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Abstract— The goal of this paper is to generate and stabilize
a periodic walking motion for a five degrees of freedom planar
robot. First of all we will consider a biped version of the
spring loaded inverted pendulum (SLIP), which shows open-
loop stable behavior. Then we will control the robot behavio
as close as possible to the simple model. In this way we take
advantage of the open-loop stability of the walking pattern —>
related to the SLIP, and additional control actions are used
to increase the robustness of the system and reject external
disturbances. To this end an upper level controller will de&
with the stabilization of the SLIP model, while a lower level
controller will map the simple virtual model onto the real robot
dynamics. Two different approaches are implemented for the

lower level: in the first one, we aim at exactly reproducmg tre Fig. 1. The starting idea in this paper is to reshape, viarnpetitorques,
same acceleration that a SLIP would have when put in the e gynamic behavior of the robot in order to make it as claspassible

same condition, while in the second one, we aim at a simpler g the one of the simple conceptual model.

control law without exactly reproducing the aforementioned

acceleration. The latter case is equivalent to considering SLIP

with additional external disturbances, which have to be hanled

by the upper level controller. Both approaches can succesdfy —and animals during walking and running. Given the initial

reproduce a periodic walking pattern for the robot. condition and appropriate parameter values it is possible t
obtain a periodic pattern (limit cycle) for the center of mas
. INTRODUCTION (CoM in the following) resembling the motion and contact
Since the interest in building humanoid robots able tdorce profile obtained for example in human walking [9].
interact with humans is increasing more and more durin@n the other hand due to its simplicity the SLIP model is
the last years, also the role of biped locomotion is gaining/ay far from a complete dynamic description of the entire
more importance. body motion. For example the effects of the swing leg are
The classic approaches are either to control the roboompletely neglected and not taken into account in this
using the inverted pendulum model and the zero momeatmple model.
point (ZMP) [1], [2], [3] with typically complete actuation  The SLIP model is also expected to be a useful template
or, conversely, to build passive-dynamic walkers like tisbo model for studying the effects of passive elastic elemants i
with limited actuation efforts [4], [5], [6] which can exlitta  legged robotic walking systems. There are two main reasons
periodic limit cycle motion. Here, instead, the goal is tiyfu for considering the presence of springs in locomotion [11]:
actuate the robot in order to reproduce, via the contrdlter, energy storage (which means less energy consumption and
behavior of a passive walker for obtaining a periodic gaitunwanted heat production) and smaller force at the impact of
as sketched in Fig. 1. In this way, we aim at utilizing thethe foot on the ground (which decrease the risk of damages).
benefits of an open loop stable limit cycle for a robot, which Qur aim in this paper is not to build a robot that behaves
is not a priori tailored to a specific set of periodic walkingexactly like a SLIP model or some modified versions that
motions but capable of a variety of motion patterns. also take into account the actuation part [12], [13], but to
To this end the spring loaded inverted pendulum (SLIPjke advantage of the self stabilizing behavior of the model
model will be analyzed. For running and hopping motionsin order to obtain a desired behavior for the CoM. In other
researchers usually consider a model with only one springords we do not track any predefined trajectory for the CoM
[7], [8], but for walking also a second spring/leg is needegt4] but, conversely, we use the SLIP behavior as a target
[9], [10]. Since this paper is focusing on biped walkingdynamic for a lower level controller. As a consequence, & th
this is the model that will be considered in the following.following the focus will not be put on foot steps or similar
The main reason why it is useful to start with such @roblems; these issues are automatically solved by the SLIP
model is that it is one of the simplest models that camodel.
take into account the compliant behavior shown by humans The main contribution of this paper is to map the simple
. . , dynamics of the bipedal SLIP model to multi-body robots.
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. . Fig. 3. SLIP model with the leg vertically oriented (also dis#s initial
Fig. 2. Conceptual architecture of the controlled systeime TEont_roIIer configuration), in the double support phase, and again irsithgle support
(upper and lower level) plays the role of an interface betwd virtual  phase (hut not in the VLO condition). Note that because ofasgimption

SLIP model and the real robot. Thanks to this interface thiiadi system ¢ considering massless legs, the angle of attadn instantaneously reach
can be mapped onto the real one. The planning layer has bptated o jesired value.

requiring a desired dynamic behavior rather than desidgddiories. Know-
ing the actual position and velocity of the CoM of the robbie expected
acceleration is the one that a SLIP model would have had.

