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Abstract—Biologically inspired Variable Impedance Actuators
(VIA) o ffer the capability to execute cyclic angdor explosive multi
degree of freedom (DoF) motions ficiently by storing elastic
energy. This paper studies the preconditions which allow tan-
duce robust cyclic motions for strongly nonlinear, underatuated
multi DoF robotic arms. By experimental observations of hunan
motor control, a simple control law is deduced. This contrdler
achieves intrinsic oscillatory motions by switching the mtor
position triggered by a joint torque threshold. Using the deived
controller, the periodic behavior of the robotic arm is analyzed
in simulations. It is found that a modal analysis of the lineaized
system at the equilibrium point allows to qualitatively predict
the periodic behavior of this type of strongly nonlinear sysems.
ghe. %entr?jl Stat.?m.emv?/; thistpaper.fisththat.cyclfic motions C: In this paper we focus on the generation of cyclic motions.

e induced easily in systems, if the eigenfrequencies dn |, . : .
modal damping vglues of theylinearized systerrglJ are V\?ell sepated. It is a known fact th?‘t un-damped, elas_tlc multi-hody system
Validation is given by simulation and experiments, where a te€nd to show chao_tlc b(’jhav'or- In _part_lcular, the requﬁse 0
human controls a simulated robotic arm, and the developed Such systems to sinusoidal excitation is not necessarilly pe
regulator controls a robotic arm in simulation and experiments.  odic [7], [8]. This motivates us asking under which condiso
a VIA robot (and a human) arm can display periodic motions,
|. |NTRODUCTION how easily they can be induced and how robustly they can
be stabilized.Simple experiments with passive systems (Fig.

Humans execute easily high-performance cyclic movements suggest that humans can easily induce such nonlinear
such as running or drumming or explosive motions such ascillations. Despite the current theoretical fidculties, for
throwing, hitting or jumping. To approach human athletihstance, the complexity of an associated optimal control
performance andfgciency, robot design evolved recently fronproblem to reach periodic motions, humans seem to be able to
classical, rigid actuation towards actuators with tunable excite independent nonlinear oscillatory modes of theesyst
trinsic stitness anr damping, so called Variable Impedancgithout difficulty.

Actuators (VIA). These elastically actuated robots arersgty The above hypothesis is verified by means of hardware
inspired by the biological musculo-skeletal system [1]e¥h iy the loop simulations, where a human controls a real-time
are motivated by biomechanics research which reveals g ylation of a VIA arm using a force feedback device. The
importance of the elasticity for robustness and energefifertia of the arm and the visco-elastic parameters of the
efficiency as well as for the maximization of peak forcgints are varied within consecutive trials to evaluateirthe
and velocity [2]. The goal is to exploit intrinsic mecharlicajfiyence on the limit cycles. An important finding of the
resonance féects of the systems. experiments is that the existence of easily excitable cycli

The generation of motor trajectories and the tuning @hotions is predominantly determined by the system’s dagpin
joint stiffness during these highly dynamic motions are oftgsroperties. Although the original system is strongly noedr,
addressed as an optimal control problem. While for singigamping analysis of the eigenmodes, based on linearization
joints an analytical solution is feasible [3] , [4], for theutti-  at the equilibrium point, already allows to predict whetties
joint case numerical, multi-variable constrained opt@ians intrinsic system behavior tends to first mode cyclic motions
need to be performed [5], [6]. The optimization approach isot. If the modal damping factors of the linearized system ar
currently limited to systems with few degrees of freedomgiciently different, a simple multi-step bang-bang feedback
(DoF). With an increasing number of degrees of freedogbntroller achieves coordinated cyclic motions.

(for example in the case of one arm (7 DoF) or even a |, aqdition to simulation experiments, we verify the ap-
humanoid body % 30 DoF) ) the computational complexity yroach on a real VIA system. This way, we close the loop
and the number of local minima explodes. This motivates thg,n hypotheses to verification using simulations, human in
investigation of alternative approaches. the-loop experiments, and robotic experiments.

