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Abstract— Computationally efficient task execution is very
important for autonomous mobile robots endowed with lim-
ited on-board computational capabilities. Most robot control
approaches assume fixed state and action representations, and
use a single algorithm to map states to actions. However, not
all instances of a given task require equally complex algorithms
and equally detailed representations. The main motivation for
this work is a desire to reduce the computational footprint
of performing a task by allowing the robot to run simpler
algorithms whenever possible, and resort to more complex algo-
rithms only when needed. We contribute the Multi-Resolution
Task Execution (MRTE) algorithm that utilizes human feed-
back to learn a mapping from a given state to an appropriate
detail resolution consisting of a state and action representation,
and an algorithm. We then present the Model Plus Correction
(M+C) algorithm that complements an existing robot controller
with corrective human feedback to further improve the task
execution performance. Finally, we introduce Multi-Resolution
Model Plus Correction (MRM+C) as a combination of MRTE
and M+C. We provide formal definitions of MRTE, M+C, and
MRM+C, showing how they relate to general robot control
problem and Learning from Demonstration (LfD) methods.
We present detailed experimental results demonstrating the
effectiveness of proposed methods on a simulated goal-directed
humanoid obstacle avoidance task.

I. INTRODUCTION

Computational footprint of a robot controller is often
overlooked as long as the controller is able to perform as
expected on the robot. As robots become ubiquitous and
general-purpose, multiple software modules are likely to
run on the robot simultaneously. Despite the continuous ad-
vancements in the computational technology that enables the
mobile robots to be equipped with more and more powerful
computers, the on-board computational resources are still to
be shared among these multiple software components.

Most robot control approaches consider a fixed state
representation computed using the sensory input, an action
representation, and an algorithm for executing the task at
hand through mapping states to actions. Employing a com-
plex algorithm that uses the most detailed state representation
and action definitions available might be computationally
expensive and infeasible for continuous use. On the other
hand, some instances of the task might be handled using
simpler algorithms operating at a coarser detail resolution.
However, using only a simple algorithm and less detailed
representations might fail to capture the details in more
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complex situations, and might eventually lead to a failure
in the task execution.

To learn from human demonstration how to change the
internal state representation and the corresponding algorithm
to perform the task according to the complexity of a given
situation, we contribute Multi-Resolution Task Execution
(MRTE), an algorithm that employs a set of detail resolu-
tions, each having its own state and action representations,
and a controller operating on these representations to perform
the task. A policy is learned from human demonstration, and
then used to determine which detail resolution to use in a
particular state of the system during autonomous execution
of the task. Next, we present Model Plus Correction (M+C),
a formal model based on our previous work for improving
the execution performance of an algorithm by augmenting
it with corrective feedback received from a human teacher
[1]. Finally, we combine MRTE with M+C, and present
the Multi-Resolution Model Plus Correction (MRM+C) al-
gorithm that allows the robot to learn how to dynamically
change the detail resolution to operate at for a given state,
and how to further improve the execution performances of
individual algorithms running at different detail resolutions
through multi-resolution corrective demonstration.

Over the course of a training session, the teacher observes
the robot executing the task using hand-coded algorithms and
intervenes either to deliver a corrective action at the current
detail resolution, or to switch the system to a finer detail
resolution. The robot learns a detail switching policy for
deciding which detail resolution to use in a particular state
while also building up individual corrective demonstration
databases for the algorithms at each detail resolution. During
the autonomous execution of the task, the robot first chooses
the appropriate detail resolution to run at in the current state,
and then decides whether to execute a demonstrated action
or the action computed by the default controller.

II. BACKGROUND AND RELATED WORK

We define the general robot control problem formally as
a tuple 〈Z,A, π〉. The world consists of states S, and A is
the set of actions the robot can take. Transitions between
states are defined with a probabilistic transition function
T (s′|s, a) : S × A × S → [0, 1]. The state is not fully
observable; instead, the robot has access to an observed
state Z with the mapping M : S → Z. The robot uses
an execution policy π : Z → A for selecting the next action
a ∈ A based on the current observed state z ∈ Z.