xg|*a

Using the following notation:n for the total massk

and [, for the stiffness and rest length of the springs;
bipedal walking case. Several issues arise because of tifist the CoM position,xr, with i = {Left, Right} for
First of all some strategies should be considered to detle foot contact point ang, for the Earth’s gravitational
with the swing leg in terms of foot trajectory, treatment ofacceleration, the system’s dynamic equation can be written
the double support case and nonlinear terms in the dynamis:
model. These effects can not be neglected, but on the cgntrar %o = 1 (fL (x¢) + fr (x6)) + g0, (1)
they turn out to have a big influence on the required torques. m
This is one of the reasons why different kinds of controlvheref; (x) and fz(x) are the spring forces due to the
laws are analyzed. Also for the SLIP the control techniquesft and right leg, whose expression is:
are different than in [15], since the presence of the double
support phase makes it difficult to extend the classicalf; (xg) =k (Ip — ||[x¢ — xF,
control approaches based on the analytic approximation of
the model. As a result both control layers are modified andla the following we will refer to the foot contact point simypl
complete new interface between the SLIP dynamics and th&x, but obviouslyxr = xp, or xr = xp, depending on
multi-body dynamics is obtained. the stance phase.

The paper is organized as follows: the next section will The classic approach for studying the stability of the SLIP
deal with the modeling of both the SLIP model and the multisystem is to consider a Poincaré section [16] and check
body robot. Then the control techniques will be consideredhe eigenvalues of the monodromy matrix. A particularly
first for the SLIP (in section IV-A) and then for the multi- convenient section is the one corresponding to the comditio
body robot (in section IV-B). Finally, simulation resultslw  of vertical leg orientation (VLO) [10]. Taking additiongll
be presented in section V followed by the final discussiothe energy conservation property of the SLIP model into
and outline of future work in section VI. account, in this case the dimension of the state space is
reduced from four to two. In particular it is sufficient to
use the CoM height and the angle of the CoM velocity

One of the key points to keep in mind is that the controlleas coordinates of the Poincaré section in order to have a
is consisting of two levels. The upper level control is dilec complete description of the system for the periodic limit
connected to the SLIP layer and is ensuring to obtain @scle analysis. In fact if we are interested just in the asialy
periodic walking pattern despite some inevitable errord arof the limit cycle the position along the forward directian i
disturbances, while the lower level control is forcing thenot important, then once we know the height of the CoM
multi-body robot dynamics to behave like a SLIP model. Asn the VLO condition we automatically know both the value
a result, the controller plays the role of an interface betwe of the potential energy and the elastic energy. From this and
the two dynamics, making it possible to map the dynamicgie total energy value it is possible to compute the kinetic
of the virtual SLIP onto the dynamics of the real robot, agnergy or in other words the magnitude of the velocity; this
shown in Fig. 2. means that the only information missing is then the angle of
A. Dynamic model of the SLIP this vector with respect to the reference.

The model, shown in Fig. 3, is simply given by twoB. Dynamic model of the multi-body robot
massless linear springs connected to each other in the hip,z five revolute joint planar robot with massless feet

where all the mass is concentrated. Due to this assumptigRpresented in Fig. 4 with the definition of the joint anyles
the swing leg can instantaneously change its configuratiQ@ pe considered.

when it takes off from the ground, to reach the desired angle 1) Single support: The dynamic model for the single
of attack for the next step. Obviously this will not be trueSupport situation can be written as [17]:

for the multi-body robot, because of the inertia of the swing

leg. M(q)d+C(q,9)q+g(q) =T, )

) XG — XF;
xc — xF,

i

. i={L,R)}.

II. MODELING
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Fig. 4. Multi-body robot and definition of the joint varialeccordingly =~ Fig. 5. The system that we want to study is called in litematarhybrid

to the Denavit-Hartenberg convention with the third axisngy out from  dynamical systems [19]. This means that beside the flow mapchw
the page [17]. The angle beta, instead of the time, is usedtangeterize describes the continuous dynamics of the system with a setrdihary

the offset of the swing foot with respect to the CoM. As a rethe swing  differential equations, also a set of discrete states (whinly change
foot position is dependent on the CoM and no information &ltoe time  because of an event) should be utilized.

necessary to complete one step is needed.

of the Jacobian matrid.. Therefore, (5) can be interpreted
whereq € R° are the generalized coordinatdel (q) € such that only the component &f that is causing zero
R5%5 is the inertia matrix,C (q,q) € R°*5 is the Corio- velocity at the contact point is kept after the impact. On
lis/centrifugal matrix,g (q) € R® is the vector of the joint the other hand, if we compute the energy loss we obtain:
torques due to the gravity ande R are the input torques.

