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Abstract— Dynamic perching maneuvers for fixed-wing air-
craft are becoming increasingly plausible due to recent progress
in perching using ‘micro-spines’ mounted on tuned suspensions
and, separately, on feedback motion planning techniques for
post-stall maneuvering. In this paper, we bring these com-
plementary techniques together by efficiently estimating the
mechanical stability of the plane when it makes contact with
a vertical surface; the resulting landing funnel can then be
used in a feedback motion planning algorithm for the flight
controller.

We consider a simplified model of the perching dynamics
and report an extension of the region of attraction techniques,
using sums-of-squares optimization, which combines polyno-
mial approximations of barrier constraints with the traditional
Lyapunov methods to achieve tight estimation of the true region
of attraction for the model. We demonstrate the new method
on a variety of design parameters for the perching system,
suggesting a potential use as a mechanical system or controller
design tool.

I. INTRODUCTION
The work described here is aimed at enabling small UAVs

to operate at the transition between air and surface contact,
with walls, roofs and power lines. Such operation is of
particular value for small planes, with wing-spans of 1 m
or less, due to their severely limited mission life. They have
lower lift/drag ratios than larger planes [1] and carry less
energy aboard. Consequently, a state of the art plane such
as the Aerovironment Black Widow has an endurance of 30
minutes [2]. The scaling laws that reduce flying time also
favor frequent, even abrupt, landings due to the high specific
strength of small components [3]. Indeed, most small UAVs
today crash land. Similar scaling rules apply to biological
fliers; not surprisingly, many small birds and other fliers
perch frequently between short flights.

Recent work from the authors has addressed the problems
of precise modeling and control for perching on wires [4, 5]
and the design and analysis of a suspension that allows a
wide range of touchdown states (pitch, pitch rate, horizontal
and vertical velocities) for landing on rough walls, even
with limited sensing [6]. In this paper, we aim to bring
these complementary techniques together by analyzing and
exploiting the mechanical design of the landing mechanism
in order to allow for aggressive controllers and generally,
more robust performance. To do so, one can use the feedback
motion planning strategy called LQR-Trees [7], in which
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Fig. 1. Perching sequence.

locally-valid flight controllers are analyzed to determine their
funnels—the regions of state space in which, when applied,
the controllers can be guaranteed to achieve the goal. These
can be combined easily with the landing gear, assuming that
we can estimate the funnel, or touchdown envelope for the
landing gear.

Previous attempts to evaluate that touchdown envelope
required a fine discretization of the state space (4D) and
the simulation of each individual case, as described in [6].
This renders the optimization of the touchdown envelope
prohibitive, as each change of the mechanical system requires
multiple hours of simulation to fully determine its effect. As
a result, the suspension is typically manually tuned using
simple heuristics, and due to the limited search, it is hard to
know if a better solution can be exploited. In this paper, we
extend the theory required to estimate the region of attraction
(ROA) in the presence of polynomial barrier certificates, with
the specific goal of providing a tight estimate of the ROA
of our perching model. These polynomial barrier functions
include, but are not limited to, barriers between different
states of the hybrid dynamical system formed by the plane
making and possibly breaking contact with the wall. As will
be illustrated in this paper, these techniques can efficiently
estimate the region of attraction, without simulations, and be
used as a design tool to evaluate and optimize a mechanical
system performance.

II. RELATED WORK

The use of computational models to analyze reliability and
potential failure of designs has become ubiquitous in modern
engineering. Simulation studies have proven to be a powerful
tool both for analysis of abstract robotic models [8], and to
guide the design of physical systems. As system complexity
increases, exhaustive sample based simulation suffers from



the curse of dimensionality and can take unmanageable time
to accurately provide a measure of stability.

For computing regions of attraction of dynamical sys-
tems one family of alternatives requires solutions of non-
linear partial differential equations (PDE). In this spirit, the
approximate solution of Hamilton-Jacobi-Isaacs PDEs has
been employed to analyze when hybrid robotic systems
with disturbances can avoid certain “keep out” sets [9].
Other, discretization based methods have been employed to
approximate continuous state dynamical systems, such as the
“cell-to-cell” mapping techniques of [10], which improved
brute-force discretizations of a state space. More recent work
analyzing hybrid systems has exploited connections to tools
from automata theory [11].