A. Learning from Demonstration

Learning from Demonstration (LfD) is a supervised learn-
ing approach for transferring task or skill knowledge to an
autonomous robot by means of the demonstrations of the
task or skill execution [2]. The LfD methods make use of
a teacher who demonstrates the robot how to perform the
task or skill at hand as the robot records the demonstrated
actions associated with the perceived state of the system
synchronously. The robot then uses the stored state-action
pairs to derive an execution policy for reproducing the
demonstrated task or skill.

We define LfD formally as an instance of general robot
control problem with a tuple 〈Z,A, πdemo〉, where the execu-
tion policy πdemo : Z → A is extracted from a demonstration
dataset D consisting of teacher demonstrations d ∈ D, where
d = 〈z, ademo〉 , z ∈ Z, ademo ∈ A, and ademo is the action
demonstrated by the teacher in the observed state z. During
execution, the robot uses πdemo for selecting the next action
a based on the current observed state z.

B. Related Work

Being a very active field of research, LfD has been utilized
in many different learning scenarios, focusing on different
aspects of the learning. Here, we present a few representative
studies and state how our approach relates to them.

A method for for utilizing human feedback as the reward
signal for Reinforcement Learning (RL) has been proposed
in [3]. Our approach differs with the way the human feedback
is incorporated. We use human feedback to update the exist-
ing task definitions while their method utilizes the received
feedback for training a RL system. A sliding-autonomy ap-
proach for learning behavior policies from human demonstra-
tion called “Confidence Based Autonomy (CBA)” has been
introduced in [4]. The main difference between CBA and our
proposed research is that instead of starting from scratch,
our approach needs teacher feedback only when the exist-
ing algorithms fail. A method for refining a demonstrated
skill execution policy using kinesthetic feedback from the
teacher during the execution of the skill using the execution
policy extracted from the demonstration examples has been
proposed in [5]. Their work shares a similarity with our
approach as both systems utilize provided human feedback
interleaved with the task or skill execution, but their method
uses a single detail resolution. A hierarchical apprenticeship
learning approach for learning complex skills which are non-
trivial even for the domain experts by providing isolated
advice at different hierarchical levels has been introduced
in [6]. Our multi-resolution approach differs from their work
with its utilization of multiple algorithms with different
computational complexities to handle different situations
of the same task. An algorithm for incrementally learning
subtasks in a task hierarchy by automatically partitioning
a given demonstration for the full task has been proposed
in [7]. Despite being hierarchical, their method uses a single
state and action definition in contrast to our approach.

III. APPROACH

A. Multi-Resolution Task Execution (MRTE)

We define Multi-Resolution Task Execution (MRTE) as a
tuple 〈πarbitrator, {c1, c2, ..., cN}〉, where cr is the controller
defined for the detail resolution r ∈ R, and πarbitrator(z) :
Z → R is the detail resolution selection policy. A controller
for the detail resolution r is defined as a tuple cr =〈
Zr, Ar, f

state
r , factionr , πmodel(r)

〉
where fstater : S → Sr

is the function for mapping the global state to the state
definition at the detail resolution r, and factionr : Ar → A is
the function for mapping the action computed at the detail
resolution r into an action representation at the finest detail
level.

The detail resolution selection component acts as an
arbitrator among the different detail resolutions. Given the
current observed state of the system, it decides which detail
resolution to run at for computing the next action. Unless
stated otherwise, the system always runs at the coarsest
detail resolution. A human teacher provides demonstrations
to teach the robot when to switch to a finer detail resolution.
The task execution policy πmodel(r) for the controller of the
detail resolution r is provided by a hand-coded algorithm.
Fig. 1 shows the schematic representation of MRTE.

Fig. 1. The schematic representation of MRTE.

B. Model Plus Correction (M+C)

We introduce Model Plus Correction (M+C), a comple-
mentary corrective demonstration algorithm that makes use
of an available controller, and utilizes corrective human
demonstration to further refine the performance of the con-
troller.

