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Abstract— The goal of this paper is to generate and stabilize
a periodic walking motion for a five degrees of freedom planar
robot. First of all we will consider a biped version of the
spring loaded inverted pendulum (SLIP), which shows open-
loop stable behavior. Then we will control the robot behavior
as close as possible to the simple model. In this way we take
advantage of the open-loop stability of the walking pattern
related to the SLIP, and additional control actions are used
to increase the robustness of the system and reject external
disturbances. To this end an upper level controller will deal
with the stabilization of the SLIP model, while a lower level
controller will map the simple virtual model onto the real robot
dynamics. Two different approaches are implemented for the
lower level: in the first one, we aim at exactly reproducing the
same acceleration that a SLIP would have when put in the
same condition, while in the second one, we aim at a simpler
control law without exactly reproducing the aforementioned
acceleration. The latter case is equivalent to consideringa SLIP
with additional external disturbances, which have to be handled
by the upper level controller. Both approaches can successfully
reproduce a periodic walking pattern for the robot.

I. INTRODUCTION

Since the interest in building humanoid robots able to
interact with humans is increasing more and more during
the last years, also the role of biped locomotion is gaining
more importance.

The classic approaches are either to control the robot
using the inverted pendulum model and the zero moment
point (ZMP) [1], [2], [3] with typically complete actuation
or, conversely, to build passive-dynamic walkers like robots
with limited actuation efforts [4], [5], [6] which can exhibit a
periodic limit cycle motion. Here, instead, the goal is to fully
actuate the robot in order to reproduce, via the controller,the
behavior of a passive walker for obtaining a periodic gait,
as sketched in Fig. 1. In this way, we aim at utilizing the
benefits of an open loop stable limit cycle for a robot, which
is not a priori tailored to a specific set of periodic walking
motions but capable of a variety of motion patterns.

To this end the spring loaded inverted pendulum (SLIP)
model will be analyzed. For running and hopping motions,
researchers usually consider a model with only one spring
[7], [8], but for walking also a second spring/leg is needed
[9], [10]. Since this paper is focusing on biped walking,
this is the model that will be considered in the following.
The main reason why it is useful to start with such a
model is that it is one of the simplest models that can
take into account the compliant behavior shown by humans
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Fig. 1. The starting idea in this paper is to reshape, via the input torques,
the dynamic behavior of the robot in order to make it as close as possible
to the one of the simple conceptual model.

and animals during walking and running. Given the initial
condition and appropriate parameter values it is possible to
obtain a periodic pattern (limit cycle) for the center of mass
(CoM in the following) resembling the motion and contact
force profile obtained for example in human walking [9].
On the other hand due to its simplicity the SLIP model is
way far from a complete dynamic description of the entire
body motion. For example the effects of the swing leg are
completely neglected and not taken into account in this
simple model.

The SLIP model is also expected to be a useful template
model for studying the effects of passive elastic elements in
legged robotic walking systems. There are two main reasons
for considering the presence of springs in locomotion [11]:
energy storage (which means less energy consumption and
unwanted heat production) and smaller force at the impact of
the foot on the ground (which decrease the risk of damages).

Our aim in this paper is not to build a robot that behaves
exactly like a SLIP model or some modified versions that
also take into account the actuation part [12], [13], but to
take advantage of the self stabilizing behavior of the model
in order to obtain a desired behavior for the CoM. In other
words we do not track any predefined trajectory for the CoM
[14] but, conversely, we use the SLIP behavior as a target
dynamic for a lower level controller. As a consequence, in the
following the focus will not be put on foot steps or similar
problems; these issues are automatically solved by the SLIP
model.

The main contribution of this paper is to map the simple
dynamics of the bipedal SLIP model to multi-body robots.
In [15] a similar approach was followed for the single legged
SLIP model for running motions. Herein, we focus on the
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Fig. 2. Conceptual architecture of the controlled system. The controller
(upper and lower level) plays the role of an interface between the virtual
SLIP model and the real robot. Thanks to this interface the virtual system
can be mapped onto the real one. The planning layer has been replaced
requiring a desired dynamic behavior rather than desired trajectories. Know-
ing the actual position and velocity of the CoM of the robot, the expected
acceleration is the one that a SLIP model would have had.

bipedal walking case. Several issues arise because of this.
First of all some strategies should be considered to deal
with the swing leg in terms of foot trajectory, treatment of
the double support case and nonlinear terms in the dynamic
model. These effects can not be neglected, but on the contrary
they turn out to have a big influence on the required torques.
This is one of the reasons why different kinds of control
laws are analyzed. Also for the SLIP the control techniques
are different than in [15], since the presence of the double
support phase makes it difficult to extend the classical
control approaches based on the analytic approximation of
the model. As a result both control layers are modified and a
complete new interface between the SLIP dynamics and the
multi-body dynamics is obtained.

