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Abstract— We propose a voting-based pose estimation al-
gorithm applicable to 3D sensors, which are fast replacing
their 2D counterparts in many robotics, computer vision, and
gaming applications. It was recently shown that a pair of
oriented 3D points, which are points on the object surface with
normals, in a voting framework enables fast and robust pose
estimation. Although oriented surface points are discriminative
for objects with sufficient curvature changes, they are not
compact and discriminative enough for many industrial and
real-world objects that are mostly planar. As edges play the
key role in 2D registration, depth discontinuities are crucial
in 3D. In this paper, we investigate and develop a family of
pose estimation algorithms that better exploit this boundary
information. In addition to oriented surface points, we use two
other primitives: boundary points with directions and boundary
line segments. Our experiments show that these carefully chosen
primitives encode more information compactly and thereby
provide higher accuracy for a wide class of industrial parts
and enable faster computation. We demonstrate a practical
robotic bin-picking system using the proposed algorithm and a
3D sensor.

I. INTRODUCTION

In robotics, pose estimation refers to the estimation of
6-degree-of-freedom (6-DoF) object pose using sensor mea-
surements (e.g., images, 3D point clouds) and prior knowl-
edge (e.g., a 3D model) of the object. Pose estimation plays a
major role in many robotics applications such as bin-picking,
localization, and 3D reconstruction.

2D Images: Until recently, pose estimation was primarily
done using 2D images because cameras are cost effective
and allow fast image acquisition. The main problem is to
match the 2D features with their corresponding 3D features
in the model. This becomes challenging due to changes in
illumination, rotation, scale and partial viewpoint changes
in the image space. Furthermore, some views of the object
can theoretically lead to ambiguous poses. In order to handle
these challenges, several invariant feature descriptors [1], [2]
were used to find the correspondences between an input
image and a database of images, where the keypoints are
matched with the 3D coordinates and stored offline [3], [4].

Depth Edges: Most industrial parts are textureless and
one has to rely heavily on the edges in the images. When
boundaries of an object are used, a set of edge templates of an
object is often known a priori, and the templates are searched
in query image edge maps. Following the seminal paper on
chamfer distance [5], there were several useful variants that
incorporate edge orientation [6], [7] or employ hierarchical
representation [8]. Intensity-based edge detection often gives
too many edge pixels where only a few of them are useful
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Fig. 1. System overview. (Top-left) Setup of our bin-picking
system. The system uses a 3D sensor attached on a robot arm to
grasp an object randomly placed in a bin. (Top-right) Algorithm
flowchart. (Bottom) Pose estimation results. Best five pose estimates
are superimposed on the scanned 3D point cloud. Note that the
scenario exhibits a lot of challenges such as noise, missing data,
clutter, and occlusions.

edges coming from depth discontinuities. Raskar et al. [9]
introduced multi-flash camera (MFC) to directly estimate
depth edges by casting shadows from multiple flashes. Depth
edges from MFC were successfully used in many pose
estimation algorithms [10], [11].

3D Data: As 3D sensors are becoming more and more cost
effective on the commercial front, researchers are motivated
to develop robust and faster algorithms for 3D sensors.
Pose estimation would involve the correspondences between
3D features in the data and the model. In contrast to 2D
images, 3D data are largely invariant to the geometric and
photometric changes described above. The main challenge
is to solve the correspondence problem in the presence of
sensor noise, occlusions, and clutter. The size, distributions
of surface normals and boundaries of an object are critical in
registering the sensor data with the model. Several feature de-
scriptors and matching algorithms have been proposed [12],



[13], [14], [15], [16]. These descriptors are invariant to rigid
body transformation, but sensitive to noise and occlusion.
Furthermore, they require dense point clouds, which may
not be available.

RANSAC, Clustering, and Voting: Pose estimation is
feasible with various kinds of correspondences between 3D
sensor data and the model: 3 point correspondences [17],
2 line correspondences [18], and 6 points to 3 or more
planes [19]. Typically these correspondences are used in a
hypothesize-and-test framework such as RANSAC to com-
pute the pose. Alternatively, the pose can be retrieved from
the mode of the hypothesized pose distribution either using a
Hough voting scheme [20] or clustering [21] in the parameter
space.

