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Simultaneous localisation and mapping on a multi-degree of freedom

biomimetic whiskered robot

Martin J. Pearson1, Charles Fox2, J. Charles Sullivan1, Tony J. Prescott2, Tony Pipe1 and Ben Mitchinson2

Abstract— A biomimetic mobile robot called “Shrewbot” has
been built as part of a neuroethological study of the mammalian
facial whisker sensory system. This platform has been used to
further evaluate the problem space of whisker based tactile
Simultaneous Localisation And Mapping (tSLAM). Shrewbot
uses a biomorphic 3-dimensional array of active whiskers and
a tactile sensory attention based model of action selection to
explore a circular walled arena sparsely populated with simple
geometric shapes. Data sets taken during this exploration have
been used to parameterise a probabilistic occupancy grid based
approach to localisation and mapping. We present the results
of this work and conclude that simultaneous localisation and
mapping is possible given only noisy odometry and tactile
information from a 3-dimensional array of active biomimetic
whiskers and no prior information of features in the environ-
ment.

I. INTRODUCTION

Many small mammals explore their environment and nav-

igate using the sense of touch through their array of active

facial whiskers[1]. This enables such animals to occupy

and hunt effectively within habitats devoid of predators

that rely on vision, audition or olfaction. Similarly, the

ability to explore and localise within an environment using

whisker based touch would allow future autonomous vehicles

to operate more effectively in environments where current

sensory systems, such as laser, acoustic or machine vision,

perform poorly. Confined, dusty or smoke-filled spaces such

as collapsed buildings, unstructured, perhaps arboreal, envi-

ronments and even turbid water, are examples of operational

domains where a sense of touch could be beneficial for

autonomous robot navigation[2]. A recent study of rats has

found that tactile encoded locations of reward are represented

in hippocampus[3], a structure within the brain that is

associated with the consolidation of explicit memory[4]. In-

triguingly, the hippocampal formation has also been demon-

strated as instrumental in localisation and navigation within

familiar, i.e., previously explored, environments[5]. It has

been proposed that the ‘place cells’ of hippocampus re-

gion CA1&3[6], in conjunction with the ‘grid cells’ of

the entorhinal cortex[7] and the granule cell mossy fibres

of the dentate gyrus, encode a topographical representation

of the immediate environment. It has also been suggested

that through the integration of self-motion, head orientation

and multi-modal sensory cues, the hippocampal formation

maintains an estimate of the animal’s location and orientation

with respect to an allocentric reference frame (e.g. [8], [9]).
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Fig. 1. Photographs of Shrewbot within the test arena (left) and exploring
an object using an array of 18 active biomimetic whisker sensors (right)

Such a systems level description of hippocampal function has

been directly compared to navigation algorithms developed

for mobile robotic platforms in the past[10], [11], [12], [13],

[14] and is particularly relevent when addressing the problem

of SLAM[15]. The evidence that whisker-touch stimuli is

associated with memory of spatial location is a biological

observation that invites further investigation into the role

that active tactile sensing could provide to mobile robotics.

Here, we build upon our previous work of demonstrating the

principles of whisker based tactile Simultaneous Localisation

and Mapping, or tSLAM[16]. This article summarises the

latest results of integrating this system with a multi-degree of

freedom mobile robotic platform, a tactile sensory attention

model of action selection to guide exploration, and an array

of active (i.e. motile) biomimetic whiskers.

II. METHOD

A. Robot hardware

Shrewbot consists of a Robotino R©(www.festo-

didactic.com) ‘body’, an Elumotion (www.elumotion.com)