This paper is organized as follows: First, the considered

The authors are with the Robotics and Mechatronics CentQR— o gtic system is introduced and the model nonlinearities a
Institute of Robotics and Mechatronics, German Aerospaesté® (DLR), . . .

D-82234 Oberpfienhofen, Germangdominic.lakatos, florian.petit, alin.albu- €Mphasized. Then, the problem is stated and main hypotheses
scha¢fen@dlr.de. are proposed in Section Ill. To validate our hypotheses with

Fig. 1. Human induces cyclic movements for a rod with norimeasticities
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Fig. 2. Stitness of the floating spring mechanism (as used in nonlinear sprlng\ e
the DLR Hand Arm System) for constant adjuster positiofs = m

{0,0.02 0.04,0.06,0.08,0.10,0.12, 0.14,0.16,0.18}. The most outer curve cor-
responds t@, = 0.

T1
force-feedback device

experiments, two main steps are performed. In Section Hig. 3.  Technical scheme of the hardware in the loop simaratiThe

qualitative system requirements for multi degree of fremdoSomPplete system: double pendulum including nonlinear ovistasticities is
. . simulated in real time. Positiofy andor velocity 6; of the feedback device

oscillations are _deduced from experlmen.ts, wherBuanan s a control input. The joint torquey of the first joint acts as force feedback.

controls arobotic arm Furthermore a simple bang-bang

controller is proposed based on the analysis of the human

behavior. In Section IV and V the case where the bang-batimn the state dimensionality, the systems is underactuate

controller induces oscillations in @gbotic armis considered The gradient of the potential energy can be separated into:

and the influence of modal parameters on nonlinear oscilla- 8U(8, q)
tions is analyzed by both, simulation and experiment. Binal aU(x) T
properties of the bang-bang controller are discussed anéfa b ax —| ou@.q |- (4)
conclusion is given in Section VI. Tq
II. N ONLINEARITIES IN VARIABLE IMPEDANCE ACTUATED ROBOTS As can be seen from (1) and (4) the stalendq are coupled

The main goal of this paper is to understand cyclic motioa the elastic energy storadé, (6. d). This energy storage
of VIA systems for controlling robots. This class of nonkme i an important precondition to induce cyclic motions qn
underactuated systems can be generally described by dynagfiiciently.

equations of the form [9], [10]: Variable stifness actuation usually entails strong nonlin-
oU earities to the system dynamics. For example, for the DLR

M (X)X + (X, X) + ﬂ =Q. (1) Hand Arm System [11], variable fitlness actuation is realized

ox by so-called floating spring joints [12]. Therein, the sgrin

Herein x,X,X € R" are generalized coordinates and thejsotential of a single joint can be approximated by a fourth
time derivatives, respectivel@d € R" is a non-conservative, order polynomial
generalized force dual te. The potential energy

1 2 1 4
V() = Ug(¥) + U (x) @) Uy(0,0) = Sa(6) (a-6a) + 7800 (a=60)  (5)

is in general composed of the gravity potentia(x) and and the force-deflection relation is then given by
the spring potential,(x). FurthermoreM(x) € R™" is the _0U,(0.9) B 3
symmetric and positive definite mass matrix asfel, X) € R" ¥(0.9) = o9 a(0,) (a1~ 6a) +8(6s) (A~ 03) . (6)

a \_/rehct(zjr Of_ Cor:co\l/l;lé'ca\entgfl:ggl folrces.th t not all of th ; whereé = (6, 6,) are the motor positions of the main actuator
at € e5|g(;1_ 0 i rot ots:jnvgrxes ¢ a n? ta 0 etiz;e;ﬁnd the sttness adjuster, respectively. To display the order of
states are directly actuated. 1herelore, et us part nonlinearity introduced due to the variableffstess actuation,

statesx = (6,q) as @ € R* being directly actuated stateSy o stitness 92U 2 _ :
" R »(0,0)/00°(6g = 0) of the mechanically
(referred to as motor positions) amge R™ * being indirectly implemented floating spring joint is plotted in Fig. 2 for seal

actuated states (referred to as link positions). Additignket stiffness presets. In the case of the lowest préget 0 the

i 1 1 H y nxn j :
us consider _Imear viscous damP'@V (where D € R¥MIS * variation is about 1480% between minimum and maximum
the symmetric and positive definite damping matrix), them trEpring deflections. Note that the joint fitiess is changing
generalized force with the joint deflection. Additionally, the sthess preset can
be changed by the fithess adjuster motors.

