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Bootstrapping Navigation and Path Planning Using
Human Positional Traces

Alen Alempijevic, Robert Fitch and Nathan Kirchner

Abstract— Navigating and path planning in environments
with limited a priori knowledge is a fundamental challenge for
mobile robots. Robots operating in human-occupied environ-
ments must also respect sociocontextual boundaries such as
personal workspaces. There is a need for robots to be able to
navigate in such environments without having to explore and
build an intricate representation of the world. In this paper,
a method for supplementing directly observed environmental
information with indirect observations of occupied space is
presented. The proposed approach enables the online inclusion
of novel human positional traces and environment information
into a probabilistic framework for path planning. Encapsulation
of sociocontextual information, such as identifying areas that
people tend to use to move through the environment, is inher-
ently achieved without supervised learning or labelling. Our
method bootstraps navigation with indirectly observed sensor
data, and leverages the flexibility of the Gaussian process (GP)
for producing a navigational map that sampling based path
planers such as Probabilistic Roadmaps (PRM) can effectively
utilise. Empirical results on a mobile platform demonstrate
that a robot can efficiently and socially-appropriately reach a
desired goal by exploiting the navigational map in our Bayesian
statistical framework.

I. INTRODUCTION

Whilst capabilities of robots to perceive and interact
with the world are maturing, dynamic environments where
robots are deployed with limited a priori knowledge still
pose significant challenges. These challenges arise during
simultaneously localising and mapping under uncertainty,
exploring the unknown environment, and creating a suitable
navigational representation for path planning. Thus far, a
common approach is to employ a method targeted at min-
imising the impact of such challenges directly. This can be
done through using mapping sensors which are unaffected
by moving objects, such as a camera which observes the
ceiling [1], or by jointly tracking and localising to build
an occupancy grid representation [2]. Alternatively, planning
trajectories with an incomplete navigational representation
can be achieved with a purely reactive planner based on
potential fields [3]. However, these approaches under utilise
the available sensor information, are prone to local minima
and require hand tuning of objective functions.
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As robots start to share the environment with humans, the
analysis of human motion patterns becomes increasingly im-
portant in order to improve interaction through predictability.
Commonly the trajectory a person will take is estimated [4],
[5] or the final goal is determined [6]. However, trajectories
taken by people are a product of intention. By learning how
humans move in indoor environments a robot can actively
navigate without relying solely on direct perception. For ex-
ample, people generally avoid obstacles or potential hazards
like spilt liquids. Trying to sense this is difficult, yet inferring
it from the cues of people walking is relatively easier.
Additionally, human locomotion provides insight into rich
sociocontextual information. For instance, social boundaries
such as personal workspaces or the area between a television
and a viewer often mean that traversing certain areas is not
desirable. Integrating such information into a path planner is
nontrivial; definitions of socially acceptable routes are mostly
qualitative and difficult to sense [7]. However, examining
motion patterns can produce trajectories that incorporate
higher levels of reasoning about the environment without
explicitly modelling underlying principles influencing them.
Thus, incorporating generalised human behaviour, in the
form of a probabilistic representation of robot-sensed hu-
man positional traces, can enable robots to construct a
significantly richer understanding of the environment and its
intricacies.

Incorporating human motion patterns effectively in a prob-
abilistic representation has been attempted with a hierarchical
Bayesian Model [8] or employing a Hidden Markov Model
[9], [10]. Similarly, collections of trajectories characterizing
motion patterns have been investigated in [10] to prevent col-
lisions between a robot and person. Ikeda et. al [6] examined
the concept of grouping trajectories by the use of sub-goals
where pedestrians take directional choices before reaching
a final destination. This body of work has demonstrated
that it is possible to estimate the most probable trajectory
a person will undertake. However, these approaches require
a map (occupancy grid) for path planning and/or substantial a
priori environment knowledge to be able to ascertain viable
goals. Our approach is distinct in that we seek to exploit
human trajectory observations without the need to make
assertions about their final destination. We aim to exploit all
available motion patterns to extrapolate a navigational map
representation.

In the absence of a priori map representation for naviga-
tion, current state of the art exploration strategies produce
a map by pursuing frontiers [11]. As robots share the envi-
ronment with humans, giving instructions to the robot such



as bearing only direction of travel has also been investigated
[12]. Rather than relying on human input to determine the
direction of travel we advocate that equipping the robot with
person detection capabilities in situ will produce indirect ob-
servations that can be exploited for effective path planning. A
navigational map constructed without any prior environment
information was examined in our prior work [13]. Gaussian
Processes (GP) were used to learn a navigational function
that describes how human motion deviates from a shortest
path prior. Whilst fundamentally complete, this approach can
only utilise positional traces that coincide with the intended
goal of the robot and can only be effectively combined with
a reactive path planner.

