
Effector Form Design for 1DOF Planar Actuation

Alberto Rodriguez and Matthew T. Mason
The Robotics Institute — Carnegie Mellon University
albertor@cmu.edu, matt.mason@cs.cmu.edu

Abstract— Given a desired function for an effector, what is its
appropriate shape? This paper formulates mechanical function
as a product of both effector’s shape and motion, and, assuming
a fixed motion model, explores the role of shape in satisfying it.
We assume that the desired mechanical function is expressed as
a set of constraints on the geometry of contact, and develop the
tools for transforming these constraints into an effector shape.
A previous paper [1] addressed the special case of revolute or
prismatic fingers. This paper develops the more general case,
including all smooth 1DOF planar mechanisms. The technique
is illustrated with the design of finger shapes to improve the
stability of a planar grasp of an object.

I. INTRODUCTION

The connection between function and effector shape is
ubiquitous in manipulation and all of robotics (Figure 1).
It plays an important role in determining the reaction of an
object to contact and has the potential to express mechanical
intelligence, yet the design of effector shape is neglected
relative to other areas of manipulation research.

This paper explores design of effector shape. We assume
that the desired function can be described by a set of
constraints on contact geometry, and develop the techniques
for integrating those constraints to produce an effector shape.
We illustrate the approach by an example: deriving a finger
shape that improves the stability of a grasp.

Fig. 1. Examples of effectors whose shape might have a relevant role in
mechanical function: (a) hexapod robot “RHex”, (b) sickle, (c) crab pincer,
(d) manual gripper “Grip’n Grab”, (e) claw crane, (f) cockroach antennae,
(g) prosthetic hook, (h) prosthetic leg, and (i) rock-climbing cam.
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The basic idea of using contact constraints to express
function is illustrated in Figure 2, with the example task of
moving a disk along a given path. In an idealized frictionless
quasistatic world, the effector should contact the disk with a
contact normal along the path tangent as in Figure 2b. In the
presence of friction or perturbations, the disk would surely
deviate from the desired path. In that case, the “corrective”
contact constraints shown in Figure 2c and are chosen to
stabilize its motion. Examining these additional corrective
contact constraints would allow one to reject a point pusher,
or a flat pusher, and instead choose a cupped shape. Reducing
a desired function to contact constraints is quite common. For
example we often use it to explain the stability of an object
at rest on a table.

Fig. 2. An example task represented by a set of contact constraints. (a) The
goal is to move the disk from A to B along the given path. (b) For the disk
to follow the path, the effector must push it along the path tangent, which
gives a continuum of contact constraints. (c) Extra “corrective” constraints
to make the push robust to perturbations, such as friction.

In previous work [1] we explored the design of effectors
yielding contact geometry invariant with respect to the scale
or the pose of an object. An example is given in Figure 3, a
pickup tool designed so that the grasp geometry is invariant
as the disk ascends to the palm. Our techniques applied
only to the special case of effectors actuated by revolute
or prismatic joints. This paper develops a more general
formulation that covers arbitrary smooth 1DOF mechanisms.
A look at [1], in particular Figure 6, might be of help to
understand the general idea. We also explore design goals



Fig. 3. A planar pickup tool, designed to give invariant grasp geometry as the disk’s pose varies along the vertical. [1]

other than grasp invariance, such as improving the stability
of a grasp.

In general, we will express a design goal as a set of contact
constraints. The central problem addressed in this paper is to
design a shape so that each constraint is satisfied for some
configuration of the mechanism; the main challenge lies in
not knowing a priori what configuration of the effector should
satisfy each constraint; and the key insight will be to employ
an extended space, the cartesian product of the workspace
and the configuration space of the mechanism.

The paper’s organization is:
1) introduction (done),
2) related work,
3) formal models of effector shape and motion,
4) formal models of geometric contact constraints and

related operations on constraints,
5) formulation of the Shape for Contact problem,
6) example application to an effector design problem,
7) further discussion on shape and contact.

II. RELATED WORK

There is a long history of using mechanical design in
place of online computation, especially in that period before
computers were available. The principle of replacing compu-
tation with mechanical design has been called “mechanical
intelligence” (Ulrich [2]), “hard automation” (Canny and
Goldberg [3]) “morphological computation” (Pfeifer and Iida
[4]) or “adaptive mechanics” (Gosselin [5]).