These approaches suffer from two problems when only
3D sensor data are available without images or other priors:
(1) geometric primitives such as points, lines, and planes are
not very discriminative individually and are combinatorial
to match; (2) it is difficult to achieve computational speed
without doing any prior computations on the model. In this
paper, we consider geometric primitives in a pair, which we
refer to as pair feature [22], [23], [24]. The pair feature
is more discriminative than individual primitives, which
reduces the complexity of the matching task.

In [25], depth differences between pairs of points in
range data are used in a classification framework for human
pose estimation. In [23], a pair feature is defined by using
surface points with their normals as primitives. An object is
represented by a set of pair features in a hash table for fast
retrieval. Random points are sampled from the sensor data
and each pair votes for a particular pose. The required pose
corresponds to the one getting the largest number of votes.
Our paper can be seen as a generalization of this method
for a larger class of objects using additional primitives that
better exploit the boundary information in 3D data.

Note that the above algorithms detect objects in 3D data
and provide their coarse poses. The coarse poses can be
further refined using an iterative-closest point (ICP) algo-
rithm [26].

Contributions: Surface points with normals are good to
register objects that have rich variations in surface normals.
However, they are not very efficient in representing many
industrial and real-world objects that are mostly planar. To
this end, we propose several novel pair features that exploit
the depth discontinuities in 3D data. The main contribution
of this paper is a comprehensive study and development
of highly informative and compact features to model a 3D
object by using its surface normals, boundaries, and their
geometric relationships. We exploit a voting framework to
efficiently compute poses with the compact features and
apply the pose estimation algorithm to a practical bin-picking
system using a 3D sensor.

II. SYSTEM OVERVIEW

Fig. 1 (top-left) shows the setup of our bin-picking system.
Our system uses a 3D sensor attached on a 6-axis industrial
robot arm to estimate the poses of objects randomly placed

in a bin. The 3D sensor is based on structured light using
an infrared laser and provides 3D data as depth maps of
640 × 480 pixels. The 3D sensor is calibrated with respect
to the robot arm, thereby allowing grasping and picking of
an object using the estimated pose.

Fig. 1 (top-right) shows the algorithm flowchart. Our
system scans the bin of objects using the 3D sensor. Given a
3D CAD model of a target object, our voting-based algorithm
(described in Section III) performs detection and pose esti-
mation of the target object using the scanned 3D point cloud.
This provides multiple coarse pose hypotheses. The system
selects several top pose hypotheses and individually refines
them using a variant of ICP algorithm [26]. The refinement
algorithm renders the CAD model using the current pose
estimate and generates 3D points for the model by sampling
the surface of the rendered model. It then computes the
closest 3D point in the scanned point cloud for each 3D
point in the model and updates the pose estimate using the
3D point correspondences.

After refinement, the registration error is given by the
average distance between the corresponding scene and model
points. The registration error could be high when the coarse
pose computed by the voting algorithm is incorrect, or when
a part of the object is missing due to occlusion from other
objects. If the registration error is small and the estimated
pose is safely reachable by the robot arm, the system grasps
the object.

Please watch the accompanying video to see our bin-
picking system in action.

III. VOTING-BASED POSE ESTIMATION

We use oriented points (points with orientations) and line
segments as our geometric primitives. We denote a pair
feature based on a pair of oriented points on the object
surface [23] as S2S. We propose three novel pair features:
(1) a pair of oriented points on the object boundary (B2B),
(2) a combination of an oriented point on the object surface
with an oriented point on the object boundary (S2B), and
(3) a pair of line segments on the object boundary (L2L).
Note that the pair features are defined asymmetrically and
we denote the first primitive in the pair as reference and the
second as referred. To retrieve the pose of the object, it is
necessary to establish correspondences between pair features
from the scene and the model. We use various geometric
constraints from the pair of oriented points or line segments
as their descriptor. The correspondences between the scene
and model pair features are then established by matching
their descriptors.