The techniques presented here build directly upon recently
developed tools for estimating regions of attraction via
convex optimization. These techniques replace solving partial
differential equations with partial differential inequalities.
For systems involving polynomial functions it was noted
that such problems can be addressed conservatively via con-
vex optimization [12]. Our approach particularly augments
coordinate ascent based region of attraction optimization
techniques presented in [13] to include “barrier” functions
representing undesired transitions or collisions for a perching
robot. In [14] such barrier functions were optimized for
stochastic dynamical systems via coordinate ascent when a
“keep out” region could be specified a priori.

III. A SIMPLE POST-TOUCHDOWN MODEL

In order to calculate the true ROA of the airplane during
landing, a simplified version from the model presented in
[6] will be used. In that work, it was shown experimentally
that a model similar to what will be described in this
section correctly approximates the forces experienced during
landing and the ROA of the airplane. The model presented
here has fewer degrees of freedom (DOF) than the model
derived in [6] but still exhibits rich dynamics similar to
those experienced by the more complex model. The reduced
number of DOFs allows for an easier visual verification
of the approximated touchdown envelope, a useful feature
during the development of the tools described in this paper.

This simple model of the post-touchdown configuration
models the airplane as a rigid body subject to gravity,
attached to the wall at the foot with a massless leg and
attached at the tail with a frictionless slider joint, as illus-
trated on Figure 2. As on the real airplane, the suspension
is passive, incorporating only a linear spring and damper.
As the velocity at touchdown is usually small (< 3 m/s),
the aerodynamic forces are small in comparison to the other
forces and thus neglected.

In order to simplify the notation, three right-handed ref-
erence frames are introduced: the wall frame W with the
unit vector x̂W oriented toward the wall and ŷW upward
along the surface; the airplane frame A is rotated by qA

from W , around ẑW ; the femur frame F is rotated by -qH

from A, around ẑW . The following paragraphs describe the
procedure used to derive the equations governing the model
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Fig. 2. Simplified model of the airplane. The plane is modeled as a rigid
bar and the suspension as a massless link connected through linear spring
and damper at the hip joint. Reference frames and variables are illustrated
on the left, while forces and torques applied on the airplane are illustrated
on the right.

and the constraints that should be respected for successful
landing. Due to their excessive length, the explicit equations
are not included in this paper. However, their derivation with
a software like Motion GenesisTM [15] is trivial once the
identifiers (see Table I), the kinematics, the forces and the
constraints are defined.

TABLE I
IDENTIFIERS FOR THE SIMPLE AIRPLANE MODEL

variables:
qA - airplane pitch: from x̂W to x̂A, along ẑW
qH - hip angle: from x̂A to x̂F , along ẑA
fn - adhesion force acting on the foot, along -x̂W
fs - shear force acting on the foot, along ŷW
fntail - normal force acting on the tail, along -x̂W
nominal parameters:
mA 0.4 kg mass of the airplane
IAzz 0.0164 kgm2 moment of inertia of the airplane around ẑA
bh 0.0012 Nms/◦ damping coefficient at the hip joint
kh 0.0041Nm/◦ spring stiffness at the hip joint
constants:
lf 0.15 m length of the leg, hip to foot, along x̂F
lh -0.03 m dist. from plane COM to hip, along x̂A
lt 0.57 m dist. from plane COM to tail, along -x̂A
g 9.81 m/s2 gravitational acceleration
qh0 45◦ natural hip angle
α 1 adhesion limit for asphalt roofing shingle
µ 0.3 coefficient of static friction

The first step to derive the equations needed is to define
the acceleration of the center of mass. To do so, the position
of the center of mass (rACM /W0 = lhx̂A − lf x̂F ), can be
differentiated twice with respect to time and in reference
frame W:

WaACM = lf (q̇H − q̇A)2 x̂F + lhq̈A ŷA + ...

lf (q̈H − q̈A) ŷF − lhq̇2
A x̂A (1)

The forces acting on the airplane are the gravity (g =
−mAg ŷW ) acting at the center of mass, and the contact
forces transmitted from the foot to the hip joint by the
massless leg (fh,contact = −fn x̂W + fs ŷW ). Due to the
spring and damper located at the hip, the hip torque is



τh = −(kh(qh − qh0) + bhq̇h) ẑW . At the frictionless slider
joint located at the tail, the force is ftail = −fntail

x̂W .
Knowing these, it is possible to write the equations of motion
by equating the sum of the forces to the effective force and
the sum of the moments of force around the hip point to the
moment of effective force around the same point [16]:

fh,contact + g + ftail = mA
WaACM (2)

τh + lh x̂A × g − lt x̂A × ftail = ...

