by:
Synchronization Constraints: If subtasks A and B are supposed to be executed to-
gether, than the constraint violation time is the absolute value of the difference between
the start times of subtask A and subtask B.
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Figure 6: Constraint violations for synchronization scenario (left) and for precedence
scenario (right)

Precedence Constraints: If subtask A is supposed to be done before subtask B, but
subtask B is actually started before A, then the constraint violation time is the amount
of time between the start time of B and the completion time of A. If B is started after
the completion time of A, the constraint violation time is 0.

The constraint violation time for an entire plan execution is the sum of the con-
straint violation times for each constraint. In our test cases, there are 5 constraints for
each run. Figure 6 shows the average constraint violation time per run, averaged over 3
runs for each execution mode and scenario. The figures illustrate that the “flex” execu-
tion mode effectively prevents constraint violations and as such is a simple and effective
approach to flexible execution of optimal plans with cross-schedule constraints.

5.2 Graceful degradation

In certain situations, graceful degradation allows the system the flexibility to isolate
failure states during execution and to continue executing the rest of the plan, allowing
for an improved if sub-optimal execution performance. Figure 7 demonstrates the util-
ity of the graceful degradation property of the execution framework for a sample run.
The generated plan (see Figure 7(a)) dictates client C1 is the second client visited by the
medical agent. However, we simulate an execution failure for the medical agent. Once
the medical agent acknowledges failure, it terminates the associated transportation task
for the client. Consequently, one of two situations arises. In the first situation, depicted
by figure 7(b), the task cancellation is communicated to the transportation agent only
after the medical agent reaches the intended client location. Thus, each agent still does
as much traveling as before rather than attempting to reduce the overall operational
distance of the remaining plan. Alternately, in the second situation, figure 7(c), the
medical agent acknowledges failure before it sets off to the client location and commu-
nicates to the transportation agent. Consequently, both the medical and transportation
agents skip visiting the client location altogether. Thus, the overall travel distance for
the team is reduced.
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(b) Timeline when the medical task for C1 fails/is aborted
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Figure 7: Graceful degradation - when a task fails or is skipped, its dependent tasks are
removed from the plan, and the agents move on to perform the remaining tasks.

6 Conclusion and Future Work

We present an approach for generating optimal plans and flexible execution of multi-
robot plans with cross-schedule temporal constraints. The flexibility of the strategy
ensures that temporal ordering constraints are satisfied, even in the face of real-world
variations during plan execution. The approach also allows for graceful degradation
of the plan when tasks fail or cannot be executed. Our future work will extend the
notion of graceful degradation to address the question of re-planning when tasks fail or
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new tasks come in, thus closing the loop between the planning and execution modules.
From a planning perspective, we will relax current assumption regarding task execution
ordering for non-overlapping constraints. This will provide the execution strategy with
an additional layer of flexibility with regards to the task execution ordering.
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