A. Pair Features

1) S2S — Surface-to-Surface: Drost et al. [23] defined a
pair feature using two points on the object surface and their
normals. Given an oriented point from the 3D scene and a
corresponding primitive from the object model, the 3D pose
can be recovered up to a planar rotation by aligning point
locations and their normals. To resolve the rotation ambiguity
and recover the full 6-DoF pose, at least one correspondence
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Fig. 2. Pair features for voting-based pose estimation. (a-c) Point pair feature descriptors, FS2S,FB2B, and FS2B, are defined by the
relative position f1 and orientations f2, f3, and f4 of a pair of oriented points (m,n) where blue points indicate surface points with
surface normal vectors and red points denote boundary points with directions. (d) The line pair feature descriptor FL2L is defined by the
distance f1 and the acute angle f2 between two (infinite) lines, and the maximum distance between the two line segments f3.

Fig. 3. Geometric Primitives M for the pair features. From left to right: Surface points and normals for S2S, boundary points and
directions for B2B, their combination for S2B, and 3D boundary line segments for L2L. While surface points are obtained by subsampling
the original scan, 3D boundary line segments are estimated using a RANSAC-based algorithm, and the boundary points are then obtained
by subsampling along the line segments.

between two pairs of scene and model primitives is neces-
sary. Let {(mr,nr), (mi,ni)} denote the pair feature where
mr and mi are the reference and referred points on the object
surface, and nr and ni are their normals respectively. The
associated descriptor with the S2S pair feature was given by

FS2S = (f1, f2, f3, f4)T (1)

= (‖d‖2,∠(nr,d),∠(ni,d),∠(nr,ni))
T, (2)

where d is the vector from the reference point to the
referred point, and ∠(v1,v2) ∈ [0;π) represents the angle
between two vectors. The first component of the descriptor,
f1 = ‖mi − mr‖2 = ‖d‖2, represents the Euclidean
distance between the two surface points. The second and
third components, f2 and f3, are angles between the vector
d and the surface normal vectors nr and ni, respectively.
The last component f4 is the angle between the two normal
vectors. The S2S feature is illustrated in Fig. 2(a).

When the object spans a wide range of surface normals,
the S2S feature provides a good description of the object.
However, it fails for shapes that do not span a rich set
of surface normals. Unfortunately, most industrial parts are
planar and have a very small set of normal directions.
Additionally, due to noise in 3D data, it is difficult to estimate
the normals accurately in high curvature regions on the
surface.

2) B2B — Boundary-to-Boundary: We define B2B, a new
point pair feature based on two points on the object boundary
(depth edges). In contrast to surface points, boundary points

do not have well defined normals. Therefore, we fit line
segments to boundary points and use their directions as
orientations.

We use a 3D extension of the 2D line fitting approach
presented in [11]. First we compute the edges in range
images using the Canny edge detector [27]. Points from
the edge map are randomly sampled and 3D lines are fit
locally using RANSAC. By iteratively finding and removing
line segments with maximum inliers, we recover all line
segments. These line segments are further refined using least
squares.

After line fitting, we uniformly sample boundary points on
the 3D line segments. In Fig. 2(b), the red points show the
boundary points on two 3D line segments. We define B2B
feature descriptor FB2B ∈ R4 as

FB2B = (f1, f2, f3, f4)T (3)

= (‖d‖2,∠(n̄r,d),∠(n̄i,d),∠(n̄r, n̄i))
T. (4)

This descriptor is equivalent to FS2S except that n̄r and n̄i
are directions of the 3D lines. Note that the directions are
not uniquely determined, therefore we consider two possible
directions, n̄ and −n̄, when we use the B2B feature.

Object boundaries are highly informative. Compared to
S2S, B2B provides more concise modeling since there are
fewer boundary points than surface points. Additionally, the
orientations from local line segments are more robust to noise
compared to surface normals.