Mechanisms such as cams, linkages or gears have been
used for centuries to transform actuation into carefully
planned motion. One notable application is the design
of kinematic and passive-dynamic mechanisms to produce
walking machines (Raibert [6], McGeer [7], Collins et al.
[8], Gomes and Ruina [9]), which dates back at least to the
1800’s with a walking device based on Chebyshev’s linkage
to transform rotational motion into approximate straight-line
motion (Lucas [10]). In an example particularly pertinent to
the present work McGeer [7] examines foot shape and the
resulting evolution of contact between foot and ground.

Perhaps most relevant to this paper is the desire to
build simple yet capable robotic hands (Hirose and Umetani
[11], Ulrich [2], Dollar and Howe [12], Birglen et al.
[13], Rodriguez et al. [14], Mason et al. [15]). Compliance
and underactuation take care of shape adaptation which in
turn reduces the need for complex mechanics and controls.

In this paper, rather than motion or compliance, we target
the shape of a mechanism as possible conveyor of function.

In general, shape alone is not enough to solve a manipulation
problem, however, it is a “cheap” design freedom with
potential benefits both in terms of simplicity and robustness.
The circular leg design by Moore et al. [16] for the robotic
hexapod Rhex (Saranli et al. [17]) is a clear example of shape
serving simplicity. Robustness is also a potential benefit of
shape design, for example in the design of rock climbing-
cams (Jardine [18]) designed to provide sufficient grip over
a wide range of crack widths (Rodriguez and Mason [1]).

In the context of grasping and the design of robotic hands,
shape has rarely played an important role. The most common
approach is to rely on grasp planners to choose fixed contact
points based on precise knowledge of object shape and pose.
Even when sliding or rolling contacts are modeled, they are
seldom exploited to design functional phalanx shape.

Dollar and Howe [19] reviewed the designs of 20 different
compliant and underactuated robotic hands, all employing
either cylindrical or flat straight fingers and no cited principle
guiding the designs of their shapes. Theobald et al. [20]
is one of the few exceptions with the design of a gripper
for autonomous rock acquisition with curved fingers. More
recently, similar to the application explored in this paper,
Kragten et al. [21] considered curving the contact area of
distal phalanges to improve the stability of precision grasps.

Shape synthesis has also been studied in the context
of automation, especially in the context of part feeding
and automated assembly. Traps, fences and chamfers are
examples of features where mechanical interaction and re-
sponse to contact can be planned in advance and hard-
coded in the mechanism itself. Boothroyd and Dewhurst [22]
presented a comprehensive collection of mechanical feeding
and orienting techniques. Berretty et al. [23] analyzed the
interaction between objects and traps to automate the design
of vibratory bowl feeders. With a similar goal Peshkin and
Sanderson [24] and Wiegley et al. [25] worked on the design
of fences to reorient parts. Brokowski et al. [26] proposed
adding curved tails to the end of a fence to reduce the
object’s pose uncertainty. Still in the context of part feeding,
Zhang and Goldberg [27] systematized the design of the
blades of a parallel jaw gripper to passively align parts in the
vertical plane. Whitney et al. [28] designed curved chamfers
to simplify the assembly of rigid parts.

Reuleaux [29] introduced the concept of kinematic pair,
as an attempt to abstract motion constraints between con-
tacting bodies. For ideal joints such as prismatic or revolute
(lower pairs), shape is of little consequence. But for pairs
where contact is maintained between curved surfaces like



in the case of cams or gears (higher pairs), shape plays
a key role. Several works in the early 90s approached the
problem of qualitative shape understanding for kinematic
pairs (Joskowicz [30], Joskowicz and Addanki [31], Faltings
[32], Forbus et al. [33]), with the goal of understanding
the effect in the configuration space of small alterations to
the shape of the contacting bodies. Gupta and Jakiela [34]
designed kinematic pairs by sweeping a fixed shape along a
predefined path and numerically “carving” the other shape.
Inspired by applications such as vibratory bowl feeders and
part mating, Caine [35, 36] studied the design of shape from
motion constraints.