3 DoF ‘neck’ and a custom built end-effector, referred to

as the ‘head’ (see photographs in Figure 1). The head was

built around 3 disks of decreasing radii (60, 40 & 20mm)

mounted at 20mm spacings along a 120mm long central

column. Around the periphery of each disk are 6 mounts

each holding a whisker module. Briefly, a whisker module

consists of an instrumented composite whisker assembly

mounted onto the shaft of a brushless dc motor and gearbox

(see[17] for more detail). The motor allows ±50◦ of rotation

around the whisker resting angle to emulate the active touch

‘whisking’ behaviour observed in mammals[18], one of the

functional advantages of which is to increase the spatial

coverage of the tactile array. The most forward mounted

whiskers were 60mm long, whilst those on the middle and

rearward measured 115 & 160mm respectively. Each whisker

module has an embedded micro-controller for marshalling



sensory data and updating the closed loop position control

of the whisker angle. Desired angular positions of the

whisker (as set by rotations of the motor shaft) are relayed

to the micro-controller via an SPI bus which returns the

sensory state of the whisker (2-dimensional deflections of

the whisker shaft measured at the base wx, wy , and actual

whisker angle wθ). The SPI buses to all whisker modules

(18 in total) are connected to the FPGA based bridge

electronics which, in turn, is connected (via USB) to a

MiniITX PC mounted on Shrewbot’s body. Therefore, the

nth sample of whisker sensory information from the entire

array is denoted as: Wn = {−→w1,−→w2, . . . ,−−→w18}n, where −→wi

refers to the whisker sensory state (wx, wy, wθ) of whisker

i. The position controllers for each actuator of the neck are

also bridged via the USB interface with the PC, whilst the

Robotino is controlled using Ethernet.

B. Robot behaviour

The whisker sensory information, Wn, is geometrically

transformed into a 3-dimensional array representing an ego-

centric map of the volume surrounding the head of Shrewbot.

Whereby, when a whisker makes contact with an obstruc-

tion in the environment the resulting increase in ||wx, wy||
results in a corresponding increase in the ‘tactile salience’

of that point in ego-centric space. Using a winner-takes-all

arbitration mechanism across the map reveals the current

most salient point, and it is here that the nose of the head

of the robot (which we call the fovea) is directed. The

arbitration mechanism is synchronised with the whisk rate

of the robot (the rate a which the whiskers are moved back

and forth), such that the target for foveation is selected at

the end of each whisk. The ego-centric target is transformed

through a forward model of the robot kinematics and a

motor-recruitment based trajectory planner into a sequence

of head and body motor actions to bring the fovea to this

point. The orient is also coordinated with the whisker motion

such that the whiskers will be in mid-protraction at the end of

the head placement. When coupled with a non-uniform noise

distribution across the saliency map and a simple inhibition-

of-return mechanism, this iterative series of orients results

in the emergence of more complex behaviour patterns such

as exploration, wall following and novelty seeking [19]. This

tactile attention model of action selection was used to control

the robot during the data capture trials described below.

C. Data collection

Shrewbot was allowed to freely explore the arena (shown

in Figure 1) through a series of short bouts of two or

three minutes length. Separation into bouts allowed hardware

maintenance when necessary and eased the management

of the large time series that were collected. When a bout

is started, the neck ‘unparks’, and the whiskers are auto-

calibrated. Occasionally, the robot halted in a position such

that some whiskers would be in contact with a surface after

unparking, which would have interfered with calibration;

on these occasions, the robot was moved a small amount

before being restarted to avoid this interference. Post-hoc,

these datasets were deleted or trimmed so that time periods

including incorrect hardware operation (such as whisker sen-

sor failure) were eliminated. The remaining trimmed bouts

were then stitched together to form the dataset used here,

which represents approximately 62 minutes of exploration,

or NW = 2857 whisks (samples). In addition to the odometry

and whisker sensory data logged on the robot, video footage

was also recorded from a camera located 3 metres above

the centre of the arena. This was also processed post-hoc to

extract the ground truth pose of the robot used to qualify the

performance of our localisation and mapping algorithm.

D. Robot movement estimates

The robot pose was defined as the location and orientation

of the head projected onto the 2D plane, and is denoted

Ψn = [xn, yn, φn]
T , where φn = 0 indicates that the

robot head is pointing in the same direction as the +ve

y-axis, with x and y being the coordinates of the world

frame (and superscript T the transpose operator). The change

in this pose between whisks (samples) is denoted ∆Ψn =
[∆un,∆vn,∆φn]

T , where u and v are the coordinates of

the robot head frame, wherein the robot head always points

along the +ve v-axis. Then, these two series are related by

Ψn = Ψn−1 ⊕ ∆Ψn, where ⊕ is the motion composition

operator as defined by [20]. Two estimates of ∆Ψn were

measured. The first, denoted ∆ΨGT
n (noiseless ground truth)

was recovered from the overhead camera tracking the robot1.