T SR Y T
It's worth to notice that since in this paper only walking 20F = 4 Mq—q7 Mq
ions Wi iti i i = ¢ (NTMN-M)q" (6)
motions will be analyzed it is enough to consider a fixed base q \ q,l
dynamic model, but the extension to the floating base case = —q JT(IM I Jq

(needed for jumping and running motions) is straightfodvarwhere J.(q) 4" is the velocity of the impact point right

and it is based on the same argumentation that will Dgafqre the impact, in other words the pseudo kinetic energy
followed for switching from the single to the double SUpPOrtq|ated to the impact point is the energy that will be lost in
phase in section 1I-B.2. the impact.

The model is complete when also the transitions between 2) Double support: Assuming to have no sliding between
single support and double support are considered. These g et and a rigid floor, an additional constraint must be
caused by the two events touch down and take off of g yeq to the model in the double support phase (just like has

legs, as shown in Fig. 5. Moreover, because of the impagjgan, previously done for modeling the impact):
an energy loss will happen in this instant. This can be easily

modeled considering that, at the impact, also an impulsive Je(a)g=0, (7)
force is acting on the system and that it will produce aghich can also be expressed as:

instantaneous change of the velocity (but not of the pasitio

[18]. This means that the system will exhibit a variation of Ju, (ar)dr = Ju, (4r) AR, (8)

the generalized momentum in the joint space that can WnereJm (qi) i = {L, R} gives the velocity of the hip with
expressed as: respect to the correspondent foot aqdi = {L, R} are the
A M (q)d) =M (q) Ag =JI7 (q) A, (3) loint variables of the correspondent leg. Assuming that at

__ _ ) least one of the two Jacobian matrices is nonsingutaen:
where J. (q) € R?*5 is the Jacobian matrix that maps

the joint velocities into the velocity along the constralne d; = J;I}, CORIACTIETE 9)
directions, whilex € R? are the generalized reaction forcesang is possible to write:
along the same directions. 1 )

If the impact is modeled as an inelastic impact, then the q= [ I Ju; O } [ q; ], (10)

following relation must be considered: I qs
J(@qt=0 < J.(QAq=-J.(@)q", (4 I'(q) da

wheregs is the joint angle of the trunk not affected by the
change between single and double support.

If we differentiate (10) with respect to time, then subdétu
g andq in (2), and pre-multiply everything b¥” (q), we
A= (@MU T get: ) N
q+ _ (I _ M—lJZ" (JcM_lJZ)71 Jc) q (5) M, (Q) d. +C, (Qa 4)4e + 8a (Q) = Ta, (11)
whereM, — TTMT, C, = T'7 (cr + MI"), g, = TTg
andr, =T7Tr.

where the superscripts and * are used to express the
guantities before and after the impact, respectively. iBglv
the system of equations (3) and (4) leads to:

)

Jhwm

wherein the matrixXN (q) = I — JI™MJ,. is a projection
matrix, which projects the joint velocities into the nullesge LIf both are singular the system is in a complete rest.



level is decreasing but also dissipating energy when the
level is increasing. This is different from what was done
in [15], where an energy correction law is not continuously
acting (based on the error between the desired level and the
measured one), but intervening before the impact based on
a pre-computed value of the energy loss.

The starting point is to consider the expression of the
power:

P =x% (m%q — fr, — fr — mgo) . (14)

Since the power is the derivative of the energy and the dgsire
value of the energy is constant, the problem of controlling
the energy to the desired value can be solved via an energy