We define M+C formally as a tuple
〈Z,A, πdemo, πmodel, freuse〉. The LfD definition is
extended with a model-based algorithm πmodel : Z → A,
and a correction reuse function freuse(z, ademo, amodel) :
Z × A × A → A, where ademo is the action computed by
πdemo, and amodel is the action computed by πmodel. freuse
is a domain and task specific function that computes the final
action to be executed as a function of the current observed
state, and the actions computed by the model-based and
the demonstration policies. During the training process, the
human teacher observes the robot performing the task using
the model-based policy and corrects the action of the robot
if the computed action is erroneous. During the execution,



if a demonstration received in a similar situation is found
in the database, the freuse function replaces the action
provided by the controller with the demonstrated action.
Fig. 2 shows the schematic representation of M+C.

Fig. 2. The schematic representation of M+C.

C. Multi-Resolution Model Plus Correction (MRM+C)

We combine M+C with MRTE, and define
Multi-Resolution Model Plus Correction (MRM+C)
as a tuple 〈πarbitrator, {c1, c2, ..., cN}〉, where
cr is an M+C instance defined as a tuple
〈Zr, Ar, fstate(r), faction(r), πdemo(r), πmodel(r), freuse(r)〉
at resolution r ∈ R. Fig. 3 shows the schematic diagram of
MRM+C.

Fig. 3. The schematic representation of the MRM+C algorithm.

D. Demonstration Delivery: Training the System

During the training, the teacher uses a custom software to
access the current detail resolution as well as the observed
state represented at that resolution. The same user interface is
also used to deliver the correction actions and issuing detail
refinement commands. Along the course of a demonstration,
the teacher observes the robot as it executes the task, and
intervenes as needed by means of the following feedback
types:
• The elaborate command switches the system to the next

finer detail resolution.
• The correct command replaces the computed action to

be executed with another action defined in the same
detail resolution.

If an elaborate command is received, the system checks if
there is a finer detail resolution available. If such a resolution
is found, the received elaborate command is stored with the
current state of the system at the finest detail resolution
available. The robot then switches to the specified detail
resolution, and recomputes an action. If a correct command
is received, the provided substitute action is stored with the
current state of the system at the current detail resolution.
Finally, the action to be executed by the robot is replaced
with the received corrected action.

E. Demonstration Reuse: Autonomous Execution

Each time the robot reaches a decision point during the
autonomous task execution, the MRM+C algorithm switches
to the most coarse detail resolution. Then, the robot starts
searching in this particular order: i) a correction sample
in the corrective demonstration database for the current
detail resolution, ii) an elaborate command in the elaboration
demonstration database for switching to the next detail level
with finer resolution. If a demonstration is found in the
correction database that is received in a state similar enough
to the current state, the demonstrated correction action is
selected as the next action. If an elaborate command is
received in a state similar enough to the current state, the
robot switches to the next finer detail resolution and starts
over with searching. If no appropriate elaborate or correct
commands are found, the algorithm for the current detail
resolution computes the action to be executed. We use a
domain and task specific metric with empirically determined
parameters to compute the similarity of given two states.
Alg. 1 shows the algorithm for the MRM+C execution.

IV. HUMANOID OBSTACLE AVOIDANCE TASK

We apply the proposed multi-resolution task execution
and refinement approach on a humanoid obstacle avoidance
task in a robot soccer environment. We define the obstacle
avoidance task for a humanoid soccer robot as the problem
of walking to a given goal location without bumping into
the obstacles placed on the field. The robot starts in its
own goal area, and the goal of the task is to reach within
1 meter distance of the opponent goal. The quantity, the
shapes, and the locations of the obstacles on the field are not
known. Fig. 4 presents an example instance of the humanoid
obstacle avoidance task with three obstacles. The dashed
lines represent an example traversal, and the yellow circles
show the intermediate destination points selected by the
robot.

