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Abstract— We propose to overcome a significant lim-
itation of the KinectFusion algorithm, namely, its sole
reliance upon geometric information to estimate camera
pose. Our approach uses both geometric and color in-
formation in a direct manner that uses all the data in
order to perform the association of data between two
RGBD point clouds. Data association is performed by
aligning the two color images associated with the two
point clouds by estimating a projective warp using the
Lucas-Kanade algorithm. This projective warp is then
used to create a correspondence map between the two
point clouds, which is then used as the data association
for a point-to-plane error minimization. This approach to
correspondence allows camera tracking to be maintained
through areas of low geometric features. We show that
our proposed LKDA data association technique enables
accurate scene reconstruction in environments in which low
geometric texture causes the existing approach to fail, while
at the same time demonstrating that the new technique
does not adversely affect results in environments in which
the existing technique succeeds.

I. INTRODUCTION

Three-dimensional (3D) reconstruction of an envi-
ronment is an important problem in robotics that has
received much attention in past decades. The advent of
inexpensive RGBD sensing (e.g., the Kinect sensor) has
facilitated a quantum leap in terms of both the fidelity
and speed with which such reconstructions can be made.
These capabilities have far-reaching implications for the
exploration and navigation of unknown environments,
as well as the manipulation of objects in those environ-
ments.

Of the many 3D modeling techniques that have been
developed, the landmark KinectFusion method [18],
[15] has shown perhaps the most impressive results for
an accurate, real-time, dense modeling system. Recent
work by others [26] has extended this algorithm to
operate over large scale environments. However, both
the standard and the extended version use geometric
information alone to align the camera with the model.
As a result, they require the environment to contain
sufficient geometric features in order for the iterative
closest point (ICP) algorithm implemented in Kinect-
Fusion to accurately estimate the camera pose. This

deficiency was noted in [26], where experiments were
conducted to explore the advantage of replacing the
camera estimation of KinectFusion with the output of
a feature-based visual odometry system called FOVIS
[13] to provide a more stable estimate of camera pose.
The frame-to-frame nature of FOVIS, however, loses the
drift-free property of KinectFusion.

Rather than replacing the camera estimation algorithm
with an entirely different technique, in this paper we pro-
pose a different approach, namely, to modify how data
correspondence is obtained by using not only geometric
information but also radiometric information. That is,
both depth and color are used to align the point clouds
obtained from an RGBD sensor.

The KinectFusion variant of ICP uses the projective
data association (PDA) point matching algorithm [4] to
minimize a point-to-plane error metric [5]. We replace
PDA with a data association technique driven by Lucas-
Kanade alignment [17], [24], [3]. The resulting Lucas-
Kanade Data Assocation (LKDA) matching algorithm is
a direct method that usesall the data. Another advantage
of this direct approach is that it obviates the need for the
feature point extraction and feature correspondence steps
inherit in feature-based visual odometry systems. By a
set of experiments, we show that our LKDA technique
enables camera tracking to succeed in areas of low
geometry while at the same time maintaining accurate
camera tracking in environments in which the standard
PDA approach performs well.

II. RELATED WORK

The literature on 3D reconstruction, or simultaneous
localization and mapping (SLAM), is immense. In this
section we focus on approaches that operate on RGBD
sensors or otherwise incorporate color information into
the mapping process. One approach to use visual infor-
mation to improve upon geometric mapping is that of
Henry et al. [11], which performs an initial estimate of
the 3D camera transformation by applying RANSAC to
SIFT feature matches with depth values. These visual
feature associations are then combined with dense point
associations in an ICP framework to minimize both



geometric point-to-plane error and visual point-to-point
error. The final transformations are used to produce a
pose graph, which is then optimized in a final post-
processing step to yield a globally consistent map as
a surfel representation. In a followup paper [12], the
authors avoid the computationally expensive ICP step
whenever enough visual keypoints can be found.

Other researchers have followed a similar approach.
Engelhard et al. [9] use SURF instead of SIFT features.
Endres et al. [10] compare SURF, SIFT, and ORB
features on public datasets using a system that also
yields globally consistent transformations from post-
processing optimization of pose-graph maps. The final
representation of their system, however, uses a volumet-
ric OctoMap rather than surfels in order to efficiently en-
code free spaces and unmapped areas. Our recent work
[19] performs similarly, creating volumetric OctoMap
representations of large-scale indoor environments by
leveraging the Manhattan World assumption to avoid
rotational drift without having to perform loop closure.
This approach also involves post-processing data using
a pose-graph map. Note that the advantage of Kinect-
Fusion [18], [15], along with the approach proposed in
this paper, is that no such post-processing is necessary.