The paper is organized as follows: the next section will
deal with the modeling of both the SLIP model and the multi-
body robot. Then the control techniques will be considered,
first for the SLIP (in section IV-A) and then for the multi-
body robot (in section IV-B). Finally, simulation results will
be presented in section V followed by the final discussion
and outline of future work in section VI.

II. M ODELING

One of the key points to keep in mind is that the controller
is consisting of two levels. The upper level control is directly
connected to the SLIP layer and is ensuring to obtain a
periodic walking pattern despite some inevitable errors and
disturbances, while the lower level control is forcing the
multi-body robot dynamics to behave like a SLIP model. As
a result, the controller plays the role of an interface between
the two dynamics, making it possible to map the dynamics
of the virtual SLIP onto the dynamics of the real robot, as
shown in Fig. 2.

A. Dynamic model of the SLIP

The model, shown in Fig. 3, is simply given by two
massless linear springs connected to each other in the hip,
where all the mass is concentrated. Due to this assumption
the swing leg can instantaneously change its configuration
when it takes off from the ground, to reach the desired angle
of attack for the next step. Obviously this will not be true
for the multi-body robot, because of the inertia of the swing
leg.
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Fig. 3. SLIP model with the leg vertically oriented (also used as initial
configuration), in the double support phase, and again in thesingle support
phase (but not in the VLO condition). Note that because of theassumption
of considering massless legs, the angle of attackα can instantaneously reach
its desired value.

Using the following notation:m for the total mass,k
and l0 for the stiffness and rest length of the springs,xG

for the CoM position,xFi
with i = {Left, Right} for

the foot contact point andg0 for the Earth’s gravitational
acceleration, the system’s dynamic equation can be written
as:

ẍG =
1

m
(fL (xG) + fR (xG)) + g0, (1)

wherefL(xG) and fR(xG) are the spring forces due to the
left and right leg, whose expression is:

fi (xG) = k (l0 − ‖xG − xFi
‖)

xG − xFi

‖xG − xFi
‖
, i = {L,R}.

In the following we will refer to the foot contact point simply
asxF , but obviouslyxF = xFL

or xF = xFR
depending on

the stance phase.
The classic approach for studying the stability of the SLIP

system is to consider a Poincaré section [16] and check
the eigenvalues of the monodromy matrix. A particularly
convenient section is the one corresponding to the condition
of vertical leg orientation (VLO) [10]. Taking additionally
the energy conservation property of the SLIP model into
account, in this case the dimension of the state space is
reduced from four to two. In particular it is sufficient to
use the CoM height and the angle of the CoM velocity
as coordinates of the Poincaré section in order to have a
complete description of the system for the periodic limit
cycle analysis. In fact if we are interested just in the analysis
of the limit cycle the position along the forward direction is
not important, then once we know the height of the CoM
in the VLO condition we automatically know both the value
of the potential energy and the elastic energy. From this and
the total energy value it is possible to compute the kinetic
energy or in other words the magnitude of the velocity; this
means that the only information missing is then the angle of
this vector with respect to the reference.

B. Dynamic model of the multi-body robot

A five revolute joint planar robot with massless feet
(represented in Fig. 4 with the definition of the joint angles)
will be considered.

1) Single support: The dynamic model for the single
support situation can be written as [17]:

M (q) q̈+C (q, q̇) q̇+ g (q) = τ , (2)
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Fig. 4. Multi-body robot and definition of the joint variables accordingly
to the Denavit-Hartenberg convention with the third axis coming out from
the page [17]. The angle beta, instead of the time, is used to parameterize
the offset of the swing foot with respect to the CoM. As a result the swing
foot position is dependent on the CoM and no information about the time
necessary to complete one step is needed.

where q ∈ R
5 are the generalized coordinates,M (q) ∈

R
5×5 is the inertia matrix,C (q, q̇) ∈ R

5×5 is the Corio-
lis/centrifugal matrix,g (q) ∈ R

5 is the vector of the joint
torques due to the gravity andτ ∈ R

5 are the input torques.
It’s worth to notice that since in this paper only walking
motions will be analyzed it is enough to consider a fixed base
dynamic model, but the extension to the floating base case
(needed for jumping and running motions) is straightforward
and it is based on the same argumentation that will be
followed for switching from the single to the double support
phase in section II-B.2.