In contrast, this paper represents mechanical function as
a collection of geometric contact constraints to be satisfied
by the shape of the effector. Contact kinematics, the study
of how contact location changes with object motion, is es-
sential to understand how contact constraints and mechanical
function are related. Cai and Roth [37] studied the motion of
the contact between two objects that roll-slide on each other
and Montana [38] provided a more formal approach to the
same problem.

III. END EFFECTORS: SHAPE AND MOTION

The kinematic function of an end effector is determined,
in great part, by its motion and its shape. As illustrated in
Figure 4, both shape and motion have an impact in that
kinematic function. In this section we formalize the model
of an effector, and introduce the concepts of motion field,
motion orbit, and orbit space.

Fig. 4. (a) Three actuation mechanisms and (b) three effector shapes
contacting an object at a given point. The expected reaction of the object
to that contact varies both with the motion and the shape of the effector.

The respective contributions of shape and motion to the
function of an effector are intertwined. The suitability of a
shape depends on motion, and vice versa. In this paper we
assume a fixed given effector motion and address the shape
synthesis problem.

We make three simplifying assumptions on the effector:
• The effector is rigid. There is no compliance on the

shape of the effector nor on the actuation mechanism.
• The effector is planar. Both the shape and the actuation

mechanism lie on a planar workspace W ' R2.

• The effector actuation is via a 1DOF smooth mecha-
nism.

We make no assumptions on the object, other that it is
possible to describe the desired task as a set of contacts.

We formally define now the concept of effector. Let W
be a planar workspace, let s ∈ S = [smin, smax] be the shape
parameter, parametrizing the effector shape, and let t ∈
T = [tmin, tmax] be the motion parameter, parametrizing the
configuration space of the mechanism driving the effector.
Without loss of generality, we assume that 0 ∈ T .

Definition 1 (Effector): An effector E is a smooth map
from shape and motion parameters to workspace points E :
S × T 7→ W , where for a fixed t, E(·, t) parametrizes with
unit speed a rigid transformation of the curve E(s, 0).
E describes the motion (parametrized by t) of a rigid

curve (parametrized by s) as actuated by the mechanism,
so that E(s, t0) is the effector shape at configuration t0. For
simplicity, we will refer by shape to the curve E(s, 0).

A. Motion Field

The motion field is a representation of the motion imposed
by a mechanism. For each point p on the effector shape in
pose t0, we define the velocity vp by differentiating E(s, t)
with respect to t and holding the shape parameter s fixed.
Note that vp is independent of the shape of the effector (we
differentiate with respect to t), and can be defined for any
p ∈ W and any t ∈ T simply by considering an effector that
crosses p at configuration t.

For reasons that will be apparent, we consider an extended
space, the cartesian product of the workspace and the mech-
anism configuration space W × T . We define then:

Definition 2 (Motion Field): Motion fieldM is the vector
field representing the direction of imposed effector motion:

M : W × T → T (W × T )
(p, t) 7→ (vp, 1)

where T (W × T ) is the tangent bundle of W × T .
Note that the last component ofM(p, t) is always 1. This

reflects the fact that the effector is continuously actuated by
the mechanism. Figure 5 shows the motion fields of three
different actuation mechanisms: a rotational joint, a Hoekens
linkage, and an elliptic trammel.

In the following subsections we see that the motion field
M partitions the space W × T into disjoint motion orbits.
Those motion orbits will constitute the domain of influence
of contact constraints.

B. Motion Orbits

In differential geometry, the flow Φ of a smooth vector
field V on a manifold N is defined, for every point q ∈ N ,
as the trajectory that a particle at q would describe following
an integral curve of V . Let ΦM be the flow of the motion
field M:

ΦM : (W × T )× R → W × T
((p, t), u) 7→ ΦM((p, t), u)

(1)

where ΦM((p, t), ·) is the unique integral curve of M pass-
ing through (p, t). Intuitively, the motion flow ΦM describes
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Fig. 5. Motion field for three mechanisms: (left) rotational joint, (middle)
Hoekens linkage, and (right) elliptic trammel. Rows are slices t = π
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of the motion field. Note that slices t = const are
the motion field of a rotational joint at the instantaneous center of rotation.
Note also that the motion field of a revolute joint is invariant with t.

the trajectory in W × T followed by an effector particle
positioned at p when the mechanism starts at configuration
t. We define the associated motion orbit as:

Definition 3 (Motion Orbit): The motion orbit of a point
(p, t) ∈ W × T , under the motion flow ΦM, is the set
Φ(p,t) = {ΦM((p, t), u) : u ∈ R}.