Fig. 6. Overlapped configurations of the robot after contezisteps. The controller that ensures:
red and blue lines are respectively the CoM and swing fogedtary.
P:kE (Ed_E)a (15)

where kg is a positive gain and; is the desired constant

. . ) total energy. This is possible if the resulting accelerato
While the SLIP model defines the CoM trajectory and thene coM is the one of a pure SLIP model plus an additional
target angle of attack for the next step, it is still necessar erm with the following expression:

define a trajectory for the swing leg, since this information .
is completely missing in the SLIP model. In order to be as Ag = ix_szE (Eq— E). (16)
close as possible to the virtual system that the robot iadryi m |xq||

to reproduce, a good choice could be to just plan the relativehis means that the controlled SLIP model is walking under
position of the swing foot with respect to the CoM, ensuringnhe effect of a virtual state dependent gravity field. Thenter
that the foot will have reached the desired relative p(1$itioAg is always in the direction of the velocity, increasing or
(defined by the desired angle of attack) before the touddecreasing the kinetic energy in order to keep the totalgner

down event. Furthermore, we use the angle) related to to the desired value. Equation (1) thus is modified to
the line from the stance foot to the CoM as shown in Fig.

4 as a parameter for the trajectory. Then the desired foot Xg = 1 (fr (xa) + fr (xa@)) + 8v» (17)
position is given by m

IIl. PLANNING

with g, = go + Ag.
xp, =x¢ + I (B(xq)) , (12)

where IT (5(x¢)) is the interpolating function describing

the shape of the foot trajectory relative to the CoM. Sincecl;:-a
it is also necessary to ensure the continuity of the desir : .
trajectory, a cubic spline with desired initial and final wed | odel. The first approach is based on an exact feedback

. . y . . inearization of the robot dynamics and can be seen as
and two "virtual instants” [17] is used. The desired foota extension of the control law presented in [15] for an
position cannot be used as a desired value for a conventiorp]%pper to a bipedal SLIP for walking. The second approach
trajectory tracking controller since i.t depends on_the eotr presented in section IV-B.2, aims at a simpler control Iaw’
Zta:}e_. Intsrt]ead, W? formulate a virtual constraint [20] b}Ovhich requires less information about the system. Theegfor

efining the error term we will separately consider the different tasks that need to
E=xr —xc - (B(xq)) , (13) be executed. _ o _ o
) 1) Feedback linearization: As proposed in [15], it is
which should be kept equal ®,; = 0 by the controller. possible to map the SLIP model on the real robot dynamics
Figure 6 shows overlapped configurations of the robg}; an acceleration level. The idea is to ensure that the
during the path. The red line represent the CoM trajectorycceleration of the CoM of the real robot is the same as in the
while the blue line the swing foot trajectory. SLIP model. The control law can be derived following the
IV. CONTROL same_steps neede(_JI to c_zleriye the classic impedance control
_ law with feedback linearization.
A. Upper Level: Total energy control Three main tasks can be identified:
The first control law that will be presented is the one , coMm accelerationi
responsible to cope with probably the biggest difference , yjrtyal constraint for the swing foot trajectogy
between the conservative SLIP model and the multi-body , trunk orientationdr = q1 + go + gs.
robot: the loss of energy at the impact. The energy control
law acts based on the state of the SLIP model and is not
only re-injecting energy in the system any time the total x: =J:(q) q, (18)

B. Lower level: Multi-Body Control

In the following two different approaches will be presented
order to make the robot behave like the simple virtual

The corresponding velocities can be computed from



T . . .
wherex; = { XL ET 9-% } is the velocity in the task Wherege andgy are the projections of the gravity torques
in the corresponding space.

This control law is known to be asymptotically stable
and less sensitive to model uncertainties than feedback
linearization [21].

% =JM™ (r—Cq—g) +J. (19) At this poinF adding th.e resulting torques wiII.cau_se the
two tasks to interfere with each other. To avoid this, the
At this point with the following choice of the torqués  torques computed for the second task will be projected in
. the null space of the transpose of the Jacobian matrix of the
T=MJ;! (itd - JtQ) +Cq + g, (20)  higher priority task. This means that the torques produced
to fulfill the second task will produce no force on the CoM
which will mainly move under the effect of the gravity field

space andl; (q) = [ J& Jf J§ }T the corresponding
Jacobian matrix. Considering the time derivative of (18) an
substitutingg from (2), we get:

we obtaink; = %;,. Choosing

L (f, (x¢) + fr (x)) + & and the vi_rtu_al springs._ Obvious_ly this also means j[hat the
Ry = TKP E—Kp.& 21) second priority task will be fulfilled as long as it is not
4 .ot _ e - ’ interfering with the other one.
Or, + kpyOr + kprOr Before concluding this section it is worth to mention that

wheredn — 0 — 0 ensures that. corresponds exactl also some torques that push the robot away from the singu-
T= "l 7T . P Y Jarity should always be considered. The classic approach is

to (17) and that — 0 andé; — 6r,. In the simulations . . . . . i
reported in section V, the desired trunk orientation is keptf) consider the kinematic manipulability measure [22]:

vertically ¢, = 07, = 0). Miin, (q) = /det (Jg,I5)  i={L,R} (24)