IA/Ahip ·WαA + mA rACM /Ahip × WaAhip (3)

where IA/Ahip is the inertia dyadic of the airplane around the
hip point, WαA is the angular acceleration of the airplane
in W and rACM /Ahip is the position vector of the airplane
center of mass with respect to the hip joint. From these
vectorial equations, it is possible to obtain 3 scalar equations
by dotting equation 2 with x̂W and ŷW , and equation 3 with
ẑW . A fourth equation can be written by dotting the moment
balance around the massless leg with ẑW :

−(kh(qh − qh0) + bhq̇h) = (lf x̂F × fh,contact) · ẑW (4)

Finally, an additional kinematic constraint is used to
enforce the slider joint at the tail:

d2

dt2

(
rAtail/W0 · x̂W = 0

)
(5)

These 5 equations are then used to solve for q̈A, q̈H , fn,
fs and fntail

. Note that in this case, qH is driven by qA, due
to the preceding kinematic constraint. The angular velocity
q̇H could also be solved for directly by setting the velocity
of the tail along x̂W to be zero.

1) Constraints: During landing, the system must satisfy
various constraints to stay attached to the wall and remain
in the desired configuration. For the spines to stay attached,
the forces must stay within the green safe zone in Figure 3.
This means that the forces must respect the friction limit and
the adhesion limit, which are functions of the asperity shape
and material properties. The force at the foot must also not
exceed the maximum force that the asperities can sustain.
These conditions are listed in Table II; more details about
spine interaction can be found in [6, 17].
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Fig. 3. Force space representation of the constraints that must be respected
for the spines to stay attached to the wall surface.

In addition, the tail must remain on the wall by maintain-
ing fntail

≥ 0. It is also desirable to prevent the hip/nose
from touching, by maintaining qA ≥ 90◦, as their contact
with the wall means that the suspension failed to absorb the
landing forces.

TABLE II
POST-TOUCHDOWN CONSTRAINTS

Description Constraint Active when
Upward sliding −fs ≤ µfn fs < 0, fn > 0
Spine adhesion −fn ≤ αfs fs > 0, fn < 0

Max. force
p

(fn/c)2 + f2
s ≤ fmax always

Tail rebound fntail ≥ 0 always
Nose hitting qA ≥ 90◦ q̇A ≤ 0

All these constraints are summarized in Table II and the
barriers that they create on the dynamics of the system are
illustrated in the left side of Figure 5.

A. Estimated ROA using previous techniques

The full ROA is illustrated in Figure 5 for two different
airframes. The first design evaluated is the baseline airframe
(400g) defined by the parameters of Table I, while the second
design corresponds to a lighter version (200g). By sampling
the state space, it is possible to instantaneously evaluate the
constraints. The remaining points satisfying the constraints
can then be simulated forward in time to determine if they
will lead to failure. In both cases, it was found that the ROA
is limited by the spine adhesion, tail force and the nose
hitting constraints. In these specific cases, upward sliding,
maximum force and tail rebound are not contributing to the
shape of these ROAs.

In this simple 1DOF problem, it is straight forward to
graph the constraints and the trajectories that are defining the
ROA on a phase diagram and visually evaluate the envelope.
This approach would not work in higher dimension and
the discretization of the state space followed by numerous
simulations would be required, as done in [6].

IV. VERIFICATION WITHIN BARRIERS

In this section we describe how to extend previous tech-
niques for computing ROAs of dynamical systems to handle
the kinds of constraints presented above. We will deal with
systems described by an ordinary differential equation:

ẋ(t) = f(x(t)), (6)

representing autonomous (possibly closed loop) dynamics
with state vector x(t) ∈ Rn. We also are given a failure
region, F ⊂ Rn, described by inequalities such as those in
in Table II, and an exponentially stable equilibrium x0 ∈ Rn

(i.e. f(x0) = 0). Our goal is to approximate the set of
initial conditions for which solutions of (6) approach the
equilibrium without ever passing through the failure region,
F .