The second, denoted ∆ΨOD′

n was recovered from the robot

odometry. The initial position of the robot was recovered

from the camera, and is denoted ΨGT
1 .

E. Odometry model

The odometry estimate recovered from the robot, ∆ΨOD′

n ,

was systematically in error in comparison with the true

movements of the robot measured by the overhead camera.

Therefore, we used simple linear regression (least squares) to

fit a linear/Gaussian model between the odometry and ground

truth, given by ∆ΨGT
n = GOD∆ΨOD′

n +ΓOD
n , where GOD is

a diagonal gain matrix with on-diagonal terms gu, gv and gφ,

and ΓOD
n ∼ [N(0, σu), N(0, σv), N(0, σφ)]

T is a Gaussian

vector process. Thus, each channel (x, y and φ) has an asso-

ciated gain and standard deviation. The ‘corrected odometry’

estimate is then defined as ∆ΨOD
n = GOD∆ΨOD′

n , and has

the noise statistic ΓOD. The values of the noise parameters

correspond to 9%, 7% and 4% noise on the three channels,

respectively. Finally, we define an estimate of ∆Ψn with an

adjustable noise magnitude as

∆ΨIN
n = λ∆ΨOD

n + (1− λ)∆ΨGT
n (1)

where λ is a value between 0 and 1. It is this estimate, and

its associated noise statistic [λσu, λσv, λσφ], that is used as

the input to the particle filter based localisation algorithm.

1This estimate is, in fact, not noiseless but, since the noise includes no
integral drift and is in any case small compared with the drift present in the
odometry, we treat it as noiseless.



Fig. 2. Localisation only. (Top Left) Filtering improves performance (as measured through ζ) at measurement intervals (Tζ ) longer than about one
minute, with much of the benefit measurable at an interval of around 30 minutes. (Bottom Left) Improvement due to filtering, as measured by ζ (Tζ =

30min), increases as noise level, λ, rises. Mean (solid) and minimum (dashed) over 10 realisations. (Top Middle) Absolute error before (EIN, dashed) and
after (EPF, solid) particle filtering, mean over 10 realisations. (Bottom Middle) Improvement due to filtering, as measured by Ω, increases as noise level,
λ, rises. Mean (solid) and minimum (dashed) over 10 realisations. (Large panel, Right) The ground truth map, with example pose estimates for λ = 1.0
overlaid (example shown is that realisation returning median Ω). The contact probability for each map cell is shown from white to dark grey. Ground truth
geometry is shown by dashed black lines. Location part of pose estimates ΨGT

n , ΨPF
n , and ΨIN

n are shown, respectively, in black, red and blue, for the
first and last 100 samples of NW = 2857 in all. At the starting point (square) all three estimates agree (ΨGT

1
= ΨPF

1
= ΨIN

1
). Near the end (triangles)

ΨGT
n and ΨPF

n (black and red) are in close agreement, but ΨIN
n (blue) is quite different (n = NW − 100).