3) S2B — Surface-to-Boundary: A pair feature only based
on boundary points is not very reliable for objects with
high curvature. For example, any point on the surface of a
spherical object can potentially become a depth edge based
on the pose, whereas depth edges on a polyhedral object
are more stable and always appear on plane intersections.
To jointly and efficiently model both planar and curved
objects, we propose S2B, a heterogeneous pair feature using
an oriented surface point and an oriented boundary point.
As shown in Fig. 2(c), we define S2B feature descriptor
FS2B ∈ R4 as

FS2B = (f1, f2, f3, f4)T (5)

= (‖d‖2,∠(nr,d),∠(n̄i,d),∠(nr, n̄i))
T. (6)

4) L2L — Line-to-Line: We propose L2L, a pair feature
using two 3D line segments. This pair feature is particularly
efficient for polyhedral objects and objects having long
boundary line segments, since the number of line segments
is fewer than that of surface points or boundary points. Let
cr and ci be the closest points on the infinite lines that
contain the 3D line segments, and {l1r, l2r, l1i , l2i } denote the
end points of line segments, as shown in Fig. 2(d). We define
L2L feature descriptor FL2L ∈ R3 as

FL2L = (f1, f2, f3)T (7)

= (‖ci − cr‖2,∠a(l2r − l1r, l
2
i − l1i ), dmax)T, (8)

where ∠a(v1,v2) ∈ [0; π2 ] represents the acute angle be-
tween two vectors, and

dmax = max(‖l1i − l1r‖2, ‖l1i − l2r‖2, ‖l2i − l1r‖2, ‖l2i − l2r‖2).

The first and second components are the distance and angle
between the two infinite lines, while the last component
represents the maximum distance between the two line
segments. The maximum distance dmax is computed by
finding the maximum of the all possible distances between
an end point in one line segment and an end point in
the other. Using dmax is helpful to prune false matches
between two line segments having similar distance and angle
(e.g., any pair of coplanar orthogonal lines have the same
distance and angle). However, line segments usually break
into several fragments during the line fitting procedure due
to sensor noise, occlusion, etc. As a result, the end points
of line segments are usually unstable. Thus we use a bigger
quantization step for this component of the descriptor. Note
that we discard pairs of parallel lines since the closest points
cannot be uniquely determined.

Recently, it has been shown that the minimum and max-
imum distances between line segments are very effective in
pruning the search space in correspondence problems [28].
Note that we can also use the minimum distance between two
line segments in building the L2L feature. However, this was
sensitive due to breaking of line segments in our experiments.

B. Object Representation

As shown in [23], we globally model an object using a set
of all possible pair features computed from the object model.

Once this set is determined, we calculate pair features in the
scene point cloud and match them with the set of the model
pair features.

The pair feature representation of a target object is con-
structed offline. We first obtain geometric primitives M:
surface points for S2S, boundary points for B2B, both sur-
face and boundary points for S2B, and 3D lines for L2L.
These primitives can be calculated from either 3D scanned
data with known calibration between the sensor and the
object, or synthetic depth data rendered from a known CAD
model. With these primitives M, all possible pair features,
(mr,mi) ∈M2 for S2S, B2B, or S2B and (lr, li) ∈M2 for
L2L, are calculated.

For efficient feature matching, we store the set of pair
features of the model in a hash table data structure H, as
in [23]. We quantize the pair feature descriptors and use
them as the key for the hash table. Pair features that have
similar descriptors are inserted together in the same bin and
matching/voting can be done in constant time. Note that it
is important to define the quantization levels appropriately;
using very large step sizes reduces discriminative power of
the descriptors, whereas using very small step sizes makes
the algorithm sensitive to noise.

C. Voting Scheme for S2S, B2B, and S2B Features

After computing pair features and constructing a hash table
structure, we find pose hypotheses by calculating rigid body
transformations between a scene pair feature and a set of cor-
responding model pair features. To make this search efficient,
we adopt a voting scheme. A naı̈ve approach would require
voting in the 6-DoF pose space, which is not computationally
efficient. Instead, Drost et al. [23] proposed a voting scheme
that reduces the voting space to a 2D space using local
coordinates. First, a scene point pair (sr, si) ∈ S2, where
S is the set of primitives from the scene, is searched in
the hash table H, and a corresponding model point pair
(mr,mi) ∈M2 is found. Then, the reference points of the
pairs, sr and mr are aligned in an intermediate coordinate
system, as shown in Fig. 4 (left). To fully align the pair, the
referred points, si and mi, should be aligned by rotating the
object around the normal. After the planar rotation angle α is
calculated, the local coordinates are defined by the pair of the
reference model point and the planar rotation angle (mr, α).
The transformation from (mr,mi) to (sr, si) is given by

si = T−1s→gRx(α)Tm→gmi, (9)

where Rx(α) is the rotation around the x-axis with angle
α, Ts→g and Tm→g are the transformations from the scene
and model coordinate systems to the intermediate coordinate
system, respectively.