The model is complete when also the transitions between
single support and double support are considered. These are
caused by the two events touch down and take off of the
legs, as shown in Fig. 5. Moreover, because of the impact,
an energy loss will happen in this instant. This can be easily
modeled considering that, at the impact, also an impulsive
force is acting on the system and that it will produce an
instantaneous change of the velocity (but not of the position)
[18]. This means that the system will exhibit a variation of
the generalized momentum in the joint space that can be
expressed as:

∆(M (q) q̇) = M (q)∆q̇ = JT
c (q)λ, (3)

where Jc (q) ∈ R
2×5 is the Jacobian matrix that maps

the joint velocities into the velocity along the constrained
directions, whileλ ∈ R

2 are the generalized reaction forces
along the same directions.

If the impact is modeled as an inelastic impact, then the
following relation must be considered:

Jc (q) q̇
+ = 0 ⇔ Jc (q)∆q̇ = −Jc (q) q̇

−, (4)

where the superscripts− and + are used to express the
quantities before and after the impact, respectively. Solving
the system of equations (3) and (4) leads to:

λ = −
(
JcM

−1JT
c

)
−1

Jcq̇
−

q̇+ = (I −M−1JT
c

(
JcM

−1JT
c

)−1

︸ ︷︷ ︸

J
+M
c

Jc) q̇
− , (5)

wherein the matrixN (q) = I − J+M

c Jc is a projection
matrix, which projects the joint velocities into the null space
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Fig. 5. The system that we want to study is called in literature a hybrid
dynamical systems [19]. This means that beside the flow map, which
describes the continuous dynamics of the system with a set ofordinary
differential equations, also a set of discrete states (which only change
because of an event) should be utilized.

of the Jacobian matrixJc. Therefore, (5) can be interpreted
such that only the component oḟq that is causing zero
velocity at the contact point is kept after the impact. On
the other hand, if we compute the energy loss we obtain:

2∆E = q̇+T

Mq̇+ − q̇−
T

Mq̇−

= q̇−
T (

NTMN−M
)
q̇−

= −q̇−
T

JT
c

(
JcM

−1JT
c

)
−1

Jcq̇
− ,

(6)

where Jc (q) q̇
− is the velocity of the impact point right

before the impact, in other words the pseudo kinetic energy
related to the impact point is the energy that will be lost in
the impact.

2) Double support: Assuming to have no sliding between
the feet and a rigid floor, an additional constraint must be
added to the model in the double support phase (just like has
been previously done for modeling the impact):

Jc (q) q̇ = 0, (7)

which can also be expressed as:

JHL
(qL) q̇L = JHR

(qR) ˙qR, (8)

whereJHi
(qi) i = {L,R} gives the velocity of the hip with

respect to the correspondent foot andqi i = {L,R} are the
joint variables of the correspondent leg. Assuming that at
least one of the two Jacobian matrices is nonsingular1, then:

q̇i = J−1
Hi

(qi)JHj
(qj) q̇j , (9)

and is possible to write:

q̇ =

[
J−1
Hi

JHj
0

I

]

︸ ︷︷ ︸

Γ(q)

[
q̇j

q̇5

]

︸ ︷︷ ︸

q̇a

, (10)

whereq5 is the joint angle of the trunk not affected by the
change between single and double support.

If we differentiate (10) with respect to time, then substitute
q̇ and q̈ in (2), and pre-multiply everything byΓT (q), we
get:

Ma (q) q̈a +Ca (q, q̇) q̇a + ga (q) = τ a, (11)

whereMa = ΓTMΓ, Ca = ΓT
(

CΓ+MΓ̇
)

, ga = ΓTg

andτ a = ΓT τ .

1If both are singular the system is in a complete rest.



Fig. 6. Overlapped configurations of the robot after consecutive steps. The
red and blue lines are respectively the CoM and swing foot trajectory.