A. Lyapunov and Barrier Functions

We will find inner-approximations of this set via a com-
bination of Lyapunov and barrier functions. Throughout this
section we denote by V : Rn 7→ R a positive, differentiable
function such that V (x0) = 0, and V (x) > 0 when x 6= x0.
Lyapunov based approaches to ROA estimation generally
rely on statements of the following sort [18]. If for some
positive ε:

V (x) ≤ 1 =⇒ ∂

∂x
V (x)f(x) ≤ −εV (x)

for all x ∈ RN , then the 1-sublevel set of V :

Ω = {x | V (x) ≤ 1}

belongs to the region of attraction and solutions which begin
in this set never leave (i.e. the set is positively invariant). A
naive initial approach to extending this analysis would simply
be to require Ω to be disjoint from the failure region F (as
solutions will never leave Ω). We found this approach to be
very conservative, as our examples will bear out, and in the
remainder of this section we develop our alternative.

We attempt to find a region defined by a family of smooth
“barrier functions” Bi : Rn 7→ R which excludes all the
failure region. We will refer to the points where Bi(x) = 0
as “barriers”. We design the set of m functions {Bi}i∈I
(with I = {1, . . . ,m}) so that the set:

S = {x | Bi(x) ≥ 0, ∀ i ∈ I} (7)

does not intersect the failure region. This allows us to
form a new differential constraint to define a new inner
approximation of the ROA. We instead require a set of m+1
conditions to hold for all x ∈ Rn:

x ∈ Ω ∩ S ⇒V̇ (x) ≤ −εV (x), (8)

x ∈ Ω ∩ S, and Bi(x) = 0 ⇒Ḃi(x) > 0 ∀i ∈ I. (9)

The corresponding result we state without proof, which is
that under these two conditions the set:

Ω ∩ S = {x | V (x) ≤ 1, Bi(x) ≥ 0,∀ i ∈ I} (10)

belongs to the region of attraction and is again positively
invariant.

In words, these conditions examine the intersection of the
“safe set” S defined by the barrier functions and the 1-
sublevel set of V as the new inner approximation of the
ROA. Whenever the boundary of this set includes part of a
barrier (i.e. when x ∈ Ω∩S and some Bi(x) = 0) we require
that the vector field flow into the approximate ROA via an
additional differential constraint, as Figure 4 illustrates.

B. Computational Overview

Our approach will be to iteratively improve an estimate
of the ROA defined by a function V (x) as described above.
We will use sum-of-squares (SOS) programming to verify the
non-negativity conditions above, which requires the involved
functions to be polynomials (see [12]). This is not particu-
larly restricting for V (x), and we describe out techniques
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Fig. 4. An illustration of analysis with stability analysis and barriers. A
vertical barrier function B1(x) is negative for qA is less than 90 degrees
and positive otherwise representing the plane’s nose colliding with the wall.
This defines a safe set S to the right of the barrier where qA is equal to 90
degrees. A positively invariant region in purple is given by the intersection of
the safe set and the smaller ellipsoidal sub-level set of a Lyapunov function
V (not fully pictured). The intersection with a larger ellipsoidal sub-level set
would not be positively invariant, as further growth would include points on
the boundary of the barrier where the flow of the dynamics (black arrows)
would exit the safe set S.

for constructing conservative polynomial barrier functions
Bi(x) in Section V. This computation, combined with a local
polynomial approximation of the dynamics f(x), occurs
once. To test various constraints on algebraic and semi-
algebraic sets (i.e. sets defined by intersections of polynomial
equalities and inequalities respectively) we make frequent
use of the polynomial S-Procedure [19]. This technique re-
duces conservative verification of conditions such as (8) and
(9) into a semidefinite program. Reducing the conservatism
of the technique requires optimization over the coefficients
of polynomial multipliers, which will be referenced later.
These multipliers transform constrained positivity tests such
as (8) and (9) into unconstrained tests in analogy to Lagrange
multipliers in optimization.