F. Localisation algorithm

We used a standard particle filter approach to represent

the posterior probability of pose within a 2-D grid based

occupancy map as described in [16] and in more detail in

[21]. The filter consists of a population of NP particles,

each maintaining a current estimate of pose of the robot

head Ψ̂Pi

n , i ∈ (1, NP) within a local map MPi

n . A map

represents 4m2 of space, with each cell representing 12.5mm

x 12.5mm, i.e., 102400 cells per map2. The state of the

particle filter was updated at the end of each whisk period,

i.e., at approximately 1 second intervals, with the change in

odometry ∆ΨIN
n (derived from Eqn. 1) and the odometry

noise statistic used to update the estimate of pose in each

particle. A summary of sensory information from the whisker

array gathered during the whisk was used to update each

map and to determine the likelihood of each particle. The

sensory information taken from the whisker array consists

of a discrete representation of the space through which each

whisker had travelled during the whisk, projected onto the

2-D plane. If no contact was made by a particular whisker

during that whisk then all 10 points representing that whisk

arc will be cast onto each map as regions with a lower

likelihood of occupancy. If a contact did occur during that

whisk then the location of the tip of the whisker at the point

of contact will be fused into each map with an increased

2Note that all maps presented herein show only the central 3.2m square
region, since the arena itself has a radius of only 1.5m.

likelihood of occupancy (placement of a Gaussian shaped

‘blob’, as described in [16]). A grid cell in each MPi

represents the probability of a contact being sensed if a

whisker tip were located at that cell. Thus, the state of each

map encodes sensor noise as well as the geometry of the

world. Consequently, as the robot explores the environment

each particle will develop a map that can be used to de-

termine the likelihood of its current estimate of pose, i.e.,

ΛPi

n → 1
Z
P (MPi |Ψ̂Pi

n ). ΛPi

n being the likelihood of the

current pose estimate of particle i, based upon the probability

of occupancy within the local map, given that it represents

a history of all sensory observations including the most

recent from the whisker array ( 1
Z

is a normalising function).

For computational efficiency we adopted the low-variance

re-sampling strategy as described in [21]. Ultimately the

output from the filter is the pose estimate from the particle

that currently has the highest posterior, which we denote

ΨPF
n = P (ΨGT

1 , {∆ΨIN
j ,Wn : j ∈ [2, n]}), where P (.)

represents the particle filter and Wn is the nth sample of

(whisker) sensory data.

G. Performance analysis

Even where learned maps were apparently of high quality

(reflected against ground truth), an unpredictable transform

between these maps and the geometry of the world was a

clear feature of our results. This makes direct quantitative

comparison between the absolute pose estimates ΨGT, ΨIN

and ΨPF impossible, a problem which has been highlighted



recently for SLAM in general [22]. Kümmerle et al. outlined

an approach to comparison between estimates by focusing

on changes in each pose estimate, rather than the estimates

themselves, noting that the choice of changes to compare

must be problem-specific. They described their methodology

for manual identification of particular pose estimates; owing

to our large trials (thousands of realisations) we could not

use a manual approach. Instead, we developed two automatic

approaches to performance analysis, as follows, both of

which gave similar results.

Pose change analysis: We analysed change in pose location

according to each estimate over a range of intervals. Pose

change for an estimate X at an interval of Tζ is defined as

∆′ΨX
n (Tζ) = ΨX

n+L ⊖ΨX
n , where ⊖ is the inverse of ⊕ and

L = Tζ/T , with T the average sample period across the

dataset. The pose change performance metric is then defined

as follows.

ζ(Tζ) =
∑

n∈[1,NW−L]

qPF
n (Tζ)/q

IN
n (Tζ) (2)

qXn (Tζ) = Q
(

∆′ΨX
n (Tζ)−∆′ΨGT

n (Tζ)
)

(3)

where Q(∆′Ψn) = |xn, yn| is the operation that measures

the magnitude of the location vector in a pose difference,

∆′Ψn. Thus, ζ(Tζ) is a measure of the error in the pose

change estimate due to the particle filter as a fraction of

that due to the odometry, over an interval of Tζ . Where

performance is good, this metric is expected to decrease as

Tζ increases and odometry drift increases correspondingly.