Note that, for the case of 1 DOF effectors, the projections
of the motion orbits from W × T to the workspace W
are also known as the coupler curves of the mechanism.
Figure 6 shows that projection for three initial values of
the motion parameter t and three different mechanisms: a
rotational joint, a Hoekens linkage, and an elliptic trammel.

C. Space of Orbits

In this section we study the structure of the set of motion
orbits, which will later be used in Section IV to formalize the
concept of contact constraint. Recall now that motion orbits
are the integral curves of the motion field M, and that they
are defined for all (p, t) ∈ W × T .

It is always the case for a smooth non-vanishing vector
field that its integral curves define a 1-dimensional foliation
of the space. Intuitively, a foliation is a decomposition of the
space into “parallel” subspaces of smaller dimension, like
decomposing a plane into parallel lines, or 3D space into
parallel planes. In particular, a 1-dimensional foliation is a
decomposition of the space into non-intersecting curves.

In our case, M is a never-vanishing smooth vector field,
since the third component is constant equal to 1. Hence, the
set of motion orbits decomposes the space W × T into the
union of non-intersecting curves. This allows us to define an
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Fig. 6. Motion orbits for three mechanisms: (left) rotational joint,
(middle) Hoekens linkage, and (right) elliptic trammel. The figure shows
the projection of the motion orbits to the workspace W for three different
initial mechanism configurations: t = π

4
, t = 3π

4
and t = −π

4
. Note that

the motion orbits of a rotational joint are invariant with t.

equivalence relationship ∼, where two points in W × T are
equivalent, iff they share the same motion orbit:

(p, t1) ∼ (q, t2) ⇐⇒ Φ(p,t1) = Φ(q,t2) (2)

The space of orbits is then defined as:
Definition 4 (Orbit Space): The orbit space is the quo-

tient space O = (W × T ) /∼ where each element in O is
representative of all points equivalent to each other.

For the purpose of visualization, we chose a single point
from each class to represent it. If chosen properly, those
representative points can form a lower dimensional subspace
or section in W × T easy to visualize.

Sections that are transversal to the motion flow ΦM and
are crossed once and only once by each motion orbit are
specially appropriate. An example is the set {t = t0} through
which all orbits are guaranteed to cross once and only once,
given that they are strictly monotonic in t. The section
{t = 0} is a natural choice, given that in Section III we
refer by effector shape to the curve E(·, 0), using t = 0
as the reference mechanism configuration. Note also that the
section {t = 0}, i.e. the setW×{0}, is pointwise equivalent
to W . Hence we can think of the effector shape as a curve
both in the workspace W or in the orbit space O.

The characterization of shape and motion in this section
leads us in Section IV to the argument that the domain of
influence of contact constraints are entire motion orbits. This
will allow us to transport contact constraints to a single
mechanism configuration (the orbit space), and overcome the
main challenge of not knowing a priori what configuration
of the effector should satisfy what constraint.



IV. CONTACT CONSTRAINTS

In this section we formalize contact constraints, and define
important operations on them. For simplicity of exposition,
in this paper we only refer to first order contact constraints.
That is, we will only care about matching the tangents of
object and effector. However, in a very similar fashion we can
also impose higher order constraints, such as the curvature
of the effector. Also note that, if required, we can always
approximate higher order constraints by a combination of
first order ones, as in Figure 2c.

We begin with the definition of two types of constraints.
Given a point p in the workspace and a desired tangent ω:

Definition 5 (Contact Constraint): A contact constraint
(p, ω) ∈ W × SO(1) is satisfied by an effector E(s, t) if
there are t0 ∈ T and s0 ∈ S such that:

E(s0, t0) = p and
∂E(s, t0)

∂s

∣∣∣∣
s=s0

= ω.

Definition 6 (Shape Constraint): A shape constraint
((p, t0), ω) ∈ (W × T ) × SO(1) is satisfied by an effector
E(s, t) if at configuration t0 there is s0 ∈ S such that:

E(s0, t0) = p and
∂E(s, t0)

∂s

∣∣∣∣
s=s0

= ω.