2) Multi-priority control law: From the previous control

law it is possible to recognize that three different types ofnd then choosing a singularity avoidance potential thit wi
tasks are considered in the defined task space: The CoM t4¥% derived to obtain the torques. In addition it is possible
is requiring to produce a desired acceleration accordirg tol@ consider a damping term also for this task. The idea
desired dynamic. The swing foot task implements a virtud that, considering a quadratic form for the potential, the
constraint. The trunk tasks corresponds to trajectorkingc  corresponding torque will be S|mgar to( & spring like term
. . . . _ 9mgkinlg) ; H
task. The idea is then to separate these different typesks ta Where the transpose df.i, (q) = =53 is responsible -
and use simpler control laws to fulfill each of them. In th©r Projecting the force from one space to the other. At this

end, the required torques will be added using a null spa&?i”t (23) suggests the following choice for the new torques

projector. —J L (kpgin, + kpJIkin,d)  Miin, < mo
First of all a higher priority will be assigned to the CoM 7s4; = 0 ' _ ;
. . . . . Miin; > mg
task, since the main goal is still to reproduce a SLIP like (25)

motion. In the end what is really important for this task iSWheremk- — M — mo andmy is a threshold which
. - - 1N 114
just to produce the forces of virtual springs attached to ﬂ\ﬁdicates that the robot is close enough to the singular

CoM. ) configuration to activate the corresponding torques.
Once it has been understood from the SLIP model that the ¢ final expression of the torques is then:

presence of compliant elements is useful, it is convenient t N
design simpler control laws than the feedback lineariratio 7 = 754, + Tsay +Tc + (I - JE (Jg) M) Tpp- (26)

while the self-stabilizing behavior will be augmented b th T i
upper level SLIP stabilization. In other words the goal for 3) Double support and redistribution of torques: As seen

: o : . 27" ~In 1I-B.2 the expression of the dynamic model during the
this task is just to map the virtual spring forces in joint : .

. . double support is formally equal to the one obtained for the
torques accordingly to the transpose of the Jacobian matrix

that relates the joint velocity to the velocity of the CoM anqzmgIe support. Th'S means that thg con_trol laws Comp“ted
. . ) = efore can be directly applied also in this case provided to
without any kind of non linear compensation:

consider the matrices of the new dynamic model instead of
16 =I5 (f1(xq) + fr(xg) + mAg) , (22) the old ones and to remove t_he_ swing fo_ot coordinates from
the task space. In this way is just possible to compute the
where obviously also the extra component of the virtuabrquest, and not all the torques. To obtain the latter
gravity field must be taken into account. the relationT, = I'’'+ between the torques is taken into
In case offy, = 0, for the other tasks simple PD control account. From this one we obtain;

laws with gravity compensation can be used:
ws with gravity P ' u T = (FT)+W Ta+ (I — (FT)+W I‘T) Td, (27)

—Kp & —Kp, ¢ . iy - . L
f gﬁé . D9§€+g5 ., (23) where W is a positive definite matrix, which induces a
Pr0T = KD 0T + 80 weighted norm for the torques. It is useful to penalize a
big value of some torques (e.g. ankle torque) more than the
2|n the following we will assume to be far enough from the siageon- % In additi d E] 9 . dq ”) .
figurations. Further on in the section additional torquel @ introduced others. In addition, we use the assoqlate nu space.pcxnjec
in order to cope with this problem. to keep the torques as close as possible to some desired value

Trp = [ Jj]
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Fig. 7. Vertical motion of the CoM for the two multi-body coollers
compared with the SLIP dynamics.