Another body of work involves improving upon ICP
by incorporating color information. Druon et al. [7]
segment point clouds based on the hue component of
the HSV color space, then perform ICP while requiring
matching points to belong to the same color class.
Douadi et al. [6] incorporate both geometric and color
information into the distance metric used by ICP. Huhle
et al. [14] register scans of 3D point data by extend-
ing the standard metric with color information using
Gaussian mixture models in a color space. Joung et al.
[16] extract feature points from images using SIFT to
find a set of correspondences between two laser scans,
which provide an initial alignment for the standard ICP
algorithm.

In work that is perhaps most similar to ours, Tykkälä
et al. [25] formulate the 3D registration of point clouds
as a direct image-based minimization task. In a manner
similar to projective data association (PDA), they store
point cloud data as images to avoid expensive nearest-
neighbor searches in 3D. Unlike our approach, which
adds color to a point-to-plane version of ICP, their
approach adds depth to visual odometry. In followup
work [1], the same researchers adopt the simpler ap-
proach of minimizing the sum-of-squared distances of
image intensities under a projective model, without using
depth, in order to compute the transformation of the
camera in order to reduce the computational load. The
resulting system is able to produce 2D reconstructions
of environments. Like this work, our approach also
involves direct matching of all the image data, thus

avoiding the various problems associated with feature
point detection and matching, but leveraging the benefits
of the KinectFusion framework.

III. PROJECTIVEDATA ASSOCIATION

Let P = {pi}
N
i=1 and Q = {qi}

N
i=1 be two point

clouds in 3D Euclidean space,pi, qi ∈ R
3. In the context

of KinectFusion,P is obtained from the current scan of
the RGBD sensor, whileQ is obtained by projecting the
world model onto a virtual RGBD sensor located at the
camera’s estimated location at the previous frame. Note
that both point clouds are transformed (after alignment)
back into a global coordinate frame in the actual system,
although for brevity we omit these details.

ICP (Iterative Closest Point) is a family of algorithms
to incrementally align two point clouds. As explained
in [21], the ICP approach can be broken into six stages,
and different choices within these stages lead to different
variations of the algorithm. In this section we summarize
the version of the algorithm that is used by Kinect-
Fusion [18], [15], namely Projective Data Assocation
(PDA) with point-to-plane error minimization. ICP is
an iterative algorithm, with the stages described here
being repeated at each iteration. For ease of reference,
we indicate by an asterisk (*) the stages that are modified
by our approach, as described in the next section.

A. Point Selection

Determine which points from the two clouds to use.
KinectFusion uses all points, with no initial filter to
remove points to be included for alignment.

B. Point Matching*

The next step is to establish data association, or
correspondence between the points in the two clouds.
We seek a functionL : Z1:N → Z1:N that maps indices
in one point cloud to those of the other, so thatL(i) = j
indicates a corresponding pair of pointspi ↔ qj , where
Z1:N = {1, . . . , N}. This is achieved in KinectFusion
by Projective Data Association (PDA) [4], which is
a camera-centric approach to data association that is
especially suitable to point clouds obtained from a depth
sensor. For each pointpi ∈ P , its corresponding point
qi is the closest point inQ to the line of projection ofpi
into the camera used to obtain the points of the second
cloud,Q.

By assuming that the change between the two point
clouds to be aligned is small, which is warranted due to
the real-time nature of the system, PDA achieves data
association in an efficient manner. As shown in Figure 1,
correspondences are obtained by projecting the points
in one cloud,P , onto the image plane of the camera
used to obtain the points of the other cloud,Q. The
point in Q associated with the pixel onto whichpi is



Fig. 1. Projective Data Association (PDA) establishes correspon-
dences between point cloudsP and Q by finding the closest point
after projecting onto the cameraQcam. The normals(ni) are used in
the point-to-plane error metric.

projected is therefore established as the corresponding
point. More formally, ifCQ is the3×4 projection matrix
of the camera used to obtainQ, andp̃i =

[
pTi 1

]T
and

q̃i =
[
qTi 1

]T
are the homogeneous coordinates of the

points, then PDA establishes correspondence as follows:

L(i) = argmin
j
‖φ(CQq̃j)− φ(CQT p̃i)‖, (1)

whereφ(
[
x y w

]T
) =

[
x/w y/w

]T
are the deho-

mogenized point coordinates, and

T =

[
R t
0T3 1

]

(2)

is the4× 4 Euclidean transformation between the point
clouds, and03 is a 3× 1 vector of all zeros.