Absolute pose analysis: The second approach is to attempt

to identify the transform between the learned map and the

ground truth geometry. We cannot, in general, use correlation

between the maps to this end, since some of the learned maps

are incomplete. Instead, we identify the rotation/translation

HPF(.) that minimizes the mean square error between

ΨPF⋆
n = HPF(ΨPF

n ) and ΨGT
n , for n ∈ [1, NW]. Since this

process will (undesirably for this analysis) reduce the impact

of any integral drift, as well, we choose a similar transform

for the odometry estimate, to generate ΨIN⋆
n = HIN(ΨIN

n ).
We can then directly compare these transformed estimates

as follows,

eX
∗

n = Q
(

ΨX∗

n −ΨGT
n

)

(4)

EX∗

= median
(

{eX
∗

n : n ∈ [1, NW]}
)

(5)

ωn = ePF∗

n /eIN
∗

n (6)

Ω = EPF∗

/EIN∗

(7)

with Q(.) defined as above. That is, eX
∗

n/EX∗

are measures

of absolute position error in the estimate X∗ (at sample n,

or over the whole dataset), whilst ωn/Ω are measures of

position error due to tSLAM as a fraction of that due to

the odometry (per sample, per dataset). Since integral drift

is expected to be large in the estimate ΨIN
n , these metrics

will tend to be biased against tSLAM when it performs

well. However, identifying these transforms allows us to plot

all pose estimates, and the map itself, in register, which is

convenient to our presentation.

III. RESULTS

A. Localisation

Initially we assume a map that reflects the true layout

of the arena during the experiment, disable mapping, and

focus on localisation only. As described above, the value at

each cell of the map represents the probability that a whisker

tip located here at peak protraction will report a contact.

Thus, in building a ‘ground truth’ map for this analysis,

it is necessary to represent the uncertainty in whisker tip

location, so the objects in the map have ‘feathered’ rather

than sharp edges. The map resolution we chose of 320 cells

per edge was more than sufficient for this simple arena; the

width of the feathering (±50mm) was chosen manually and

approximately to maximize performance on the localisation

task. Localisation performance over 10 realisations, as well

as the map used and location traces from one example

realisation, are shown in Figure 2. The summary result is

that the system is successful in maintaining tracking in all

100 trials, with the median localisation error at the output

of the particle filter, EPF⋆, rising only slowly (15mm to

37mm) as the input noise level (λ) is increased, whilst the

mean localisation error at its input, EIN⋆, rises from 170mm

to 1260mm. Both summary error metrics, ζ and Ω, similarly

reflect the benefit resulting from filtering.

B. Mapping

Setting λ = 0 we can observe the generation of the

map using the ground truth estimate of robot movement. An

example map produced is shown in Figure 3: surfaces are

mostly well represented, but sharp concave corners have not

been explored (the robots movement strategy means that it

does not generally explore into these). Observation of such

maps was used to inform the values chosen for some of the

model parameters; specifically, the radius of the Gaussian

shaped ‘blobs’ used to populate the map rBLOB = 25mm,

and the number of such blobs to fuse into the map in the

event of a positive contact nBLOB = 4.

C. Parameter search

The particle filter model (see Methods) has a number of

parameters that are unknown and cannot be derived easily

from the available data. Some of these (see above) were

set manually informed by observation of the localisation-

only and mapping-only conditions, reducing the parameter

space substantially. Nonetheless, the parameter space re-

mains large, so we used a Monte Carlo grid-based approach

to find appropriate values for some further parameters when

performing tSLAM. We varied NP (between 100 and 1000),

and the prior probabiliy of occupancy across the maps

pPRIOR (between 0.025 and 0.1), across five different noise

levels (λ ∈ [0.1, 0.5]) and five realisations. We reviewed

the results to find the parameter point at each of the noise

levels that gave the minimum-mean and minimum-maximum

Ω over the five realisations (ten parameter points in total).

These parameter points were not all the same, but we found

that larger NP was helpful, at least up to about 300, and that

pPRIOR = 0.1 was common in 7 of 10 cases. Hence, we



Fig. 4. SLAM localisation. (Curves, left) Error metrics Ω and ζ (Tζ = 30mins) against number of particles, NP, or noise level, λ. Each curve is minimum
(chained), median (solid) or maximum (dashed) over 100 realisations. When plotted against NP (λ), curve shown is mean over λ (NP ). (Histograms,
right) Each panel shows the distribution of relative final PF location error (in the last sample), ωNW

, for NP = 468 and a value of λ as annotated. (All)
Unity is marked on all plots as thick grey line: values of all three error metrics below unity indicate an improvement due to filtering.