A contact constraint is satisfied if there is any configura-
tion of the effector that complies with the desired tangent.
A shape constraint specifies a particular configuration of
the effector. Thus there is a very simple relation between
a contact constraint and a shape constraint. By definition, a
contact constraint (p, ω) is satisfied if and only if at least
one of the shape constraints in the set {((p, t), ω) : t ∈ T}
is satisfied.

A. Constraint Propagation

As mentioned in the introduction, the main challenge in
enforcing contact constraints is not knowing for what con-
figuration of the effector each constraint should be satisfied.
However, it is easier to enforce shape constraints, since they
specify a specific effector configuration. The key insight is
to look at a contact constraint as the whole set of shape
constraints it represents. Then to enforce (p, ω) we:

1) “transform” the set {((p, t), ω) : t ∈ T} of shape con-
straints so they all apply to the same effector configu-
ration, t = 0; and

2) make sure one of them is satisfied.
To formalize the idea of transforming constraints, we first

have to derive an expression for equivalent constraints. We
will use the terms moving frame and fixed frame to refer to
coordinate frames rigidly attached respectively to the effector
and to the workspace, as in Figure 7a.

Consider two equivalent points (p1, t1) ∼ (p2, t2) in the
extended spaceW×T of an effector. Equivalent points share
the same orbit, and therefore the same effector particle that
crosses p1 at configuration t1, also crosses p2 at t2. The
tangents ω1 and ω2 of the effector at those two points are
related, they are identical in the moving frame. We will
say that the constraints ((p1, t1), ω1) and ((p2, t2), ω2) are
equivalent: an effector satisfies one iff it satisfies the other.

By constraint propagation we mean the process that
transforms constraint ((p1, t1), ω1) into the equivalent con-
straint ((p2, t2), ω2), which, by construction, is defined be-
tween any pair of equivalent points, Figure 7b. We note by
P(p1,t1)→(p2,t2)(·) the function that maps tangent ω1 to ω2.
In general we will propagate shape constraints to t = 0.

Fig. 7. (a) Moving frame for a Hoekens linkage between configurations
t1 = π

2
and t2 = −π

2
. The moving frame changes as if rigidly attached to

the mechanism. (b) The propagation of the tangential constraint ω1 at point
(p1, t1) to ω2 at point (p2, t2) is so that the constraint is held invariant in
the moving frame (ω2 = P(p1,t1)→(p2,t2)(ω1)).

An important consequence of constraint propagation is
that, by construction, an effector satisfies a shape constraint
((p, t), ω) if and only if it satisfies any of the shape con-
straints propagated within the same orbit:

((p, t), ω) ⇔
{

((q, t′), P(p,t)→(q,t′)(ω))
}

(q,t′)∈Φ(p,t)
(3)

Then, we say the domain of influence of a shape constraint
is the entire motion orbit it represents. We can only impose
one constraint per motion orbit.

B. Constraint Locus

In this section we use constraint propagation to derive a
compact representation of contact constraints in orbit space.
By definition, a contact constraint (p, ω) is satisfied iff one
of the shape constraints {((p, t), ω) : t ∈ T} is satisfied.
From (3) each shape constraint is satisfied if and only if
its propagation to t = 0 is satisfied. Consequently, a contact
constraint is fully represented in orbit space O by a set of
propagated constraints. We call that set the constraint locus
and formally define it as:

Definition 7 (Constraint Locus): Let (p, ω) be a contact
constraint, ωt = P(p,t)→(pt,0) the propagation of ((p, t), ω)
to t = 0 through the motion orbit Φ(p,t), and (pt, 0)
the corresponding point where the constraint gets propa-
gated. The constraint locus of (p, ω)) is the set L(p,ω) =
{((pt, 0), ωt) : t ∈ T}

To impose a contact constraint, we just need to construct
its locus and chose an effector shape that at t = 0 crosses
the locus compliantly. Figure 8 shows examples of constraint
locus for a rotational joint, a Hoekens linkage, and an elliptic
trammel.