C. Weighting

As with point selection, KinectFusion does not per-
form any special step to weight the influence of some
points more than others. All point correspondences are
weighted equally.

D. Rejection*

The next step is to remove outliers from the corre-
spondence to avoid corrupting the computed transforma-
tion. In KinectFusion, the corresponding pairpi ↔ qi is
rejected if either of the following conditions is met:

||p̂i − qi|| > τdist (3)
||ni × p̂i||

||p̂i||
> τang, (4)

where p̂i =
[
I3 | 03

]
T p̃i is a 3 × 1 vector, I3 is the

3×3 identity matrix, andτdist andτang are a predefined
distance and angle threshold, respectively.

E. Error Metric

The most obvious error metric is the sum of the
Euclidean distances between corresponding points after
alignment:

Epoint-to-point(T ;P,Q,L) =
N∑

i=1

‖T p̃i − q̃L(i)‖
2. (5)

Instead of this point-to-point error metric, KinectFusion
uses a point-to-plane error metric [5]:

Epoint-to-plane(T ;P,Q,L) =
N∑

i=1

((
T p̃i − q̃L(i)

)T
ñL(i)

)2

,

(6)
whereni is the surface normal atqi, obtained by the
eigenvector associated with the smallest eigenvalue of
the covariance matrix of points in a small neighborhood
surroundingqi, and ñi =

[
nT
i 1

]T
. The combination

of PDA and the point-to-plane error metric was first
implemented by a real-time modelling system [20].

F. Minimize

Since each iteration yields only small changes in the
transformation, the rotational component of the trans-
formation matrix can be linearized about the current
estimate:

T (k) ≈







1 −ψ θ tx
ψ 1 −φ ty
−θ φ 1 tz
0 0 0 1







(7)

wherek is the iteration, andT = T (k) · · · T (2)T (1).
The error metric in (6) is minimized by iteratively

solving a standard least squares system:

Zu = e, (8)

where
u =

[
φ θ ψ tx ty tz

]T
(9)

are the 6 unknowns of the Euclidean transformation (3
Euler angles of the rotation matrixR, and 3 components
of the translation vectort), and

Z{6×6} =
N∑

i=1

[
(ni × p̂i)(ni × p̂i)

T (ni × p̂i)n
T
i

ni(ni × p̂i)
T nin

T
i

]

(10)

e{6×1} =

N∑

i=1

[
(ni × p̂i)((p̂i − qi)

Tni)
ni((p̂i − qi)

Tni)

]

. (11)

Each iteration of the least-squares algorithm yields
the parameters for the linearized transformation matrix.
These parameters are then substituted into (2), and the
non-linear transformation matrices from all iterations are
multiplied to obtain the overall transformation.



IV. L UCAS-KANADE DATA ASSOCIATION

The KinectFusion ICP algorithm described in the pre-
vious section relies solely upon geometric information,
i.e., the spatial coordinates of the points in the two
clouds. As a result, environments that do not provide
high geometric texture (e.g., a plane such as a wall) can
cause camera tracking to fail. To improve the alignment
of point clouds in such environments, we propose to
use the RGB color information. While existing systems
such as [13] and [12] use visual cues alongside the
depth information for camera tracking, these approaches
rely upon extracted sparse feature points to estimate
the relative transformation of a camera. In contrast, we
describe in this section our approach for incorporating
all the RGB information in a natural way to replace PDA
as the data association technique for KinectFusion.

A. Lucas-Kanade

The Lucas-Kanade algorithm is a differential method
for computing the optical flow of an image. The goal of
Lucas-Kanade is to find the parametersζ that minimize
the SSD error

ELK =
∑

x

∑

y

(
I(W−1(x, y; ζ)) − J(x, y)

)2
, (12)

whereI andJ are the two images, the double summation
is over all the pixels, andW (x, y; ζ) is a parametric warp
function that brings the two images into alignment. This
equation is minimized by linearizing about the current
estimate and repeatedly solving a linear system:

(13)∆ζ = H−1
∑

x

∑

y

(

∇J
∂W

∂P

)T

δIJ ,

where

H =
∑

x

∑

y

(

∇J
∂W

∂P

)T

∇J
∂W

∂T
(14)

δIJ = I(W−1(x, y; ζ))− J(x, y), (15)

and where∇J is the1× 2 vector containing thex and
y gradients of imageJ . ∆ζ is computed incrementally
until the algorithm converges, or a maximum number of
iterations has been reached. For efficiency, we use the
inverse compositional algorithm [2].