Fig. 3. Mapping only. As Figure 2, but map is that due to particle with
maximum posterior after all samples have been presented, and only one pose
trace is shown since all three estimates (PF, IN and GT) are identical.

chose the single parameter point given by pPRIOR = 0.1 at

which to perform further analysis, and restricted the particle

count to a few hundred.

D. Tracking performance

We tested the performance of the tSLAM implementation

in toto using the parameters determined above, varying only

NP ∈ [32, 468] and λ ∈ [0.1, 1], with 100 realisations at

each parameter point. The results are summarised in Figure

4. Across all noise levels and all values of NP, the minimum

(across realisations) value of both error metrics (Ω and ζ,

curves in Figure) was similar and varied little, at around

0.2, whilst the maximum value of both was substantially

over unity, indicating that filtering probably degraded the

location estimate in some realisations. Increasing the number

of particles tended to reduce the median and maximum of the

error metrics, as expected, with these relationships apparently

beginning to asymptote in the upper end of the tested range

of NP. None of the curves indicate that the highest noise

level tested (raw odometry from the robot) was high enough

to render this approach to filtering impossible. Measures of

relative estimate improvement due to filtering at the end of

the hour (ωNW
, histograms in Figure) told a similar story: the

noise level λ had no discernible impact on this error metric.

Histogram analysis of ζ (not shown) showed essentially

the same picture: 98 of 100 trials at λ = 1.0 showed an

improvement in localisation (ζ < 1, Tζ = 30min) due to

filtering.

Figure 5 displays examples of the maps that were learned

at different noise levels; without reviewing all 100 maps for

each case, these examples suggest the following. At a low

noise level (λ = 0.2), all realisations produced useful maps

(maps that appear to be moving towards a representation of

the known geometry). At a medium noise level (λ = 0.5),
most—if not all—realisations produced useful maps; it is

not clear whether the maps in some realisations (such as

the ‘worst’ one presented in the Figure) would be stable in

the long-term. In the high noise case (λ = 0.8), it appears

that in some realisations, at least, the map is not showing

signs of converging on truth after one hour. In summary, at

all noise levels, the expected outcome of using the system

is a coherent map and thus, presumably, an improvement in

location estimate, but the reliability of this outcome appears

to suffer increasingly (as expected) as λ increases.



Fig. 5. tSLAM example maps. Each panel shows the final map produced
by tSLAM after all NW samples have been filtered, with NP = 468.
Top/middle/bottom is for λ = 0.2, λ = 0.5 and λ = 0.8, respectively.
Left/middle/right is from the realisation at each of those parameter points
that scored the lowest, median and highest value of Ω. All maps have been
transformed through HPF(.), for ease of comparison (see Methods).

IV. DISCUSSION

A. Quantification

Given the relatively short data set, meaningful quan-

tification of performance was challenging, as previously

noted [22]. Since our implementation generally resulted in

improved location estimates, our main error metric, Ω, is

likely to be biased against tSLAM (see Methods), though an

alternative error metric following the methodology of [22]

generated a consistent analysis. Nonetheless, our quantitative

results must be treated cautiously. Our main result is qual-

itative: it was possible to maintain tracking in the majority

of cases. The degree of possible improvement in location

estimates depends more on the nature of the problem than

the characteristics of tSLAM. The current (one hour) dataset

was about sufficient for one reasonably thorough exploration

of this small arena (the robots exploratory behaviour is

unhurried), so that we would expect quantitative benefits

to be realised increasingly over longer time periods. One

particular characteristic of our results was that the proportion

of possible tracking failures (ωNW
> 1.0) did not appear to

increase with the noise level, ω, suggesting that any tracking

failures that did occur may have been due to imprecision of

our physical model rather than to a level of noise too high

for the system to bootstrap.