III. PLANNING

While the SLIP model defines the CoM trajectory and the
target angle of attack for the next step, it is still necessary to
define a trajectory for the swing leg, since this information
is completely missing in the SLIP model. In order to be as
close as possible to the virtual system that the robot is trying
to reproduce, a good choice could be to just plan the relative
position of the swing foot with respect to the CoM, ensuring
that the foot will have reached the desired relative position
(defined by the desired angle of attack) before the touch
down event. Furthermore, we use the angleβ(xG) related to
the line from the stance foot to the CoM as shown in Fig.
4 as a parameter for the trajectory. Then the desired foot
position is given by

xFd
= xG +Π (β(xG)) , (12)

where Π (β(xG)) is the interpolating function describing
the shape of the foot trajectory relative to the CoM. Since
it is also necessary to ensure the continuity of the desired
trajectory, a cubic spline with desired initial and final values
and two ”virtual instants” [17] is used. The desired foot
position cannot be used as a desired value for a conventional
trajectory tracking controller since it depends on the current
state. Instead, we formulate a virtual constraint [20] by
defining the error term

ξ = xF − xG −Π (β(xG)) , (13)

which should be kept equal toξd = 0 by the controller.
Figure 6 shows overlapped configurations of the robot

during the path. The red line represent the CoM trajectory,
while the blue line the swing foot trajectory.

IV. CONTROL

A. Upper Level: Total energy control

The first control law that will be presented is the one
responsible to cope with probably the biggest difference
between the conservative SLIP model and the multi-body
robot: the loss of energy at the impact. The energy control
law acts based on the state of the SLIP model and is not
only re-injecting energy in the system any time the total

level is decreasing but also dissipating energy when the
level is increasing. This is different from what was done
in [15], where an energy correction law is not continuously
acting (based on the error between the desired level and the
measured one), but intervening before the impact based on
a pre-computed value of the energy loss.

The starting point is to consider the expression of the
power:

P = ẋT
G (mẍG − fL − fR −mg0) . (14)

Since the power is the derivative of the energy and the desired
value of the energy is constant, the problem of controlling
the energy to the desired value can be solved via an energy
controller that ensures:

P = kE (Ed − E) , (15)

wherekE is a positive gain andEd is the desired constant
total energy. This is possible if the resulting acceleration on
the CoM is the one of a pure SLIP model plus an additional
term with the following expression:

∆g =
1

m

ẋG

‖ẋG‖
2 kE (Ed − E) . (16)

This means that the controlled SLIP model is walking under
the effect of a virtual state dependent gravity field. The term
∆g is always in the direction of the velocity, increasing or
decreasing the kinetic energy in order to keep the total energy
to the desired value. Equation (1) thus is modified to

ẍG =
1

m
(fL (xG) + fR (xG)) + gv, (17)

with gv = g0 +∆g.

B. Lower level: Multi-Body Control

In the following two different approaches will be presented
in order to make the robot behave like the simple virtual
model. The first approach is based on an exact feedback
linearization of the robot dynamics and can be seen as
an extension of the control law presented in [15] for an
hopper to a bipedal SLIP for walking. The second approach,
presented in section IV-B.2, aims at a simpler control law
which requires less information about the system. Therefore,
we will separately consider the different tasks that need to
be executed.

1) Feedback linearization: As proposed in [15], it is
possible to map the SLIP model on the real robot dynamics
at an acceleration level. The idea is to ensure that the
acceleration of the CoM of the real robot is the same as in the
SLIP model. The control law can be derived following the
same steps needed to derive the classic impedance control
law with feedback linearization.

Three main tasks can be identified:

• CoM acceleration̈xG

• virtual constraint for the swing foot trajectoryξ
• trunk orientationθT = q1 + q2 + q5.

The corresponding velocities can be computed from

ẋt = Jt (q) q̇, (18)



where ẋt =
[

ẋT
G ξ̇

T
θ̇TT

]T

is the velocity in the task

space andJt (q) =
[
JT
G JT

ξ JT
θ

]T
the corresponding

Jacobian matrix. Considering the time derivative of (18) and
substitutingq̈ from (2), we get:

ẍt = JtM
−1 (τ −Cq̇− g) + J̇tq̇. (19)

At this point with the following choice of the torques2:

τ = MJ−1
t

(

ẍtd − J̇tq̇
)

+Cq̇+ g, (20)

we obtainẍt = ẍtd . Choosing

ẍtd :=






1
m
(fL (xG) + fR (xG)) + gv

−KPξ
ξ −KDξ

ξ̇

θ̈Td
+ kPT

θ̃T + kDT

˙̃
θT




 , (21)

whereθ̃T = θTd
− θT , ensures thaẗxG corresponds exactly

to (17) and thatξ → 0 and θT → θTd
. In the simulations

reported in section V, the desired trunk orientation is kept
vertically (θ̈Td

= θ̇Td
= 0).