The above formulation is valid for any warp function.
Since we are interested in a global, featureless mapping
technique that warps an entire image into another, we
use a projective warp to more accurately model the
relationship between the two images:

W̃ (x, y; ζ) =





Rxx + 1 Rxy ax
Ryx Ryy + 1 ay
sx sy 1





︸ ︷︷ ︸

projective warp





x
y
1



 ,

(16)

which in inhomogeneous coordinates, is

W (x, y; ζ) =

[
x(Rxx+1)+yRxy+ax

sxx+syy+1
xRyx+y(Ryy+1)+ay

sxx+syy+1

]

. (17)

Differentiating leads to

∂W

∂ζ
=

1

λ

[

x y 1 0 0 0 ∂Wx

∂sx

∂Wx

∂sy

0 0 0 x y 1
∂Wy

∂sx

∂Wy

∂sy

]

,

(18)

where
λ = xsx + ysy + 1, (19)

and the derivatives of the two elements ofW with
respect to the parameterssx andsy are given by

∂Wx

∂sx
= −

x(ax + yRxy + x(Rxx + 1))

λ
(20)

∂Wx

∂sy
= −

y(ax + rRxy + x(Rxx + 1))

λ
(21)

∂Wy

∂sx
= −

x(ay + xRyx + y(Ryy + 1))

λ
(22)

∂Wy

∂sy
= −

y(ay + xRyx + y(Ryy + 1))

λ
. (23)

B. Integrating LKDA into KinectFusion

As we saw in (1), projective data association (PDA)
establishes correspondence by finding the closest point
from the other cloud as projected onto the image plane.
In a similar manner, Lucas-Kanade data association
(LKDA) also finds the closest point on the image plane,
but only after first transforming the projected coordinates
according to the warp function found by Lucas-Kanade:

L(i) = argmin
j
‖φ(CQq̃j)− φ(W̃ (CP p̃i; ζ))‖. (24)

In PDA, point correspondences are computed by
projecting one point cloud onto the other with respect to
the other’s camera. In our LKDA approach, the warping
function from Lucas-Kanade yields the correspondence.
The modified ICP steps are as follows.

*Point Matching: Correspondences are found by
computing the parameters,ζ, that warp imageI to
image J . Although these correspondences could be
recomputed in each iteration of ICP, as in the traditional
approach, we have found this to be unnecessary. As a
result, once the warping parameters have been found,
they are used to generate a correspondence mapCmap,
so that the problem of finding a corresponding point
simply requires a lookup in this map. Pseudocode
for computing the correspondence map is shown in
Algorithm 1, where dP (x, y) is the depth value at
pixel (x, y), Proj−1 computes the 3D point using the
camera’s internal calibration parameters,VP (x, y) ∈ R

3.



Algorithm 1 LKDA Correspondence Map
ζ ← Perform Lucas-Kanade
for each pixel(x, y) in image domaindo

Cmap(x, y)←W (x, y; ζ)
end for

Pipeline of the ICP implementation in KinectFusion.

Pipeline of our LKDA approach outlined in this paper.

Fig. 2. Unlike the ICP process used by KinectFusion, our approach
utilizes both color and depth information. Another difference is that
correspondences are established once by LKDA allowing us toachieve
more robust results with less computation.

Proj−1 =
[

(x−cx)
fx

z
(y−cy)

fy
z z

]T

(25)

*Rejection: Rejection of point correspondences
is done as described earlier in section III-D with the
added constraint of requiring the corresponding points
to have a similar color:

||I(x, y)− J(W (x, y; ζ))||> τcolor, (26)

where γ is a predefined color threshold. Algorithm 2
presents our alignment process without finding new
correspondences in each iteration.

An illustration of our approach compared with the
PDA approach used by KinectFusion is shown in Fig-
ure 2. As mentioned above, our approach uses the
same correspondences during each iteration of the cloud
alignment process rather than having to re-establish
correspondences each time. Like KinectFusion, we also
use a point-to-plane error metric, although any error
metric may be used.