This paper presents a method of building a navigational
map environment representation utilising human positional
traces. What differentiates our approach from existing ap-
proaches is utilisation of all available positional traces that
do not necessarily coincide with our final goal. The represen-
tation can then be exploited by standard planning algorithms
(such as PRM) for online path planning. This allows the
representation to be updated as either more positional traces
become available or more of the environment is perceived,
thus, refining the path planning whilst the platform is already
in motion. We demonstrate that our approach has significant
advantages over standard exploration which is unable to
explicitly encode desirably avoidable trajectories. Finally, a
key aspect of our approach is the encoding of sociocontextual
information from the navigational map, such as identifying
areas that people tend to use to move through the socially-
acceptable environments (corridors for instance) and avoid
the socially-unacceptable environments (someone’s cubicle
for instance) without any supervised learning or labelling.

The breakdown of this paper is as follows: Section II
details our method for extracting human positional traces,
Section III discusses the method of encapsulation of this
information effectively using a GP and bootstrapping a sam-
pling based path planner to this representation. An empirical
evaluation of our approach is presented in Section IV. Finally,
conclusions are drawn and future work proposed in Section
V.

II. HUMAN POSITIONAL TRACES

As can be appreciated from the aforementioned, the ability
to construct human positional traces is an essential prereq-
uisite of our proposed system. This prerequisite comprises
of two primary components of Person Detection and Person
Tracking, both of which are detailed in the following sub-
sections.

A. Person Detection

The first stage of our system robustly detects people in 3D
pointclouds (from a Microsoft Kinect) or laser rangefinder
(LRF) data (from a Hokuyo UTM-30LX). As this stage is
built upon the authors’ previous work [14], [15], [16] an
overview will be presented here, for the sake of complete-
ness, and the reader is referred to our original publications
for full details.

The Person Detection process commences with projecting
the 3D pointcloud data onto a 2D horizontal plane via a
bivariate histogram. Blob Detection is then performed on
the image to allow each apparent person (vertical surface
of appropriate width) to be segmented from the scene. This
approach to scene analysis exploits the assumption that
people appear in a scene as vertical surfaces with a relatively
high point-density in the histogram, when compared with
the many horizontal surfaces (floor, chairs, etc.). Along
with humans, common items identified as potentially human
include: walls, doors, and tall items of furniture. Many
of these false positives are eliminated by liberal object-of-
interest size constraints based on the expected minimum and
maximum size of a person. However, as shown in [14], for
the sake of robustness, false positives passing this stage of the
detection process are preferable to false negatives as further
discrimination is performed using a more discriminative,
but more computationally expensive, method. Specifically,
a scale and viewing angle robust feature vector (Head-
to-shoulder signature - HSS) [15] is constructed. Person
detection is then subsequently achieved via a single class
support vector machine (SVM) trained (supervised) with
HSS signatures guaranteed to represent a range of people
of diverse sizes and shapes.

The algorithm for people detection on 2D LRF data is
based on extraction of the human torso [16]. The LRF
mounted on our mobile robotic platform is at approximately
1.3m above the ground and though laser scans intersect
the chest section of a person the method used for torso
extraction was directly applied. LRF data is segmented
based on discontinuities, major and minor axis of each data
segments is extracted and classified using a (SVM) trained
(supervised) guaranteed to represent a range of people of
diverse sizes and shapes. The outputs of these two methods
are statistically combined.

B. Person Tracking

Having detected people a particle filter is used in order
to perform global tracking and produce positional traces.
To estimate each positional trace a set of samples X; =
(xi]i=1..N) and its associated weights w! represent the
beleif at time ¢ of the persons location. The computation of
the posterior for each ¢-th particle set X, is then calculated
recursively from X;_; in three steps as detailed in Alg.1. A
constant velocity model driven by zero mean gaussian noise
u; is used in the prediction step. Due to the resampling the
particle filter tends to converge to one state, which means
that in the basic implementation this filter would not be
suitable to track multiple hypotheses over extended periods
of time. However, as our method exploits all positional traces
as a whole, this is non-problematic and the partial traces are
incorporated into the navigational map without the need for
more sophisticated tracking.

III. GAUSSIAN PROCESS NAVIGATIONAL MAP

The positional traces are used to produce a navigational
map encoded with a GP and this map can be updated as



Algorithm 1 The three steps of the particle filter algorithm

1: Prediction: Draw x! ~ p(z! | 21, us_1).