C. Aremark on stability
Since we try to reproduce the SLIP behavior, also the
stability analysis will be based on the same approach. In
other words we will consider again the same Poincaré may 12l
for the system. To be precise it should be mentioned thal
a more formally correct way to analyze the system is to
consider a three-dimensional Poincaré map. For the multi- |
body robot, in fact, the total energy is not exactly constant ;
but only controlled to be constant. Therefore, it should be )
considered as the third coordinate on the Poincaré sectior X
Nevertheless, if the total energy control is fast enough to oaf 1| *
1
1
I
1
1
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ensure that the total energy does not deviate far from its
desired value the approximation of considering a constan
energy level is reasonable.

time [s]

V. SIMULATIONS

In the following simulation study, we compare the limit
cycle behavior of the SLIP model with the ones of the two
multi-body robot controllers. The simulation parametefs o
the SLIP dynamics are adopted from the simulation resultge shown in Fig. 8 to 10. One can see that the variations in
in [10] and are shown in table I. The parameters of the multthe force are higher for the multi-body model.
body dynamics are shown in table Il. The CoM of each The effect of the energy control approach (16) is presented
segment was set to the center of the segment. MoreoveiraFig. 11 with the feedback linearization based controller
CLIK algorithm [17] is used in order to ensure that bothand different values of the controller gain;. One can see
system will start with the same initial conditions and in thehat without the energy controller (i.e. fég; = 0) the multi-
same configuration (VLO configuration). body system instantaneously loses energy at each step due

The simulation environment is implemented in MATLAB to the impact. The red dash-dotted line and the green dashed
using a sampling time of.1ms and the function ode45 to line show the total energy for two different controller gin
integrate the equations. This evaluation verifies that the proposed energy control

Figure 7 shows the vertical motion of the CoM for themethod efficiently compensates for the energy loss due to the
SLIP model and the controlled multi-body system withimpacts and the energy is recovered according to the time
the controllers from section 1V-B.1 and IV-B.2. Even theconstant in (15). Figure 12 shows the results with the simple
feedback linearization based controller deviates from theontrol law from section IV-B.2. Even if there is a larger
trajectories of the SLIP model due to the energy loss at eaefriation in the total energy now due to the uncompensated
impact. One can see that the deviation of the simpler contrnbnlinear terms in the closed loop dynamics, also for this
law is larger, but it still results in a quasi-periodic wailgi controller the energy loss at the impact is compensated.
motion. Finally, Fig. 13 and 14 show the behavior of the two

The vertical ground reaction force for the SLIP model andontrollers on the Poincaré section. One can see that both
the forces due to the virtual springs for the two controllersontrollers converge to a fixed point, which however is

Fig. 8. \Vertical ground reaction force of the SLIP model.
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Fig. 9. Virtual springs forces of the multi-body system

linearization based controller.

time [s]

witte feedback

Left leg
- — —Right Leg

VGRF (bw)

time [s]

Fig. 10. Virtual springs forces of the multi-body systemhathe simplified

control law.
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Fig. 13. Poincaré section of the multi-body model with tleedback

linearization based controller. The red circle is the fixethpfor the original
SLIP model.

different to the original fixed point of the SLIP model,
represented with a red circle in the figures.

VI. CONCLUSION AND FUTURE WORKS

In this paper we utilize the dynamics of the bipedal SLIP
model as a template model for the control of a multi-body
robot. The controller acts on two levels. In order to compen-
sate for the energy loss that is inherent to the impacts at the
foot touch down, an energy control algorithm for the SLIP
model is proposed. In contrast to previous solutions in the
literature, this controller is based on a continuous reguria
of the energy and does not need any prediction of the energy
loss for the next impact. The controlled SLIP dynamics is
then used as a desired dynamic for a lower level controller
designed for the multi-body robot dynamics. Two solutions
of different complexity are proposed and compared. A multi-
body robot controller based on feedback linearizationltgsu
in a very close emulation of the SLIP behavior. Moreover,
a simpler control approach is discussed, which avoids the
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Fig. 14. Poincaré section of the multi-body model with theified
controller. The red circle is the fixed point for the origirBlLIP model. [8]

E]
computational burden and parameter sensitivity problems
of the feedback linearization based controller. While from,
a computational point of view the implementation of the
proposed controllers is not more difficult than the usudtll
ones used for example in manipulation tasks, it should &)
mentioned that the additional constrain of the ZMP has
to be taken into account when a finite support polygon is
considered. [13]

The proposed controllers have been shown in simulations
to produce a stable limit cycle behavior similar to the sLiptl
dynamics. Due to the energy loss at the foot touch down
and the nonlinearities in the dynamics, the fixed point oft5]
the Poincaré section, however, differs from the originatdi
point of the SLIP model. Therefore, one of our future works; g
will be to investigate how the resulting limit cycle and[17]
the corresponding fixed point on the Poincaré section can
be actively controlled. Moreover, we plan to investigate ofg;
the use of passive elastic components in order to reduce
the control effort in the realization of SLIP based walking
patterns. [19]

20
ACKNOWLEDGMENTS 1201

The authors want to thank their colleagues Maximo A2
Roa and Johannes Englsberger for the constantly stimglatin
conversations and advices. [22]

This research is partly supported by the Initiative and
Networking Fund of the Helmholtz Association through a
Helmholtz Young Investigators Group (Grant no. VH-NG-
808).