In this work we’ll describe candidate V (x) as either being
quadratic or quartic polynomials in the state x. The linear
theory guarantees the existences of a locally valid quadratic
Lyapunov function V0(x) = (x − x0)′P (x − x0) where P
is a symmetric, positive definite, n × n matrix. This P is
derived by solving a Lyapunov equation PA + A′P = −Q
for another positive definite n×n matrix Q, where A is the
Jacobian of f(x) at the equilibrium. We begin our process
by finding an appropriate scaling of P such that V0(x) ≤
1 satisfies our differential constraints (see Algorithm 1).
This forms the initial Lyapunov candidate for our bilinear
alternation (also called coordinate descent) approach.

Inspired by the choice of the volume of the region of
attraction as a measure of stability, it is natural to attempt
to maximize the volume of Ω ∩ S. Unfortunately, even
when Ω is ellipsoidal this objective is generally non-convex.
Further calculating the volume of a general semi-algebraic
is computationally difficult. We follow the scheme proposed
in Topcu et al. [13]. We produce a certificate that Ω contains
an ellipsoid of fixed orientation and take the maximal radius



of such ellipsoids to be the measure of the size of Ω. We
describe a general ellipsoid E by the equations:

E = {x ∈ Rn | x′Sx + 2c′x + b ≤ 0}, (11)

where S is a fixed positive definite matrix, and require:

x ∈ E =⇒ V (x) ≤ 1. (12)

While we are interested in the volume of Ω ∩ S, we have
found allowing the contained ellipse to grow within the
region Ω allows for less conservative solutions.

C. Algorithm

We now present the components of our algorithm which
iteratively improve the ROA estimate through successive
computations of V (x) and polynomial multipliers involved
in the S-procedure which certify (9),(8),(12). These iterations
improve the estimate in terms of the radius of the contained
ellipse (11).

The Algorithm 1 provides a method of determining an
initial quadratic function V (x) = (x−x0)′P (x−x0), where
P = P ′ ∈ Rn×n is a positive definite matrix. As a step of
the algorithm, we solve the following optimization in ρ:

maximize
ρ

ρ (13)

subject to ‖x− x0‖2(V0(x)− ρ) = 0 ⇒ V̇0(x) ≤ −εV0(x),
Bi(x) = 0 ⇒ V0(x) > ρ, ∀ i ∈ I.

Using the polynomial S-procedure the above is an optimiza-
tion in the coefficients of a number of polynomial multipliers
linear in the number of barriers and the single coefficient
ρ (as V0(x) is fixed). If we choose fixed polynomial mul-
tipliers for the terms involving ρ this is further a convex
optimization. For the choice of V0(x) = (x−x0)′P0(x−x0),
where P0 is the solution of the Lyapunov equation given
in Algorithm 1, linear systems theory guarantees V̇0(x) <
−εV0(x) in a neighborhood of 0. The above program ensures
that, except at x = x0, if V0(x) ≤ ρ then V̇0(x)+εV0(x) 6= 0,
thus V̇0(x) must still be less than −εV0(x). Further we
require that V0(x) ≤ ρ implies Bi(x) > 0. This guarantees
that the set Ω with V (x) ≡ V0(x) is entirely contained in
the safe set S.

Algorithm 1 Find Initial Quadratic Lyapunov Function.
1: procedure INITIALQUADRATIC(x0,f,B)
2: A← ∂

∂x
f(x0).

3: P0 ← solution of A′P0 + P0A = −I.
4: ε← positive value less than smallest eigenvalue of P .
5: V0 ← (x− x0)

′P0(x− x0).
6: ρ← solution to optimization problem (13).
7: P ← P0/ρ
8: return P
9: end procedure

We now present the iterative technique which we apply
for finding less conservative ROA estimates which satisfy
(9),(8),(12). The initialization step provides us both with an

initial Lyapunov candidate V (x) = (x−x0)′P (x−x0) with
P = 1

ρP0 and a contained ellipse:

E0 = {x ∈ Rn | x′Sx + 2c′0x + b0 ≤ 0}, (14)

given by S = P , c0 = −Sx0 and b0 = x′0Sx0 − r for any
r < 1, as V is quadratic. Algorithm 2 describes the overall
procedure.

Algorithm 2 Given a polynomial differential equation f :
Rn 7→ Rn and set of barrier functions B = {Bi}i∈I
optimize V .