Text

Q=[Tm]—DX @)

I1l. CONTROLLER DESIGN INSPIRED BY HUMAN MOTOR CONTROL

consists of the control inputy, € R and the externally applied  Simple experiments were conducted, where a human in-
force Tex. Since the dimension of the control input is smalleduces oscillations into a rod (see, Fig. 1). Stable osizilist
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Fig. 4. Phase plots of human controlled oscillations. Bined represent the paiqi(, ¢1) and red lines the paig, §2). The eigenfrequecies1(0) = 1.9 (rad's)
and w»(0) = 20.9 (rad/s) were constant over all trials, while the modal dampinddiac£(0) had been varied.

could be achieved even for the case of large deflectionsdr{i.e Furthermore, in the following experiments, thefstéss preset
the emergence of strong nonlinearities). The human does nbthe VIA joints will be changed only statically. Accordilygy
need a long training phase to do so. This demonstrates hamdhé simplified dynamic equations have the form:
ability to control periodic motions of nonlinear multi degr 0Uq(q) 0U,(0, q)
of freedom systems. From these observations we hypothesize Mq(q)d + cq4(q, §) + agq = - "(’aq’ +Qy. (V)
that:
. Human’s motor control is able to stabilize periodic moFor further analysis, the motion in a plane perpendicular to
tions even in the presence of strong nonlinearities. ~ the gravity is considered, i.@Uq(q)/dq = 0. Damping acts
« The underlying control law has a simple and very robusinly on the link side:
structure.

T . . . . Qq =-Dq0. (8)
o verify both hypotheses, several experiments involving V
arms, human dynamics, and human control have been cés-control input we usel := 61, while 65, ...,6¢ = 0 are kept
ducted. constant and the feedback control developed later on isdbase
Accessing and measuring human’s control and feedbagk the first joint torquer; := —0U, (6, q)/dh.
signals during natural motions isficult and largely unre-  For convenience of notation, subscripfg,(used to denote
solved [13]. We circumvent this problem by using hard- anléhk side terms (see, e.g. (7)), are omitted in the remaimder
software in the loop simulations with human control. Usinthe paper.
a force feedback device, a human operator can be coupled ,
in the feedback control loop with either a robotic plant of- EXperiments
a simulated system. The latter allows to adjust the systemThe real time simulation of (7) was interconnected with a
parameters arbitrarily as done in the following experirsent direct drive (torque controlled) motor with a handle mouhte
S on the rotor. This motor acts as force feedback device. An
A. Model simplification optical encoder provides the angular position of the motor
To include the force feedback device in the control loops control signalu := 6, for the simulated VIA arm. The
using one of the robot's motor position god velocity as joint torque 71 computed by the VIA arm simulation is
control input, the general dynamic model (1) is customizegbmmanded to the current controller of the force feedback
based on simplifying assumptions widely applied in rolmticdevice and thereby provides feedback to the human operator.
These simplifying assumptions are fully justified for the®L This setup allows to emulate arbitrary dynamical systeras th
Hand Arm System and briefly summarized as following: are controlled by a single position input, and interfacerthe
. the coupling inertias in between motor and link side cai@ & human operator. . .
be neglectet In a series of experiments, the oscillatory behavior of a
. The motor side dynamics is faster than the link sid¥!/A double pendulum (ie.q € R? 6 € R? u := 61, and

dynamics such that the motor position can be consider@= 0) was analyzed (see, Fig. 3). Besides inertial dynamics,
as control inptit strong nonlinear cubic springs (cf. (6)) were considerdueng

the ratio of linear and cubic spring constants was chosen

1This assumption is fulfilled in the presence of high geaosatcf. [14]. @S ﬁ[/ai = _70 (similar .tO the mPSt nonlinear case _Of the
2This assumption is used in singular perturbation theorye.cf. [15], [16]. floating spring mechanism, cf. Fig. 2). To comply with the