REFERENCES

M. Vukobratovic and B. Borovac, “Zero-moment point - rtiyi five
years of its life,”l. J. Humanoid Robotics, vol. 2, no. 2, pp. 225-227,
2005.

S. Kajita and K. Tani, “Study of dynamic biped locomotion rugged
terrain-derivation and application of the linear invertpendulum
mode.”

P.-B. Wieber, “Trajectory free linear model predictiventrol for
stable walking in the presence of strong perturbatiohEEE-RAS
International Conference on Humanoid Robots, 2006.

T. McGeer, “Passive dynamic walking,nt. Journal of Robotics
Research, vol. 9, no. 2, pp. 62—-82, 1990.

S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficignipedal
robots based on passive-dynamic walkeSsience, vol. 307, no. 5712,
pp. 1082-1085, 2005.

K. Sreenath, H.-W. Park, and J. W. Grizzle, “Embeddingvacforce
control within the compliant hybrid zero dynamics to ackiestable,
fast running on MABEL,” The International Journal of Robotics
Research, 2011, submitted.

R. Blickhan, “The spring-mass model for running and hiogg
Journal of Biomechanics, vol. 22, pp. 1217-1227, 1989.

A. Seyfarth, H. Geyer, M. Gnther, and R. Blickhan, “A mavent
criterion for running.” Journal of Biomechanics, vol. 35, no. 5, pp.
649-55, 2002.

H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leghb&ior
explains basic dynamics of walking and runnin§foc. R. Soc. B,
vol. 273, no. 1603, p. 28612867, 2006.

] J. Rummel, Y. Blum, and A. Seyfarth, “Robust and effitieralking

with spring-like legs,’Bioinspiration and Biomimetics, 2010.

R. M. Alexander, “Three uses for springs in legged loction,” Int.
Journal of Robotics Research, vol. 9, no. 2, pp. 53-61, 1990.

M. M. Ankarali and U. Saranli, “Analysis and control ofcassipative
spring-mass hopper with torque actuatiofdbotics. Science and
Systems, 2010.

D. Koepl, K. Kemper, and J. Hurst, “Force control for isgrmass
walking and running,”|EEE Conference on Advanced Intelligent
Mechatronics, 2010.

M. Ahmadi and M. Buehler, “Controlled passive dynamimning
experiments with the arl-monopod il EEE Transactions on Robotics,
vol. 22, no. 5, p. 974986, 2006.

M. Hutter, D. Remy, M. A. Hopflinger, and R. Siegwart,lifsrunning
with an articulated robotic leg,JEEE/RS] Int. Conf. on Intelligent
Robots and Systems (IROS), pp. 4934-4939, 2010.

H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

B. Siciliano, L. Sciavicco, L. Villani, and G. OrioldRobotics: Mod-
eling, Planning and Control, 1st ed. Springer Publishing Company,
Incorporated, 2008.

X. Mu and Q. Wu, “On impact dynamics and contact eventshiped
robots via impact effects.|EEE transactions on systems man and
cybernetics Part B Cybernetics a publication of the IEEE Systems
Man and Cybernetics Society, vol. 36, no. 6, pp. 1364-1372, 2006.
R. Goebel, R. Sanfelice, and A. Teel, “Hybrid dynamisgktems,”
IEEE Control Systems Magazine, vol. 29, no. 2, pp. 28-93, 2009.
E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. HhoiC and
B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion.
CRC Press, 2007.

B. Paden and R. Panja, “A globally asymptotically stabpd+’
controller for robot manipulators,International Journal of Control,
vol. 47, no. 6, pp. 1697-1712, 1988.

T. Yoshikawa,Foundations of Robotics: Analysis and Control. Cam-
bridge, MA: MIT Press, 1990.