B. Characteristics of tSLAM

A marked characteristic of our results was a small fixed

error term (around Ω = 0.2, ζ = 0.2) that was not eliminated

at any noise level nor in any realisation (Figure 4). This

is characteristic of tSLAM (at least, as described) in that

there may be regions of the map wherein the senses provide

no information for localisation and odometry must be relied

upon exclusively, for a time. An example would be a region

of featureless floor. Such regions of ‘sensory deprivation’

need not exist in implementations based on vision or range-

finding. We expect that it is this characteristic that is reflected

in the lack of any examples below a threshold from 8,000

realisations contributing to Figure 4. It is worth noting,

then, that the size of such regions, along with the time

spent in them and the uncertainty in the odometry, probably

constitutes a key limiting factor of a tSLAM implementation

such as that presented. It seems likely that, in a majority of

applications, large time periods of sensory deprivation could

be engineered away by behavioural control. For instance, in a

novel environment, actively employing a behavioural strategy

such as wall-following until a sufficiently developed map is

available might tend to reduce the incidence of erroneous

correspondences between locations. Rats exploring novel

environments do express thigmotaxis [23], as do blindfolded

humans [24]. Whilst in rats it is difficult to establish whether

this behaviour is driven primarily by anxiety about predators

or by a desire for optimal mapping, humans explicitly report

the use of wall-following as a map-building methodology

[24].

C. Computational requirements

The computation times of this localisation solution are

reasonable. With NP = 100 (NP = 400) the implementation

described computes at 40ms (160ms) per cycle on a single

domestic processor (2.4GHz). Using a more efficient resam-

pling algorithm (not reported, but returns similar results)

gave times of 14ms (55ms). These values compare well

with the approximately one second between whisks in the

robot, easily allowing online use with these parameters and

off-the-shelf hardware. Since the computations are local to

the robot’s location, larger grid-based maps would not be

expected to impact either processing time or memory bus

load. Larger maps would probably benefit from storage

optimisation (such as sharing of common data between

particles), however, doubling the map extent to cover 8m

by 8m at NP = 100 gives an unoptimised memory footprint

approaching 160MB. Since the short-term error uncorrected

by using tSLAM is larger than the 12.5mm map cell we

used, the map resolution could also probably be reduced.

V. CONCLUSION AND FUTURE WORK

In our previous work we introduced a framework for

whisker based tactile SLAM using a simple differential drive

robot and 6 static whiskers in a 1.5m square arena[16]. here

we have extended that work by demonstrating the principle

on a mobile robot that has many more degrees of freedom.

The 18 whiskers are individually actuated to maximise the

coverage of sensory exploration, in addition, the whisker

array is mounted as the end-effector of a 3 DoF ‘neck’

such that it can be positioned within a 3D peri-personal



workspace. The neck, in turn, is mounted onto an omni-

drive mobile platform that, in combination with independent

movements of the neck, can position the whisker sensory

array within a 3m diameter circular walled arena. We have

shown, using a more comprehesive statistical analysis, that

the tSLAM algorithm can provide a useful improvement in

localisation performance even over a relatively short dataset.

When a ground truth map estimate was provided, localisation

provided very useful improvements in location estimate (and

100% reliability over 100 trials). When such a map was not

provided (full tSLAM), an improvement in localisation was

evident across realisations in reduced location error both over

the course of one hour and at the end of one hour, versus

the estimate due to the raw odometry. Furthermore, a large

majority of realisations produced maps that reflected the

geometry of the arena and in an improved location estimate

over using odometry alone; accurate maps were, naturally,

more common at lower odometry noise levels.

One obvious avenue for further investigation will be to scale

up the problem, moving towards quantities appropriate for

practical deployment, with larger maps and a longer dataset.

Some parameters of the solution, such as map resolution

and particle count, may be approximately sufficient as re-

ported. This scaling-up will facilitate the exploration of the

practicalities of the representation of usefully-sized regions

in tactile maps. A second direction for extension will be to

represent more than just occupancy or probability of contact,

moving towards the use of feature labels such as texture or

shape, as well as pre-assigned landmarks [25]. Moving in

both of these directions will pave the way for a practical test

of tSLAM as a navigation solution in a realistic environment

where electromagnetic-based SLAM systems are unreliable,

such as in smoke-filled buildings.
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