As illustrated in Figure 8, the constraint locus of a contact
constraint is different, in general, from the orbits used to
propagate it t = 0. The following proposition gives an
interesting relationship between orbits and loci:



(a)

(b)

Fig. 8. Construction of constraint locus for three mechanisms: (left)
rotational joint, (center) Hoekens linkage, and (right) elliptic trammel. (a)
The constraint ((p, t), ω) is propagated to ((pt, 0), ωt) at slice t = 0,
through a motion orbit. (b) The constraint locus is generated by repeating
the process for all possible values of t.

Proposition 1 (Orbit vs. Locus): The locus of a contact
constraint (p, ω) in orbit space is equal to the orbit of the
constraint ((p, 0), ω) induced by the inverted1 mechanism.

Proof: Let A : T −→ SE(2) be the mechanism map for
the effector. We represent A(t) as an homogenous matrix so
that point (p, 0) is mapped to (A(t)·p, t). The orbit associated
with a constraint is the set Φ = {(A(t) · p, t) : t ∈ T} and
its locus L = {(q, tq) : A(tq) · q = p}. Then, for every point
q ∈ L, we have:

A(tq) · q = p ⇔ q = A−1(tq) · p

that is, q is in the locus induced by A if and only if q is in
the orbit induced by A−1, the inverted mechanism.

V. SHAPE FOR CONTACT PROBLEM

We have now all the machinery in place to formulate the
Shape for Contact problem. We first recall the key concepts:
• An effector is a map E(s, t) : S × T 7→ W describ-

ing the motion (parametrized by t) of a rigid curve
(parametrized by s) driven by a mechanism.

• The shape of the effector is the curve E(s, 0), describ-
ing the contact surface of the effector for configuration
t = 0 of the mechanism.

• The motion of the effector is captured by a vector field
M(p, t) in W × T that determines the direction of
motion to follow by a particle at p rigidly attached to
the mechanism in configuration t.

• Motion orbits are the integral curves of M, the trajec-
tories followed by particles of the effector as actuated
by the mechanism. They never intersect each other in
the extended space W × T .

• The orbit space O of the effector is a one-to-one
representation of the set of motion orbits. Our choice

1The inverse of a mechanism is obtained by exchanging moving and fixed
reference frames.

of orbit space is the slice t = 0 of W × T . The shape
of the effector can be described as a curve α in O.

• A shape constraint ((p, t), ω) is an imposition on the ef-
fector to comply with ω at location p and configuration
t. It propagates along a motion orbit while held invariant
in the moving frame. It is satisfied iff its propagation to
O is satisfied, and it is represented in O as a point.

• A contact constraint (p, ω) is an imposition on the
effector to locally comply with ω at location p of
the workspace for an unspecified configuration of the
mechanism. It is satisfied iff any of the shape constraints
in {((p, t), ω)}t∈T is satisfied, and it is represented in
O as a locus of constraints L(p,ω).

• An effector E(s, t) locally satisfies a constraint (p, ω) if
and only if its shape, described as a curve in O, crosses
the locus L(p,ω) in compliance with the constraint.

The Shape for Contact problem formulates as:
Problem 1 (Shape for Contact): Let M be the motion

field of an effector, {(pi, ωi)}i=1...N a set of contact con-
straints, and L(pi,ωi) the corresponding loci in O. Find a
curve α in O that crosses all loci in compliance with the
constraints.

Note that the loci described by different contact constraints
may intersect each other. The points of the orbit space O
where they intersect will likely induce inconsistent con-
straints if the α crosses them. To find a complete solution, we
must find a shape that crosses all loci compliantly, without
inconsistencies. If there are no inconsistent constraints, by
construction the effector induced by the shape α locally
satisfies all constraints.

The approach to propagate constraints allows us to express
them in the reference pose of the effector at t = 0, even
without knowing at which pose t each constraint will be
enforced. The key is the use of the extended space W × T .

VI. EXAMPLE APPLICATION

In this section we apply the Shape for Contact formulation
to the problem of shaping the fingers of a two-fingered planar
gripper to improve the stability of a grasp of a disk.