Algorithm 2 LKDA Point Cloud Alignment
// Compute vertex and normal maps
for each pixel(x, y) in the depth map(s)do

VP (x, y)← Proj−1(x, y, dP (x, y))
VQ(x, y)← Proj−1(x, y, dQ(x, y))
N(x, y)← normal vector ofVQ(x, y)

end for
// Compute alignment
while not aligned do

for each pixel(x, y) in depth mapdP do
p← TVP (x, y)
q ← VQ(Cmap(x, y))
n← N(Cmap(x, y))
if ||p−q||> τdist or ||n×p||/||p||> τang or
||I(x, y)− J(W (x, y; ζ))||> τcolor

then
Reject point correspondence

end if
end for
T (k) ← solve linear system
UpdateT ← T (k) · · · T (2)T (1)

end while

V. EXPERIMENTS

We integrated LKDA into the open source imple-
mentation of KinectFusion, namely KinFu, which is
part of the Point Cloud Library (PCL) [22]. The PDA
technique used to find correspondences was replaced by
the correspondence map generated from Lucas-Kanade,
and the rejection step was given an additional color
constraint, both of which are described in section IV.
The remainder of the system was left unaltered.

Since the main contribution of this paper is to improve
the robustness of camera tracking of the KinectFusion al-
gorithm by replacing PDA with LKDA, we compare the
results of KinectFusion with PDA versus with LKDA.
Our approach was tested in environments in which there
are few geometric features, as well as environments in
which the relatively large distance of objects to the
RGB-D sensor causes the depth data to be noisy as
a result of the limited range of the sensor. Results
from the two approaches for an environment with few
geometric features can be seen in Figure 3. With PDA,
the KinectFusion algorithm is unable to maintain camera
tracking, therefore producing an incorrect reconstruction
of the scene. Notice, for example, that the poster is too
close to the table, and the electrical outlet has disap-
peared entirely. On the other hand, KinectFusion with
LKDA is able to maintain camera tracking throughout
the sequence, resulting in an accurate reconstruction.
This is also clearly seen in the plot in Figure 3d, where
PDA fails to continue to track the upward (negativey)
motion of the camera after frame 100.



Fig. 5. 3D reconstruction of a person using LKDA for data
association. The resulting point cloud was converted to a triangular
mesh for rendering.

The second environment contained plenty of geo-
metric features, but these features were farther away
than the effective range of our RGB-D (Kinect) sensor,
which is approximately 3 meters. This caused the depth
measurements to be noisy which, in turn, caused the
PDA algorithm to fail. In contrast, the robustness of
our LKDA approach allowed KinectFusion to maintain
correct camera tracking despite the presence of noisy
depth data. Results of a reconstruction in this environ-
ment can be seen in Figure 4. Notice that the person is
painted onto the wall by PDA rather than being detected
as standing in front of the wall; in other words, the
depth information has been lost. (This behavior is more
clearly seen in the supplemental video which can be
found athttp://www.ces.clemson.edu/~stb/
research/LKDA ) This particular sequence was taken
by a camera that rotated about its center, so that itsx, y,
andz coordinates did not change. The plot in Figure 4d
shows that LKDA, unlike PDA, maintained consistent
coordinates over time.

Since LKDA finds correspondence from the color
information and not the geometric information, it is
necessary to show that LKDA still performs in areas
with rich geometric features. These tests show that,
despite its ignorance of geometry for the purpose of
establishing correspondence, LKDA still produces high
quality results in areas with many geometric features,
therefore maintaining accurate camera tracking over ex-
tended frame sequences. Figure 5 shows the reconstruc-
tion of a person, and Figure 6 shows the reconstruction
of an office scene. Thus we see that LKDA not only
improves upon PDA in environments in which the latter
fails, but it also does not hinder the performance of
KinectFusion in environments in which it succeeds.

VI. CONCLUSION

This paper has addressed the problem of aligning
point clouds obtained from an RGBD sensor. Replacing
the traditional projective data association (PDA) that

Fig. 6. Reconstruction of a scene using LKDA over an extended
period of time (1100 frames of data).

only uses geometric information, our approach of Lucas-
Kanade projective data association (LKDA) uses color
information to establish correspondence between the two
point clouds. Once established, this correspondence can
be used in subsequent iterations of ICP in order to
avoid having to recompute correspondence each time.
Our approach was integrated into the KinectFusion al-
gorithm, showing its ability to maintain camera tracking
through areas with few geometric features, as well as
in environments in which the objects are beyond the
range of accurate distance measurements. Moreover,
even when geometric information is sufficient, using
LKDA instead of the traditional PDA does not result
in a loss of accuracy. The use of LKDA will not hinder
the real-time performance in the KinectFusion algorithm
due to its ability to be implemented on a GPU to run in
real time [23], [8]. Future work should focus upon using
depth information in the Lucas-Kanade step, applying
LKDA to larger environments, and further experiments
to validate its applicability in other scenarios.
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