1: procedure OPTIMIZEOMEGA(x0,f,B)
2: P ← initialQuadratic(x0, f, B).
3: V ← (x− x0)

′P (x− x0).
4: S ← P, c← −Px0, b← x′0Px0 − r.
5: while Stopping criterion not met. do
6: (V, c, b)← growQuartic(x0, f, B, V, S, c, b)
7: end while
8: return V
9: end procedure

10: procedure GROWQUARTIC(x0, f, B, V0, S, c0, b0)
11: s← multiplier polynomials verifying the conditions of (15)

for (V, c, b) ≡ (V0, c0, b0).
12: (V, c, b) ← solution of optimization problem (15),

using multiplier polynomials s.
13: return (V, c, b)
14: end procedure

Lines 11 and 12 of Algorithm 2 involve solving two con-
vex optimizations related to the program (15) below. The first
optimization searches over the coefficients of the polynomial
multipliers associated with applying the S-procedure to the
family of polynomial constraints in (15). Here the number of
multipliers grows quadratically with the number of barriers.

maximize
V,b,c

− b (15)

subject to V (x) ≥ ε1‖x− x0‖2.
x ∈ Ω ∩ S ⇒ V̇ (x) ≤ −ε2V (x),

x ∈ Ω ∩ S, Bi(x) = 0 ⇒ Ḃi(x) ≥ 0,∀i ∈ I
x′Sx + 2c′x + b ≤ 0 ⇒ V (x) ≤ 1.

The second program minimizes b through the choice of
b, c and V . In our examples we examine choosing V to be
a quartic polynomial. While b is not technically the radius
of the contained ellipse it is nonetheless monotonic in this
radius. The choice of c 6= 0 corresponds to examining
ellipses whose center is not at x = 0. In our examples this has
proven to be an important, albeit incremental, improvement
on the original method proposed in [13]. We generally stop
either after a maximum number of iterations or after the
percent growth of the contained ellipse between iterations,
measured by radius, is sufficiently slow.

V. POLYNOMIAL APPROXIMATION USING
SUPPORT VECTOR MACHINES

In order to solve the optimization problems posed in
the previous section, it is necessary to find polynomial
approximations of the dynamics, f(x), and any of the barrier



functions, {Bi(x)}i∈I , which are non-polynomial. If one
approximates a barrier Bi( · ) by a polynomial function
B̂i( · ) it is possible to maintain conservatism so long as
B̂i(x) is negative whenever Bi(x) is negative.

The dynamics of the plane-wall system about its perched
fixed point are nonlinear. For the results in this paper, we
chose a third-order Taylor expansion of the dynamics about
that fixed point as the polynomial approximation to f(x).

Several barrier functions in the plane-wall system which
define surfaces separating one hybrid mode from another are
also nonlinear. We chose to sample points on both sides of
these barriers and then use the soft-margin Support Vector
Machine (SVM) binary classifier algorithm with a polyno-
mial kernel, as implemented by [20], to find polynomial
approximations. Due to the structure of the cost function
used in the optimization step of the SVM algorithm, the
decision boundary will have an associated margin outside
of which a misclassified point is costly but permitted by
the existence of slack variables. While a clean option for
ensuring conservatism may be modifying the slack variables
themselves, the current solution for generating polynomial
barriers that are conservative with respect to the samples is
to tune the polynomial degree and cost function parameters
such that no samples from the “unsafe” side of the nonlinear
boundary to fall outside the margin on the “safe” side of the
polynomial SVM class boundary, breaking the problem into
smaller, simpler classification problems if necessary. Then
the margin, which is the 1-level set of the decison barrier
function returned by the SVM, is a conservative polynomial
barrier approximation.

VI. RESULTS

Using the approximated dynamics and barriers, and the
method described in this paper, it is possible to estimate
the ROA of the simple perching model described previously.
The estimated ROA of two different airframes, the original
system as well as a lighter version, are illustrated on the right
side of Figure 5 and can be compared with the real ROA on
the left side of the same figure.

Before discussing the estimated area, a few important
observations should be made. First, one can observe that the
approximated polynomial dynamics are generally well fitting,
particularly in close proximity to the fixed point of the system
as expected from a Taylor Expansion. The fit deteriorates
around the strong non-linearity close to qA = 104◦, as the
legs fully straighten, but this region is not relevant as it is
behind the barriers and represents states unreachable by the
mechanical system. Second, the combination of linear and
SVM approximated barriers provides a close estimate of the
barriers acting on this system.