To reach the goal position without hitting the obstacles, the
robot has to have a way of modelling the occupancy status
of the environment. We model the free space in front of the
robot using a variant of the Visual Sonar approach [8]. We
process the images seen through the color cameras of the
robot to distinguish the soccer field and any non-field object
lying on it, resulting in an occupancy map for the 180o space
in front of the robot. For each detail resolution, we divide
the free space in front of the robot into a set of slices called



Algorithm 1 MRM+C execution
1: resolution← COARSEST
2: state← computeState(resolution)
3: mostSimilar ← ∅
4: maxSim← 0
5: for each demo ∈ correctionDBresolution do
6: sim← getSimilarity(state, demo(state))
7: if sim > maxSim then
8: maxSim← sim
9: mostSimilar ← demo

10: end if
11: end for
12: threshold← getCorrectionThreshold(resolution)
13: if maxSim > threshold then
14: action← demo(action)
15: else
16: mostSimilar ← ∅
17: maxSim← 0
18: for each demo ∈ elaborationDB do
19: sim← getSimilarity(state, demo(state))
20: if sim > maxSim then
21: maxSim← sim
22: mostSimilar ← demo
23: end if
24: end for
25: threshold← getElaborationThreshold()
26: if maxSim > threshold then
27: if resolution < FINEST then
28: increaseResolution()
29: goto 2
30: else
31: action← computeAction(state)
32: end if
33: else
34: action← computeAction(state)
35: end if
36: end if
37: executeAction(action)

free-space slots, where each slot has an occupancy indicator
computed using the Visual Sonar occupancy data.

We calculate the similarity of two given states s1, s2
as e−K|s1−s2 |

2

, where K is a coefficient for shaping the
similarity function. In our implementation, we empirically
selected K = 5. We define three detail resolutions R =
{coarse,medium, fine} for the humanoid obstacle avoid-
ance task. In the remainder of this section, we explain
the state and action definitions, and the destination point
selection algorithms for each detail resolution.

A. Coarse Detail Resolution

At the coarse detail resolution, the 180o space in front
of the robot is divided into five free space slots, each
covering 36o. A boolean value indicates the existence of an
obstacle along a free space slot in the state vector where true
indicates the slot is occupied by an obstacle. If the average

Fig. 4. An example instance of the humanoid obstacle avoidance task.

distance of the most detailed free space representation slots
that falls within a free space slot at this resolution is less
than a certain threshold, that slot is marked as occupied.
In our implementation, the threshold for considering a free-
space slot as occluded is 120 centimeters. Fig. 5(a) shows
an example visualization of a coarse detail resolution state
representation.

At this detail resolution, the destination point can be
selected from among the five free space slot directions with
a distance of 120 centimeters. However, the hand-coded
algorithm for this resolution only selects from the three
walking directions: forward, left, or right. If the middle
slot (the slot number 2) is free, the algorithm selects the
forward direction, otherwise it checks the right and left
slots to decide. The algorithm also favors the left direction
over the right direction, if the leftmost free-space slot (the
slot number 4) is free. Alg. 2 shows the destination point
selection algorithm for the coarse detail resolution.

Algorithm 2 Destination point selection for the coarse detail
resolution.

1: slot← −1
2: state← getBooleanState(COARSE)
3: if ¬state(2) then
4: slot← 2
5: else
6: if ¬state(0) then
7: slot← 0
8: else
9: slot← 4

10: end if
11: end if
12: angle← calculateDirection(slot)
13: distance← 120
14: return calculateGlobalPoint(angle, distance)

B. Medium Detail Resolution

The state representation for the medium detail resolution
uses the same principles as the coarse state representation
with the exception of using nine slots instead of five.
Fig. 5(b) shows an example visualization of a medium detail
resolution state representation.



(a) (b) (c)

Fig. 5. Example visualizations for the state representations at different detail resolutions for the same situation. a) coarse detail resolution, b) medium
detail resolution, and c) fine detail resolution.

The hand-coded algorithm for this resolution goes over
each free-space slot and selects the direction of the clos-
est available slot to the opponent goal as the destination
direction, using a fixed walking distance of 120 centimeters.
Alg. 3 shows the destination point selection algorithm for
the medium detail resolution.

Algorithm 3 Destination point selection for the medium
detail resolution.