2) Multi-priority control law: From the previous control
law it is possible to recognize that three different types of
tasks are considered in the defined task space: The CoM task
is requiring to produce a desired acceleration according toa
desired dynamic. The swing foot task implements a virtual
constraint. The trunk tasks corresponds to trajectory tracking
task. The idea is then to separate these different types of tasks
and use simpler control laws to fulfill each of them. In the
end, the required torques will be added using a null space
projector.

First of all a higher priority will be assigned to the CoM
task, since the main goal is still to reproduce a SLIP like
motion. In the end what is really important for this task is
just to produce the forces of virtual springs attached to the
CoM.

Once it has been understood from the SLIP model that the
presence of compliant elements is useful, it is convenient to
design simpler control laws than the feedback linearization
while the self-stabilizing behavior will be augmented by the
upper level SLIP stabilization. In other words the goal for
this task is just to map the virtual spring forces in joint
torques accordingly to the transpose of the Jacobian matrix
that relates the joint velocity to the velocity of the CoM and
without any kind of non linear compensation:

τG = JT
G (fL(xG) + fR(xG) +m∆g) , (22)

where obviously also the extra component of the virtual
gravity field must be taken into account.

In case ofθ̇Td
= 0, for the other tasks simple PD control

laws with gravity compensation can be used:

τPD =
[
JT
ξ JT

θ

]
[

−KPξ
ξ −KDξ

ξ̇ + gξ

kPT
θ̃T − kDT

θ̇T + gθ

]

, (23)

2In the following we will assume to be far enough from the singular con-
figurations. Further on in the section additional torques will be introduced
in order to cope with this problem.

wheregξ andgθ are the projections of the gravity torques
in the corresponding space.

This control law is known to be asymptotically stable
and less sensitive to model uncertainties than feedback
linearization [21].

At this point adding the resulting torques will cause the
two tasks to interfere with each other. To avoid this, the
torques computed for the second task will be projected in
the null space of the transpose of the Jacobian matrix of the
higher priority task. This means that the torques produced
to fulfill the second task will produce no force on the CoM
which will mainly move under the effect of the gravity field
and the virtual springs. Obviously this also means that the
second priority task will be fulfilled as long as it is not
interfering with the other one.

Before concluding this section it is worth to mention that
also some torques that push the robot away from the singu-
larity should always be considered. The classic approach is
to consider the kinematic manipulability measure [22]:

mkini
(q) =

√

det
(
JHi

JT
Hi

)
i = {L,R} (24)

and then choosing a singularity avoidance potential that will
be derived to obtain the torques. In addition it is possible
to consider a damping term also for this task. The idea
is that, considering a quadratic form for the potential, the
corresponding torque will be similar to a spring like term
where the transpose ofJkin (q) = ∂mkin(q)

∂q
is responsible

for projecting the force from one space to the other. At this
point (23) suggests the following choice for the new torques:

τSAi
=

{

−JT
kini

(kP m̃kini
+ kDJkini

q̇) mkini
6 m0

0 mkini
> m0

,

(25)
wherem̃kini

= mkini
− m0 andm0 is a threshold which

indicates that the robot is close enough to the singular
configuration to activate the corresponding torques.

The final expression of the torques is then:

τ = τSAL
+ τSAR

+ τG +
(

I− JT
G

(
JT
G

)+M

)

τPD. (26)

3) Double support and redistribution of torques: As seen
in II-B.2 the expression of the dynamic model during the
double support is formally equal to the one obtained for the
single support. This means that the control laws computed
before can be directly applied also in this case provided to
consider the matrices of the new dynamic model instead of
the old ones and to remove the swing foot coordinates from
the task space. In this way is just possible to compute the
torquesτ a and not all the torquesτ . To obtain the latter
the relationτ a = ΓTτ between the torques is taken into
account. From this one we obtain:

τ =
(
ΓT

)+W

τ a +
(

I−
(
ΓT

)+W

ΓT
)

τ d, (27)

where W is a positive definite matrix, which induces a
weighted norm for the torques. It is useful to penalize a
big value of some torques (e.g. ankle torque) more than the
others. In addition, we use the associated null space projector
to keep the torques as close as possible to some desired value.