range of maximum torques of the force feedback device

Tmax = =1 Nm, inertia and spring parameters were adjusted:

massmy,> = 0.1kg, link lengthl;,» = 0.1 m, center of mass

lei = 1i/2, @1 = 0.02 Nm, andx, = 0.01 Nm. The knowledge of

the stifness and mass matrix of the linearized system allows

to assign a modal damping déieient 0< £ < 1 (see (20) in

the Appendix). The system (7) was integrated (forward Euler

method, time steps.001 s) on the same real time computer on

which the force feedback device was controlled. Additignal

the motion of the double pendulum was visualized on a screen.
One skilled part|C|pant.was tested at randor_n witfietent Fig. 5. Action principle of the multi-step bang-bang colieodepicted as

system parameters. During all tests, the subject grasped tfe plot.

handle of the force feedback device and rested in the initial

position, while the integrator was reseted. Then the stibjec

moved the handle to induce oscillations. The goal was tertain threshold, the controller gives an impulse in the same

achieve and stabilize coordinated, cyclic movements. direction of the observed torque. This is achieved by a étep

C. Results in motor position w.r.t. the initial positiofp.

-0.4f

position (rad), torque (10 Nm)

55 6 6.5 7 7.5 8
time (sec)

Given the_physmally ”_‘F“'Vated ,SetuP' it was straightfaava IV. DYNAMIC SYSTEM PROPERTIES FOR CYCLIC MOTION. SIMULATIONS
for the subject to stabilize cyclic movements. Even more,

the system tends to show only first mode motions. Theln the last section it was demonstrated that even in the
modal analysis of the linearized system revealed that te fipresence of strong nonlinearities, multi degree of freedom
eigenmode is less damped than the second one. This finddyglic movements can be induced easily by a human. Now,
was further validated by directed tests, where the normdlizwe investigate intrinsic system properties, which ensbeg t
damping factor of the first mode was held low and constarifie system tends to periodic motions.
while the damping factor of the second mode has been variedln more detail, the system considered is the VIA pendulum
Phase plots of the joint motioq(t) vs. ¢(t) are displayed in of the form (7) with cubic springs defined by (6) in the
Fig. 4. joints, where the first joint's motor position = 6; acts as

1) The influence of modal dampinddonlinear dfects— control input and the elastic torqug = —-dU,(0, q)/0q; is
induced by inertia couplings, Coriolisffects and the pro- used as feedback. (The remaining motor positien= 0 is
gressive sffness characteristic of the springs—increase whé&wold constant.) To obtain repeatable results, oscillatiare
the damping of the second mode converges to the first mddduced by means of the control law (9) instead of the human
damping factor. Thesefflects are expressed in form of strongperator. The controller parameters are sette= 0.3rad
notches towards the center in the shape of circular or ellipade. = 30 Nm for all simulations. Although the considered
tical paths. Severe changes occur when the damping of gystem is nonlinear, the spring and damping parameters will
second mode falls below approximatelyp0then numerical be adjusted based on linearization at the equilibrium p&ioit
instabilities of the simulation arise (cf. 4(g)—())). the link side mass matrix at zero positidh(0) fixed, desired

2) The steady-state of cyclic motiongor ideal cyclic eigenfrequencies are assigned (given below for specifesas
motions a phase plot trajectory of one state is a single dlose order to compute the linear spring ¢beientsa;. Then the
path, while the trajectories depicted in Fig. 4 lie withinemor physical damping is computed based on the linearizéthets
band. The reason therefore can be limitations in the rande anatrix and given modal damping factors (see, Appendix).
sensitivity of feedback signals given to the human operatéiinally, codficients of cubic spring terms are chosen such that
Additionally, the control signals generated by humans may /a1 = B2/az = 70.
not be stiiciently accurate and repeatable. The deterministic All simulations were performed in Matlg8imulink®. The
controller proposed next allows to avoid these uncertsnti differential equations were integrated by means of the vari-
D. A multi-step bang-bang controller able.step solver .ode23t for modera_ttglyffsﬁrob_lems with a