We consider the energetic model of grasp stability for a
compliant simple gripper described in Mason et al. [15],
similar to Hanafusa and Asada [39]. Every suitable hand-
pose/object-pose configuration induces some level of grasp
energy, supplied by motors and stored in springs. Assuming
some dissipative forces, stable configurations of hand/object
correspond to minima in that potential energy distribution.
The shape of the potential energy in a neighborhood of a
stable pose determines how stable it is. Sharp, narrow wells
are less susceptible to be degraded by noise than broad
shallow wells, and hence represent more stable grasps.

As illustrated in Figure 9, we model the actuation of a
two-fingered planar gripper as a constant torque source τm
compliantly coupled with springs to both fingers, providing
a potential energy Um = τm ·t, where t is the motor position
or actuation parameter. The rest position of the fingers when
the actuator is at t is θ(t). Under compressing forces, each
finger provides a potential Ui = kf (θi− θ(t))2/2, where kf



Fig. 9. The diagram illustrates the actuation/compliance scheme used
to model hand/object interaction. Units are dimensionless throughout the
analysis so that the diameter of the disk is 1, the radius of the palm is 1,
the constant of finger springs is kf = 1, and when closing the hand, the
motor is driven to a stall torque τm = 1.

Fig. 10. (a) We chose contact points with the disk so that the left finger
can easily push the disk only when it is to the left of the central stable pose.
Opposite for the right finger. (b) Denser collection of the contact constraints
imposed to the shape of the left finger. That collection is the input to the
Shape for Contact problem.

is the spring constant of the finger and θi is the finger angle.
The total energy of a grasp is then:

U = Um +

2∑
i=1

Ui = τm · t+

2∑
i=1

1

2
kf (θi − θ(t))2 (4)

The shape of the potential energy U depends on the
finger-object contact geometry. By choosing different contact
locations for different object poses, we can change the shape
of that potential energy and improve the stability. Figure 10a
shows a few selected contact points for different locations of
a disk, each contact point constituting a contact constraint
to satisfy. The problem of choosing contact constraints is
important, but it is not the focus of this paper. For the rest
of this section, we assume that we are given the set of desired
constraints in Figure 10b.

As per Proposition 1 we transform the set of contact
constraints into their corresponding loci in the orbit space.
Figure 11a shows the loci for a finger actuated by a rotational
joint and a finger actuated through a Hoekens linkage. To
find a solution, we approximate the set of constraints by a
vector field and integrate it numerically to find an integral

Fig. 11. Solution to the Shape for Contact problem for a (top) rotational
joint and (bottom) Hoekens linkage. (a) Loci of all contact constraints (b)
Integral curve of the approximated vector field. (c) Resulting effector.

curve (Figure 11b). The obtained curve results in an effector
(Figure 11c) that complies with the imposed constraints and
sharpens the potential energy wells of the central equilibrium
grasp relative to straight fingers (Figure 12).

VII. DISCUSSION

In this paper we study the role of effector shape in
producing mechanical intelligence. Shape is a cheap design
freedom relevant to manipulation, since it partly determines
contact location. Shape is also unavoidable. Design choices
have consequences, and in the design of an effector, we are
always forced to chose a shape.

This paper assumes an actuation model for a mechanism,
and a desired mechanical behavior expressed as a set of
contact constraints, and provides tools to integrate that set
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Fig. 12. Comparison between the stability of grasps induced by fingers
designed for a Hoekens linkage (solid line), designed for a rotational joint
(dotted line), and straight fingers with a rotational joint (dashed line). To
enable the comparison, in each case we have zeroed the energy of the grasp
configuration with minimal energy.

into an effector shape. For simplicity of exposition, we
only consider tangential constraints. However, higher order
constraints can be dealt with in a very similar manner. To
guarantee that a desired contact is feasible, both the tangent
and curvature of object and effector must be considered.

The proposed framework generalizes earlier work [1],
focused on effectors actuated by revolute joints. In this paper
we develop a more general formulation that covers all smooth
1DOF planar mechanisms. We apply it to design fingers to
improve the stability of a grasp, but the provided charac-
terizations of shape and motion apply to all mechanisms in
general.

A strength of the formulation is that it suggests further
generalizations, that we plan to address in future work. First
to spatial mechanisms, where contact vectors become contact
planes, and integral curves become integral surfaces. Second
to effectors with multiple degrees of freedom, where the
motion field becomes a tensor field.
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