In the voting phase, a given reference scene point sr
and every other point si are paired, and then the model
pair features (mr,mi) which are similar to the scene pair
feature (sr, si) are searched in the hash table H using their
descriptors. For every matching (mr,mi), the rotation angle
α is computed and then votes are cast in the 2D space of
(mr, α). After all the matchings are voted, the elements that
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Fig. 4. Aligning pair features via an intermediate coordinate system. (Left) Transformation for the point pair features S2S, B2B, and
S2B. By Ts→g , the scene reference point sr is moved to the origin and its orientation (normal or direction) ns

r is aligned to the x-axis.
The model reference point is similarly transformed by Tm→g , such that the positions and orientations of the reference points are aligned.
The referred points si and mi are then aligned by a rotation with angle α around the x-axis. Thus a 2D space (mr, α) is used for voting.
(Right) Transformation for the line pair feature L2L. By Ts→g , the scene reference line lsr is aligned to the x-axis and its middle point
os is moved to the origin. The model reference line is similarly transformed by Tm→g such that the reference lines are aligned. The
referred lines lsi and lmi are then aligned by a rotation with angle α and a translation with τ along the x-axis. Thus a 3D space (om, α, τ)
is used for voting.

have votes exceeding a threshold are selected as valid pose
candidates, and then the transformation between the model
and scene coordinate systems is computed using (9). This
voting scheme is applicable to S2S, B2B, and S2B, since the
point pair features are fundamentally equivalent. However,
the L2L feature, defined by a pair of line segments, requires
a specialized voting scheme.

D. Voting Scheme for L2L Feature

As described earlier, the end points of line segments are
not stably determined. We therefore build a voting scheme
for the L2L feature based on the infinite lines that contain
the 3D line segments, which is robust to the fragmentation
of line segments.

Similar to the point pair features, the voting scheme for the
L2L feature is based on aligning two pair features in an in-
termediate coordinate system. As illustrated in Fig. 4 (right),
the reference line lsr and the referred line lsi from the scene
are transformed by Ts→g in order to align lsr to the x-axis
and to align the middle point os to the origin. Similarly,
lmr and lmi are transformed via Tm→g . Still there are two
degrees of freedom to fully align the line pairs. As in the
point pair features, the first one is the rotation around the x-
axis; this angle α is determined from the angle between ds

and dm. The other degree of freedom is the translation along
the x-axis; this corresponds to the displacement between the
closest points cmr to csr, denoted as τ . Therefore, we use a
3D space (om, α, τ) for voting using the L2L feature. The
transformation from (lmr , l

m
i ) to (lsr, l

s
i ) can be computed as

lsi = T−1s→gTx(τ)Rx(α)Tm→gl
m
i , (10)

where Tx(τ) is the translation along the x-axis with τ .

E. Pose Clustering

In the voting scheme explained in the previous sections,
raw pose hypotheses are obtained by thresholding in the
voting space. Since an object is modeled by a large set of
pair features, it is expected to have multiple pose hypotheses
each for different reference primitives, points mr or lines lmr ,

supporting the same pose. Thus, it is required to aggregate
similar poses from different reference primitives [23]. Al-
though there are several methods for clustering in 3D rigid
body transformation space SE(3) such as mean shift on
Lie groups [21], these methods are usually computationally
prohibitive for time critical applications. Here we adopt an
agglomerative clustering approach which is very efficient.

We first sort the raw pose hypotheses in decreasing order
of the number of votes. From the highest vote, we create a
new cluster. If the next pose hypothesis is close to one of
the existing clusters, the hypothesis is added to the cluster
and the cluster center is updated as the average of the pose
hypotheses within the cluster. If the next hypothesis is not
close to any of the clusters, it creates a new cluster. The
proximity testing is done with fixed thresholds in translation
and rotation. Distance computation and averaging for trans-
lation are performed in the 3D Euclidean space, while those
for rotation are performed using quaternion representation.
After clustering, the clusters are sorted in decreasing order
of the total number of votes which determines confidence of
the estimated poses.