maximum step size of.0005 sec. Initial conditions were set

From qualitative observations of the human control styategg g 0) for joint angles and (@) for joint velocities.
a simple control law has been deduced. It was observed that

when the s.pring defleption reachgd a torque peak,. the_hunmnumit cases of modal properties

countered it by pushing harder in the opposite direction of . )

the link side motion and thereby induced energy into the Based on the inertial properties of the DLR Hand Arm
system. Such a behavior can be approximately replicated ByStem, two substantially filerent cases of eigenfrequency

the discontinuous control law: distributions are considered:
. A 1) Different eigenfrequenciesAs in the case of the DLR
04 = { bo +sign@)iel - It > e (9) Hand Arm System most of the VIA robots are mono-
%o - else articulated, i.e. no coupling springs are present. In metait

As depicted in Fig. 5, this multi step bang-bang controllex displacement in the single direction of one joint generate
is triggered by the feedback torque When r exceeds a solely a reaction force in the opposite direction of the same
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Fig. 6. Phase plots of simulated motions, where the coetr@gioposed in Section Il is in the loop. Blue lines reprégbe pair 1, 01) and red lines the
pair (@2, ¢2). Simulations displayed correspond to the mass distobutif the DLR Hand Arm System.

joint: B. Simulation results

_9Yy00.9) _ (0. . (10)  Figures 6(2)—(d) display phase plots of simulated motions
oq; e for the case of dierent eigenfrequencies. For each simulation
Linearizing these elastic force functions leads to a diafjorfun €igenfrequenciess(0) = 2rad's andw,(0) = 21rads
stiffness matrix: corresponding tomin(M) in this case were assigned, while
592U,(6, q) the modal damping is varied in each run. Note thatwas
K(6, q) = diag(L] .
97

(11) chosen arbitrarily and, results due tomin(M). For all presets
of modal damping, phase plots of both coordinate directions
Then, as a consequence of the coupled mass matrix (&8 closed paths—indicating the system’s tendency to cycli
for q € R?) there exists a minimum ratio of assignablé“ovements- As in _the case of hu_man controlled oscillations
eigenfrequenciess;/wi > vmin(M), which can be realized the dfects of nonlmeanﬂes (manifested by strong notches
by a diagonal sfiness matrix (see, (32) in the Appendix),towards the center in the phase plots_ pat_hs) increase, \_/vhen
i.e. for a given mass matriM and first eigenfrequency, the value of the second mode damping (in the equilibrium
the second eigenfrequenay must be larger tham;vimin(M), posnmn_)_approachg_s the vaIu_e of the first mode damping (in
otherwise a coupled iness matrix is required. This (utile)-the equilibrium position). But in contrast to human corigdl
case (appropriate for VIA robots without coupling springsyscillations (see, Fig. 4(j)) the bang-bang regulator (@)ids
was considered for human controlled oscillations desdribe irrégular, numerically unstable behavior. Even for theecas
the last section. equal and low modal damping, the motion stays within a small
2) Similar eigenfrequenciesin contrast to sfiiciently dif- ©rror band (cf. Fig. 6(d)).
ferent eigenfrequencies, the case of similar eigenfrecjasn T0 demonstrate the strong occurrence of nonlinearities,
requires to introduce coupling springs. They have thece, time series of the control inpuh(t), joint anglesq(t), joint
that a displacement in one coordinate direction can caus&&docities(t), as well as instantaneous values of the modal
reaction force in a dierent coordinate direction: damping£(t), eigenfrequencies(t), and potential/ kinetic
aU,(6.q) energyU(t) / T(t) corresponding to the phase plot Fig. 6(a)
——— =4i(6,09) (12) are depicted in Fig. 7. It can be observed that only in the
o0 equilibrium pointg = 0,6 = 0 eigenfrequencies and modal
and consequently the fness matrix for the instantaneousiamping equal the assigned values. At these points the modal
linearized system contains nonzer@-diagonal entries: damping has its maximum and the eigenfrequency its mini-
92U,(6. q) mum. For increasing magnitudes of spring deflections 6;|
Ki.j(6,0) = ~S0da . (13) both instantaneous eigenfrequencies increase and thel moda
4ioq; damping factors decrease. When spring deflections are maxi-
Note that nonlinear coupling elasticities are not present mal, the eigenfrequencigsmodal damping factors approach
most of today’s VIA robot arms, therefore we introduce thitheir maxima/ minima. Additionally, one can identify points
artificial case of similar eigenfrequencies here for sake wfhere the Hamiltonian energy is almost completely kinetic.
theoretical insight. This is a typical property for coordinated cyclic movements
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Fig. 8. Phase plots obtained from experiments on the DLR Hamd
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&(0) = 1.0, the first mode is not excited, isolatedly. These
coupling dfects are expressed in form of loop-like notches
in the circular or elliptic shapes of curves. For decreasing
‘ AT M values of the second mode dampi€0) (decreasing between
19 19.1 19.2 19.3 19.4 195 19.619.7 19.8 199 20  simulation runs), abrupt energy exchanges between the snode
time (sec) induce non-periodic behavior.
Fig. 7. Time series corresponding to the simulation plottedrig. 6(a). . Remark 1 (Steady-state oscillationsyompared to oscilla-
Herein 6 is the motor position of the first joint, i.e. the control actig, g, tions induced by a human operator, the bang-bang regulator
andr are link positions, link velocities, and joint torques ottfirst (blue) achieves ideal cyclic motions. While phase plots depicted i
e e ey ™ Fi. 4 deviate from ideal closed paths within a certain ‘erro
potential energyJ (red) is depicted in the last plot. band”, stable steady state motions in Fig. 6 display single,
exactly closed curves for each joint coordinate. It remajpen
to further research, if the humans behavior is due to control
[17]. imprecisions or has some other benefits.
Let us now consider the case of similar eigenfrequencies. Summar
To this end, again, desired eigenfrequencies are assigned 't y
the linearized system at the equilibrium point. Therefove, Under specific conditions considered in this work, simula-