TABLE I

SLIP MODEL PARAMETERS.

mass m = 80 kg

angle of attack α = 1.2 rad
rest length l0 = 1m

stiffness k = 15696N/m
total energy E = 824 J

TABLE II

MULTY-BODY ROBOT PARAMETERS.

shank thigh trunk
mass 5 kg 5 kg 60 kg

inertia 0.01 kg m2 0.01 kg m2 1 kg m2

length 0.48m 0.48m 0.48m

C. A remark on stability

Since we try to reproduce the SLIP behavior, also the
stability analysis will be based on the same approach. In
other words we will consider again the same Poincaré map
for the system. To be precise it should be mentioned that
a more formally correct way to analyze the system is to
consider a three-dimensional Poincaré map. For the multi-
body robot, in fact, the total energy is not exactly constant,
but only controlled to be constant. Therefore, it should be
considered as the third coordinate on the Poincaré section.
Nevertheless, if the total energy control is fast enough to
ensure that the total energy does not deviate far from its
desired value the approximation of considering a constant
energy level is reasonable.

V. SIMULATIONS

In the following simulation study, we compare the limit
cycle behavior of the SLIP model with the ones of the two
multi-body robot controllers. The simulation parameters of
the SLIP dynamics are adopted from the simulation results
in [10] and are shown in table I. The parameters of the multi-
body dynamics are shown in table II. The CoM of each
segment was set to the center of the segment. Moreover a
CLIK algorithm [17] is used in order to ensure that both
system will start with the same initial conditions and in the
same configuration (VLO configuration).

The simulation environment is implemented in MATLAB
using a sampling time of0.1ms and the function ode45 to
integrate the equations.

Figure 7 shows the vertical motion of the CoM for the
SLIP model and the controlled multi-body system with
the controllers from section IV-B.1 and IV-B.2. Even the
feedback linearization based controller deviates from the
trajectories of the SLIP model due to the energy loss at each
impact. One can see that the deviation of the simpler control
law is larger, but it still results in a quasi-periodic walking
motion.

The vertical ground reaction force for the SLIP model and
the forces due to the virtual springs for the two controllers
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Fig. 7. Vertical motion of the CoM for the two multi-body controllers
compared with the SLIP dynamics.
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Fig. 8. Vertical ground reaction force of the SLIP model.

are shown in Fig. 8 to 10. One can see that the variations in
the force are higher for the multi-body model.

The effect of the energy control approach (16) is presented
in Fig. 11 with the feedback linearization based controller
and different values of the controller gainkE . One can see
that without the energy controller (i.e. forkE = 0) the multi-
body system instantaneously loses energy at each step due
to the impact. The red dash-dotted line and the green dashed
line show the total energy for two different controller gains.
This evaluation verifies that the proposed energy control
method efficiently compensates for the energy loss due to the
impacts and the energy is recovered according to the time
constant in (15). Figure 12 shows the results with the simpler
control law from section IV-B.2. Even if there is a larger
variation in the total energy now due to the uncompensated
nonlinear terms in the closed loop dynamics, also for this
controller the energy loss at the impact is compensated.

Finally, Fig. 13 and 14 show the behavior of the two
controllers on the Poincaré section. One can see that both
controllers converge to a fixed point, which however is
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Fig. 9. Virtual springs forces of the multi-body system withthe feedback
linearization based controller.
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control law.
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Fig. 11. Energy control in the multi-body model using the feedback
linearization based controller.
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Fig. 12. Energy control in the multi-body model using the simplified
controller.
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Fig. 13. Poincaré section of the multi-body model with the feedback
linearization based controller. The red circle is the fixed point for the original
SLIP model.

different to the original fixed point of the SLIP model,
represented with a red circle in the figures.