IV. EXPERIMENTAL RESULTS

In this section, we present an extensive evaluation of
the proposed methods on synthetic and real data. We also
evaluate the performance of our bin-picking system described
in Section II.

A. Synthetic Data

To compare the performance of the four pair features, we
generated 500 synthetic scenes in which six objects (Fig. 5)
were drawn with randomly selected poses. We ensured that
these random poses do not lead to physically infeasible
overlapping objects by checking the intersection of their
bounding boxes. We rendered the scenes with OpenGL by
setting the parameters of the rendering camera based on the
calibration parameters of our 3D sensor. For every object
the correct pose is stored in a ground truth database for



Fig. 5. Test Objects. The 3D CAD models of these test objects are used to create the model pair features for the voting algorithm and
to generate synthetic dataset. From left to right: Circuit Breaker, Clamp, Wheel, Γ-Shaped, Logo, and Weld Nuts.
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Fig. 6. Detection rates against occlusion rates for the synthetic dataset. Performance of the four methods decreases as occlusion rate
increases. Although the performance depends on objects, B2B and S2B features generally outperform the other features.

Fig. 7. Two example scenes from the 500 synthetic scenes. From left to right: Results using S2S, B2B, S2B, and L2L features. Correct
and incorrect poses are depicted as green and red renderings respectively.

experimental validation. Note that we identify and account
for the object symmetries during our experiments.

As shown in Fig. 7, objects in the synthetic scene severely
occlude each other and the degree of occlusion is various
over the 500 test scenes. We quantify the occlusion rate and
study the detection performance for different occlusion rates.
We follow the occlusion definition of [14]:

occlusion = 1− model surface area in the scene
total model surface area

. (11)

We performed the voting-based pose estimation using each
pair feature and considered only the pose that got the
maximum number of votes. The estimated pose was then
compared with the ground truth. If the errors in translation
and rotation were within 5 mm and 5◦, we counted it as a
true positive; otherwise it was regarded as a false positive.

Fig. 6 shows the detection rate at different occlusion rates
for each of the six objects. For Wheel and Weld Nuts objects,

the B2B feature outperforms the other pair features, while the
S2B feature shows better results for other objects. Since each
object possesses different geometric characteristics, the per-
formance of the four pair features on different objects slightly
varies; nevertheless, our boundary-based pair features (B2B,
S2B, and L2L) show better performance than the S2S feature.
The reason why the S2S feature reports inferior results is that
pairs of surface points in the same planar region of the object
can correspond to any planar region in the scene. As shown
in the leftmost column of Fig. 7, planar surfaces of several
objects are fitted to the background plane in the scene.

The boundary-based pair features are not only more dis-
criminative, but also more efficient. Table I shows average
numbers of pair features in the synthetic scenes and relative
processing times where the time of the fastest method, B2B,
is shown as one. Voting using the S2S feature requires a much
larger number of pair features than voting using boundary-



TABLE I
AVERAGE NUMBERS OF PAIR FEATURES IN THE SYNTHETIC SCENE

DATASET AND RELATIVE PROCESSING TIME.

Feature Number of Features Relative Proc. Time†

S2S [23] 23040000 (= 4800× 4800) 3.21
B2B 2616953 (≈ 1618× 1618) 1.00
S2B 7689280 (≈ 4800× 1602) 1.20
L2L 121058 (≈ 348× 348) 1.03
† The fastest method, B2B, is shown as one.

based pair features. Although the number of the L2L features
is the smallest, average processing time per a line pair takes
more because of the higher-dimensional voting space and
more complex transformation via the intermediate coordinate
system.