consider the mass matrii (0) as given and tune the entriedion results demonstrate that determining the modal parame
of the stifness matrix ters, i.e. eigenfrequency and damping, for the lineaoradf

the system at the equilibrium position allows to predict the
(14) periodic behavior of this type of strongly nonlinear system
Best preconditions for cyclic movements ardf@lient eigen-
The resulting entries of the abovefBiess matrix correspondfrequencies and fferent modal damping. This case applies
to the linear cofficientsa; of the springs. In more detail, first, to the robotic VIA arm in the absence of coupling springs.
the conditionw, /w1 < vmin(M) is tested. Then it is decided if Therefore a simple controller is able to stabilize cyclicv@o
the eigenfrequencies can be achieved by a diagonal or abupkent. Furthermore, the intrinsic system behavior is tegdin
stiffness matrix. For each case exists an analytical relation @ first mode motions, even for similar eigenfrequencies, as
determinea;. The resulting potential function (23) as well agong as the first eigenmode is weakly damped and the second
the force and sfiness functions are given in the Appendixgigenmode is strongly damped.
Although we adjust the linear spring dfieients a; based
on linearization (at the equilibrium point), we considee th

T.U Do) (rads) £(1) (-) 7 (Nm) g (rads)

a1 + a3 -3

Ko =
-3 a2 + a3

V. CycLIC MOTIONS FOR A REAL VIA ROBOT ARM

nonlinear joint elasticities in simulation. In the following, the approach to experimentally validate
In simulations the procedure given in the Appendix i§1€ insights obtained from simulations and the developed
applied to assign the eigenfrequencies = 2rad's, w, = controller is described. Therefore, we used the VIA robot

5rads. Therefore, the value of the cubic spring fimeent DLR Hand Arm System which is equipped with seven variable
is chosenBs/as = 70/4. Phase plots of simulated motiongmpedance actuators. As the dgscnbed analysis cons;de_rs.t
for the same damping adjustments as used above (wHRS, the robotic arm was configured such that only twotjoin
eigenfrequencies are fixed) are depicted in Fig. 6(e)—¢h).@xes were parallel. Furthermore, the two joint axes poiiried
can be observed that even for the case in Fig. 6(e) where fhe direction of gravity to remove gravitationdfects'. Thus,

first mode damping(0) = 0.1 and the second mode dampindC" the experiments the robotic arm structurally corresfeh
to the system analyzed in the last sections.