VI. CONCLUSION AND FUTURE WORKS

In this paper we utilize the dynamics of the bipedal SLIP
model as a template model for the control of a multi-body
robot. The controller acts on two levels. In order to compen-
sate for the energy loss that is inherent to the impacts at the
foot touch down, an energy control algorithm for the SLIP
model is proposed. In contrast to previous solutions in the
literature, this controller is based on a continuous regulation
of the energy and does not need any prediction of the energy
loss for the next impact. The controlled SLIP dynamics is
then used as a desired dynamic for a lower level controller
designed for the multi-body robot dynamics. Two solutions
of different complexity are proposed and compared. A multi-
body robot controller based on feedback linearization results
in a very close emulation of the SLIP behavior. Moreover,
a simpler control approach is discussed, which avoids the
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Fig. 14. Poincaré section of the multi-body model with the simplified
controller. The red circle is the fixed point for the originalSLIP model.

computational burden and parameter sensitivity problems
of the feedback linearization based controller. While from
a computational point of view the implementation of the
proposed controllers is not more difficult than the usual
ones used for example in manipulation tasks, it should be
mentioned that the additional constrain of the ZMP has
to be taken into account when a finite support polygon is
considered.

The proposed controllers have been shown in simulations
to produce a stable limit cycle behavior similar to the SLIP
dynamics. Due to the energy loss at the foot touch down
and the nonlinearities in the dynamics, the fixed point on
the Poincaré section, however, differs from the original fixed
point of the SLIP model. Therefore, one of our future works
will be to investigate how the resulting limit cycle and
the corresponding fixed point on the Poincaré section can
be actively controlled. Moreover, we plan to investigate on
the use of passive elastic components in order to reduce
the control effort in the realization of SLIP based walking
patterns.

ACKNOWLEDGMENTS

The authors want to thank their colleagues Maximo A.
Roa and Johannes Englsberger for the constantly stimulating
conversations and advices.

This research is partly supported by the Initiative and
Networking Fund of the Helmholtz Association through a
Helmholtz Young Investigators Group (Grant no. VH-NG-
808).

REFERENCES

[1] M. Vukobratovic and B. Borovac, “Zero-moment point - thirty five
years of its life,”I. J. Humanoid Robotics, vol. 2, no. 2, pp. 225–227,
2005.

[2] S. Kajita and K. Tani, “Study of dynamic biped locomotionon rugged
terrain-derivation and application of the linear invertedpendulum
mode.”

[3] P.-B. Wieber, “Trajectory free linear model predictivecontrol for
stable walking in the presence of strong perturbations,”IEEE-RAS
International Conference on Humanoid Robots, 2006.

[4] T. McGeer, “Passive dynamic walking,”Int. Journal of Robotics
Research, vol. 9, no. 2, pp. 62–82, 1990.

[5] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficientbipedal
robots based on passive-dynamic walkers,”Science, vol. 307, no. 5712,
pp. 1082–1085, 2005.

[6] K. Sreenath, H.-W. Park, and J. W. Grizzle, “Embedding active force
control within the compliant hybrid zero dynamics to achieve stable,
fast running on MABEL,” The International Journal of Robotics
Research, 2011, submitted.

[7] R. Blickhan, “The spring-mass model for running and hopping,”
Journal of Biomechanics, vol. 22, pp. 1217–1227, 1989.

[8] A. Seyfarth, H. Geyer, M. Gnther, and R. Blickhan, “A movement
criterion for running.” Journal of Biomechanics, vol. 35, no. 5, pp.
649–55, 2002.

[9] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behavior
explains basic dynamics of walking and running,”Proc. R. Soc. B,
vol. 273, no. 1603, p. 28612867, 2006.

[10] J. Rummel, Y. Blum, and A. Seyfarth, “Robust and efficient walking
with spring-like legs,”Bioinspiration and Biomimetics, 2010.

[11] R. M. Alexander, “Three uses for springs in legged locomotion,” Int.
Journal of Robotics Research, vol. 9, no. 2, pp. 53–61, 1990.

[12] M. M. Ankarali and U. Saranli, “Analysis and control of adissipative
spring-mass hopper with torque actuation,”Robotics: Science and
Systems, 2010.

[13] D. Koepl, K. Kemper, and J. Hurst, “Force control for spring-mass
walking and running,” IEEE Conference on Advanced Intelligent
Mechatronics, 2010.

[14] M. Ahmadi and M. Buehler, “Controlled passive dynamic running
experiments with the arl-monopod ii,”IEEE Transactions on Robotics,
vol. 22, no. 5, p. 974986, 2006.
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