B. Real Data

We tested the voting-based pose estimation for real 3D
data scanned with our 3D sensor. The ground truth poses
of the objects are manually identified. Fig. 8 shows results
for each of the four pair features. The scene on the upper
row contains multiple instances of four of our test objects.
The objects occlude each other and make the scene highly
cluttered. The displayed pose corresponds to the best pose
hypothesis computed for each of the four objects. In the
result of using the S2S feature, two estimated poses are false
positives. Similar to the results for synthetic data, the planar
area of Clamp object caused several false pose estimates. As
shown in the lower row, we also tested the four pair features
in the scene which has multiple instances of Circuit Breaker
object. For comparison, we rendered top six pose hypotheses
obtained using each pair feature. Although in general all pair
features provide good performance for this object as shown
in the synthetic experiments, the L2L feature has three false
positives in this case, which are the flipped poses of the
ground truth poses. These poses have high similarities except
the small differences inside the object. The L2L feature is not
very robust to such small differences, since the directions of
line segments become unstable for short line segments.

C. Bin-Picking System Performance

Pose Estimation Accuracy: To quantitatively estimate
the accuracy of our bin-picking system, we used a single
Circuit Breaker object placed on a plane. We scanned it from
different locations by moving the robot arm, estimated at
each location the pose of the object in the robot coordinate
system, and computed pose estimation errors as absolute
differences from their median. We selected 100 random
sensor locations such that the object is centered in the field of
view of the 3D sensor. The locations were within 20◦ from
the z-axis of the robot coordinate system with a distance
to the object of 330 mm. For pose estimation, we used the
voting algorithm with the L2L feature followed by ICP-based
pose refinement.

Fig. 9 shows the histograms of pose estimation errors.
Table II describes their average for each translation and
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Fig. 9. Histograms of pose estimation errors for each translation
(X , Y , Z) and rotation around each axis (A, B, C). The errors are
computed as absolute differences from their median.

TABLE II
AVERAGE ABSOLUTE POSE ESTIMATION ERRORS.

X [mm] Y [mm] Z [mm] A [◦] B [◦] C [◦]

0.22 0.24 0.09 0.09 0.27 0.30

TABLE III
PICKUP SUCCESS RATE.

Total Trial Success Failure Success Rate

344 338 6 98.3%

rotation around each axis. They demonstrate the consistent
pose estimation results of our system with average absolute
errors of less than 0.3 mm for all (X , Y , Z) translations and
less than 0.3◦ for all (A, B, C) rotations.

Pickup Success Rate: We measured the pickup success
rate of our system by placing 36 Circuit Breaker objects
randomly in a bin as shown in Fig. 1. We used the B2B
feature and used 20% of the total number of boundary points
for voting (each 3D scan included ∼ 3000 boundary points).
The system performed ICP-based pose refinement for the
best 5 poses computed with the voting algorithm, and picked
up a single object as described in Section II for each cycle.
We refilled the bin when the system detected no pickable
objects or the system continuously picked up a predefined
number (15) of objects. The system picked up 10.2 objects
on average in a continuous process.

As shown in Table III, our system achieved a success
rate of more than 98% over 344 trials. All 6 failures were
due to occlusion of the gripping location of the object. The
estimated object poses were correct even in these failure
cases.

Processing Time: In the above bin-picking experiments,
the voting-based pose estimation algorithm using the B2B
feature (including 3D line fitting, voting, and pose clustering)
took around 500 msec. The refinement process using ICP
required around 100 msec for each pose hypothesis. The
system was implemented on an Intel Core i7-2600 PC with
C++. As shown in the accompanying video, the entire pose
estimation process can be performed during robot motion,
avoiding the wait time for the robot.



Fig. 8. Two example scenes from the real scans. From left to right: Results using S2S, B2B, S2B, and L2L features. The scene on
the upper row includes multiple instances of our test objects. The scene on the lower row contains multiple instances of Circuit Breaker
object. Our algorithm can reliably estimate poses of the object even when there are multiple objects and the scene is highly cluttered.

V. CONCLUSIONS

We developed a family of pair features using oriented
surface points, oriented boundary points, and boundary line
segments to model a wide variety of objects. We used the
pair features in a voting framework for robust and efficient
pose estimation. We showed that the pair features based
on the object boundary are more compact and informative,
thereby leading to higher accuracy and faster computation.
We demonstrated a bin-picking system with pickup success
rate of more than 98% and pose estimation error less than
0.3 mm and 0.3◦ for translations and rotations.
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