SNote that for a coupled mass matrix theffstess matrix has to be also
coupled and evelk «« M to haven repeated eigenvalues [17] 4This configuration is chosen to be consistent with the sitiariaanalysis.



The bang-bang regulator (9) was used to generate fth&insic dynamic behavior of the plant into account. Moreo
desired motor position of the first joint, while the measurelgly adjusting the sfiness preset of the VIA joints the limit
spring torque of the same joint was the input of the controllecycle can be additionally shaped. This way we make use of
The desired motor position of the second joint (and all othémne intrinsic oscillation properties of the system by exjig
joints not involved in the motions) were constant. Sinceanotthe resonance property. How the VIA fitiess preset can be
positions are not directly accessible, a motor position P&hanged to fit to a predefined task, will be subject of our fitur
controller tracked the desired trajectory (desired maiogues work.
were commanded to the current controllers of the motors).
Nonzero initial conditions were set manually by pushing the
robot by hand. This work has been partially funded by the European

Phase plots of joint motions are depicted in Fig. 8. Her&ommission's Sixth Framework Programme as part of the
approximately four periods in the stationary phase of tascil project SAPHARI (grant number 287513). Additionally, the
tions are plotted. Furthermore, joint velocities are dedlifrom authors would like to thank Jordi Artigas for providing the
measured and low-pass filtered joint positions (10 Hz ¢iit-dorce feedback device.
frequency). The shape of closed paths obtained by expetimen
is similar to simulations (cf. Fig. 6). The modal propertads o ) ) )
the linearized system (in the initial configuration) are wbo The modal decomposition is derived from the linearized
w = (5,32)rads for eigenfrequencies angl = (0.05,0.30) System
for m_odal_ damping _factors resu!ting from the natural, low M(qo)§ + Do + Kog = 0. (15)
damping in the spring mechanism. As a consequence of
eigenfrequency and modal damping distributions also the rd herefore the following lemma (based on [14]) is applied:
robotic system tends to coordinated cyclic motions, while a Lemma 1:Given a symmetric and positive definite matrix
simple controller is able to stabilize these oscillatiofibus A € R™" and a symmetric matri8 € R™". Then there exist
one can observe that a planar, two joint VIA arm witla non-singular matri¥ € R™" and a diagonal matriBq €
approximately human like dimensions naturally fulfills th&™", such thatP ¥~ = A and¥ "Bo¥™* = B.
conditions for stable cyclic motions. This leads to the quasi decoupled dynamics in modal coordi-

nates
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VI. CONCLUSION AND DISCUSSION ) _

In this paper, we investigate main principles and require- 2+ Dmod(@o) 2+ A(G)2= 0, (16)
ments of cyclic motions in strongly nonlinear VIA roboticyhere z = ¥(q,)"1q are modal coordinates andi(qp) is
systems. Starting with simple observations of humans cog-diagonal matrix composed of real, positive eigenvalues.
trolling oscillations of serial type passive e]as'uc Syste We  The modal damping matriDmod(dp) = ¥(Go)" Do¥(qp) is
analyze human motor control and the elastic system presertissumed to be diagonal dominant. Therefore tiieliagonal

to validate that humans are able to control nonlinear, muiements are neglected, inod(do) = diag(Dmod(do)). ThUs,
degree of freedom oscillations easily. Furthermore we oohd the modal dynamics can be re-written as