We computed estimates of the ROA using Algorithm 2.
The SOS programs were processed into semidefinite pro-
grams using YALMIP [21] and solved using SeDuMi [22].
As expected, the algorithm allows the quartic to jump over
the sections of the barriers where Ḃi > 0 and the quartic
usually grows all the way to the point where Ḃi becomes
negative (A on Figure 5). Furthermore, the formulation

allows the quartic to grow unrestricted by the constraints
once it has crossed one constraint. This behavior is shown
by point B on Figure 5.

All of these factors are important to favor the growth
of the estimated ROA. In both cases analyzed here, the
estimated ROA area represents 78% of the ROA calculated
from the real system. For a 400g platform, the estimated
region has an area of 894 deg2/s compared to 1153 deg2/s.
As the mass of the airplane is reduced to 200g, the real
ROA increases in size to 2211 deg2/s, and so does the area
estimated by the quartic which reaches 1735 deg2/s. The
new method proposed in this paper produces significantly
better ROA estimations than a method that would use a fixed
ellipsoid limited in growth by the barriers, as illustrated by
the blue dotted ellipsoid in Figure 5. For the two variations
of the system presented in this paper, both the real ROA
and the estimated polynomial ROA are suggesting that a
lower mass is desirable to favor higher speed landings, which
is consistent with our experience on the real airplane and
suspension.

VII. CONCLUSION

In the future, this approach could be automated and
repeated for multiple parameters (e.g., joint stiffness and
damping, leg length, inertia) and a design that leads to
the largest ROA could be found. This has an important
implication for the design of mechanical systems as it allows
the designer to optimize the design for robustness to various
operating conditions rather than performance for a single
typical case, without recourse to numerous simulations.

More generally, our interest is not only in creating the
largest touchdown ROA for the suspension, but the largest
flying ROA that will connect to the touchdown ROA. This
will allow the simultaneous evaluation of parameters like the
mass and inertia of the airplane that have an influence during
both the flight and touchdown phase. This will require us to
deal with the other transitions experienced during the landing
phase (e.g., sliding up, foot only touchdown) by using hybrid
models.

There are natural extensions to the optimization tools
presented here which could further improve our analysis.
First, sums-of-squares optimization can be applied directly
to the mixed trigonometric (in positions) and polynomial (in
velocities) dynamics of the model, without requiring polyno-
mial approximation; these optimization tools are less mature,
but are progressing quickly. Second, if the model parameters
(e.g. friction of the climbing surface) are unknown, it is
natural to incorporate a (conservative) notion of robustness
into this verification by requiring that the Lyapunov and
barrier conditions are met by all possible vector fields given
the uncertain system[23]. This technique can be used to
capture real uncertainty about the perching environment, or
known limitations in the simple models.

Finally, the tools described here should be applied to the
full model of the perching airplane described in [6] and the
predicted ROA evaluated on the real hardware. The approach
remains the same as described here, but in higher dimension.
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B i = 0 and Ḃ i > 0
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Fig. 5. Comparison of real and estimated ROA for two different cases: mA = 0.4kg on top row, and mA = 0.2kg on bottom row. The graphs on
the left illustrate the real dynamics, aggregated constraints and corresponding ROA as the green shaded region. The real ROA is limited by the force on
the tail, the fn/fs ratio and the fact that that the nose shouldn’t touch the wall at qA = 90◦. The lower limit of the ROA comes from simulating the
system backward in time from (90,0). Points below this trajectory will eventually lead to failure by hitting the wall. The graphs on the right illustrate the
approximated dynamics, the approximated constraints and the estimated ROA from the quartic (green line) and the constraints. In both cases, the estimated
ROA covers 78% of real ROA, while the fixed center ellipsoid limited by the barrier captures only a fraction of it. Points A illustrate barrier crossing up
to where Ḃi becomes smaller than zero while B shows that part of the barrier where Ḃi < 0 can be crossed if they are behind other barriers.

Regions of attraction estimation using sums-of-squares scales
polynomially in the number of state dimensions, with success
stories up to about 14 dimensions [23].
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