1: state← getBooleanState(MEDIUM)
2: goal← getGoalSlot()
3: closestSlot← 0
4: minDist← 9
5: for slot← 0; slot < 9; i← slot+ 1 do
6: if |goal − slot| ≤ minDist and¬state(slot) then
7: minDist← |goal − slot|
8: closestSlot← slot
9: end if

10: end for
11: angle← calculateDirection(closestSlot)
12: distance← 120
13: return calculateGlobalPoint(angle, distance)

C. Fine Detail Resolution

At the fine detail resolution, the free space is divided into
15 slots and the occupancy status for each slot is represented
with a distance value in centimeters, denoting the distance
to the closest detected obstacle lying along that particular
free-space slot. Fig.5(c) shows an example visualization of
the state representation for the fine detail resolution.

In addition to the destination direction, the destination
selection algorithm for the fine detail resolution also deter-
mines the walk distance towards that direction. The algorithm
goes over each free-space slot, and for each slot computes
a weighted distance value using a sliding window of size 3
with the weights 0.25 at both ends and 0.5 for the center.
The direction of the free-space slot with highest weighted
distance is then selected as the walking direction and the
computed weighted distance is used as the walking distance.

Algorithm 4 Destination point selection for the fine detail
resolution.

1: goalAngle← getGoalAngle()
2: if goalAngle < −π2 or goalAngle > π

2 then
3: if |angle0 − goalAngle| < |angleN−1 − goalAngle|

then
4: destAngle← angle0
5: else
6: destAngle← angleN−1
7: end if
8: destDistance← 120
9: else

10: maxDist← 0
11: for i← 1; i < N − 1; i← i+ 1 do
12: distance← 0.25disti−1 + 0.5disti + 0.25disti+1

13: if distance > maxDist then
14: maxDist← distance
15: maxSlot← i
16: end if
17: end for
18: angle← anglemaxSlot
19: distance← maxDist
20: end if
21: return calculateGlobalPoint(angle, distance)

V. RESULTS

We evaluated the proposed algorithms using a simulated
version of the obstacle avoidance task. We used two different
obstacle configurations with three obstacles each where we
randomly distorted the obstacle locations and orientations at
every run.

We compared the performances of the hand-coded al-
gorithms for each detail resolution (M), the improved al-
gorithms using corrective demonstration (M+C), the multi-
resolution task execution using the hand-coded algorithms
(MRTE), and the multi-resolution corrective demonstration
(MRM+C) algorithm. During the training session, 23 coarse,
8 medium, and 14 fine resolution level demonstrations were
collected for the action correction, and 22 demonstrations
were recorded for the detail resolution selection part.

We ran 100 experiments for each algorithm. Fig. 6 shows



the success rates of the algorithms. The blue bar in the Multi
Resolution group is the success rate for MRTE, and the
red bar in the same group is the success rate for MRM+C.
As expected, the success rate of the algorithms increase as
the algorithm gets more complex and runs at a finer detail
resolution. Also, M+C outperformed the algorithms alone,
and MRM+C outperformed MRTE, showing the impact of
corrective demonstration in performance refinement. Fig. 7
shows the composition of executed actions per evaluated
algorithm, and Fig. 8 shows the computational cost versus the
performance evaluation. We approximated the computational
complexity of an algorithm as the total number of compar-
ison and assignment operations in the worst case execution
scenario. In both the MRTE and MRM+C evaluations, the
majority of the executed actions were computed by the coarse
detail resolution algorithm and the coarse detail resolution
demonstration database. Yet, the success rates for MRTE and
MRM+C were better than the coarse and medium resolution
algorithms, close to the fine detail resolution algorithm.
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VI. CONCLUSION

In this paper, we presented a novel method for executing
different parts of a task through running different algo-
rithms with varying complexities and using state and action
representations at different detail resolutions. We presented
formal models for the proposed approaches that relate the
presented models with each other, and with the traditional
LfD methods. We provided experimental evaluation of the
proposed approaches in a simulated obstacle avoidance
task, demonstrating the computational efficiency of multi-
resolution approach compared to controllers with fixed state
and action definitions.

Possible future work includes evaluating the proposed
approaches in a task with higher dimensional state and action
space, investigating how the number of detail resolutions
affect the performance, and examining the robustness of the
system in presence of uncertainty.
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