extensive experiments with human in the loop simulations,
hardware simulations, and experiments on a real robotic sys Z + 26(do)wi(do)Z + wi(9o)°z = 0, 17)
tem. Afterward, basic control principles observed in huma'@vhere
are transferred to VIA robotic arms and utilized to identify
some basic system requirements for intrinsic cyclic motion wi(qo) = VdiagA(q))i » (18)
tendencies. The most important findings are: represents thith eigenfrequency and
1) A control law to stabilize multi degree of freedom P '9 quency
oscillations, which is of simple bang-bang structure. £(q) = Omodi(do) (19)
2) Cyclic motion tendencies can be predicted based on o 2wi(qy)
eigenmode analysis of the linearized system. the normalized damping factor of thi¢h eigenmode. Con-
3) Best preconditions for cyclic motion tendencies are d'(/'ersely, physical damping is assigned by:
ferent eigenfrequencies and damping of the modes. For
desired motion in a specific mode, the modal damping Do(qo) = 2% " diag(&i(qo)wi(g) ¥ . (20)
of that mode has to be under critical and the remaining
modes have to be over critically damped.

Furthermore, a simple controller is proposed. The multi- Mo+ Kogq=0, (21)
step bang-bang controller can excite and hold cyclic metion
for variable stiftness actuated robotic systems in a closédl

The eigenfrequencies of the linearized, conservativeeayst

e assigned by the solution of the following equality:

loop manner. This is achieved by using the joint torque— n 5
representing the state of the plant's dynamics—to adjust det(-AM + Ko) = l_[(/l_wi) (22)
control actions. Due to the controller parameters threshol i=1

and step amplitude, the amplitude and frequency of resultiSolving this equation involves dependencies in the chdieg o
oscillations can be adjusted in a certain range, taking thad the structure oKy. Similar eigenfrequencies; require



the stitness matrixKo to be fully coupled [17], while the The spring constants; anda, have to be real. Additionally,

stiffness matrix of most VIA robot arms is diagonal.

the stifness matriXq has to be positive definite; consequently

In the following, the casa = 2 is worked out. Therefore, a a3 has to be chosen such that the discriminant0 and the
nonlinear coupled spring function is derived from the pttn minor eigenvalue of the $thess matrix min(eid(o)) > O.

function
1 1 1 1
U@, q) = 51 (-6)2*+ Zﬁl (u-0*+ Eazqg + Z,qug

+ 03(0 - @ - 0 + 265 @ -~ @ - ) |

(23)
where the negative gradient
v, q\"
“5e?) ~we.a.

Y1(6,q) = — a1 (qa — 6) — B (0r - 6)°

+a3 (02— (01 — 0) +Ba (02 — (G — 0)° .
W26, 9) = — a2t — B203

—a3(— (- 0)) - B3 (G — (1 - 6))° ,

(24)
represents the force field and the negative Jacobian
(0,
_w - K(6,q)

K11(6, Q) = @1+ 3B1 (0 — 6)” + az + 33 (G2 — (a1 — 0))°

K22(6, Q) = a2 + 36205 + a3 + 383 (02 — (01 — 6))* .

K12(6, @) = Ka1(6, 0) = —az — B3 (02 — (01 — 6))* (25)
the stiftness matrix.

Equation (22) is solved fat; by substituting the linearized

stiffness matrix

_ | a1+ as —Q3
Ko = -3 a2 + a3 ’ (26)
and equating powers of;
det(—M + Ko) — det(M) —detKo)  ,
detv) = wi + w5, (27)
det(Ko) _
m = wiwy . (28)

We obtain quadratic equations in powers @f which are

solvable fora; anda,, while a3 is a free parameter:

01 = 5 (0 + w3) dettM) ~ 2(Mzz + Mug)as = V) |

2M2>
(29)
ap = i ((wz + wz) det(M) — 2(M11 + M) az = \/ﬁ)
2Myq VT2 . (910)

=
I

(3 - wB)’ det(M)? - 4wlwiM2, det(M)
— 4 detM) (Mi2(w? + wd) + as) as . (31)

As a consequence of the coupled mass matrix, thénets
matrix has to be non-diagonal (i.eaz # 0) if the ratio
of the assigned eigenfrequencies= w;/w; undercuts the
greatest lower boundhin(M). This property can be proven by
substitutingas = 0 in (31) and solving for the ratia,/ws:

\/det(M) +2M2, + 2M1, | /M2, + det(M)

Vmin(M) = \/W(M) . (32)
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