2: Update: Compute the weights w! = np(y; | z¢), with n
being a normalization factor to ensure that the weights
sum up to 1. Here, y; is a person detection reading at
time t.

3. Resample: Draw new z¢ using weights w;

either more positional traces become available or more of the
environment is perceived. Finally, the Path Planning stage
exploits the Bayesian formulation of the GP to construct
a trajectory which seeks to maximize the most commonly
traversed space. Each of these stages are detailed in the
following sub-sections.

A. Navigational Map

The work of GP maps was introduced by O‘Callaghan
et al. [17] who employ Gaussian Process as a Probabilistic
Least Square Classifier for reconstruction of a 2D occupancy
based map using sparse LRF beam information. Gaussian
Process are nonparametric tools for regression and pro-
vide a powerful framework for learning models of spatially
correlated and uncertain data. GPs represent a family of
distribution over functions and inference takes place directly
in the function space. Intuitively, this approach to mapping
exploits the fact that environments contain spatial structure
to predict a continuous non-linear, non-parametric function
representing the map. The GP is a Bayesian regression
technique and intrinsically avoids overfitting while using
statistical inference to learn dependencies between points
in the input (training) dataset. A detailed explanation and
derivation of the GP can be found in [18].

We base our method on the ability of the GP to predict
p(¥|z) where ¥ is the nonparametric model of the occu-
pancy at position = in R2. The GP is used to fit a likelihood
function to training data X = (x;, ;)i = 1,...,n, x; is the
two dimensional training input (a single position of a person
along the positional trace) and y; the corresponding scalar
training output in our case, y; is +1 or 0 (for occupied
and non-occupied respectively). The resulting continuous
function can then be used to predict the probability of
occupancy over the entire region. By assuming that all points
in the navigational space are jointly Gaussian we obtain

U(a.) = N(p,0?) (1)

where the mean function g and covariance function
K(z,z,) are

p=k(zs, X)T[k(X7 X)+ Ui[]_ly,
0% = k(2s, v0) — k(2s, X)[K(X, X) + 0,207 (X, 24)
2)
x, refers to a query location, X is training inputs, 0,2 is
the variance of the noise and k is the covariance matrix with
elements k;; = k(x;,2;) defined on the covariance function
k hyperparameters.

After testing with several covariance functions and consid-
ering the input variables x; which are close in input space are
highly correlated whilst those far away are uncorrelated, the
Squared Exponential covariance function k& was chosen. In
particular the Squared Exponential covariance function with
Automatic Relevance Determination (ARD) [18] distance
measure was selected. The covariance function is parame-
terized as

k(xP,29) = o2 exp(—(a? — 29)' MaP — 2920, (3)

where the M matrix is diagonal with ARD parameters
13,...,1%, where D is the dimension of the input space and
o¢? is the signal variance and 0, the optional noise level
parameter

The training and updating phase of the GP can run concur-
rently as per Alg.2. To start this process we generate training
samples X each with occupancy y = 0.5 representing
unknown space and learn hyperparameters © of underlying
function W. Thereafter as either more positional traces are
detected or more obstacles in the environment are perceived
we update the GP according to Alg.2.

Algorithm 2 Learning Mechanism

1: Input: X - training samples, © - hyperparameters, X.
- positional traces of size N, COmin’ - Min acceptable
uncertainty

2: Output: © - parameters of U, X - training samples

3: Obtain y,0? for X, (query locations) from ¥(©) via
Eq.2

4: for i =1to N do

5:  if 02 < o,y then

X = (24, y;) where y; = 1.0 4+ presents occupied
space or y; = 0.0 +n presents free space, 7 is zero
mean gaussian noise

end if

8: end for

9: if number of elements in X > 0 then

10:  concatenate previous accumulated data X and X

11:  Train Gaussian process with X to learn new parame-
ters O of underlying function W
12: end if

The primary drawback of using the Gaussian Process is
its typical computational time, which makes it unsuitable for
many operations where realtime performance are required.
The GPs runtime complexity is of O(N?3) (N is the number
of training points) and is primarily a result of the requirement
to invert the covariance matrix K in eq 2. However, as this
matrix is independent of query points the inverse K ~! can be
pre-computed and stored thus eliminating the computational
bottleneck during online use. With additional observations of
either positional traces or occupied space we need to retrain
the GP. Some work on subsuming this information into & ~!
has been demonstrated in [19]. Our approach is to handle
the computational complexity by storing the inverse covari-
ance matrix K ! for querying and implementing training



the covariance function using cloud computing capabilities.
Further details on computational resources and inter process
communication specific to our implementation are discussed
in Sec.IV.

B. Path Planning

The resulting predictive mean and variance distributions
resulting from queries on the GP can be used to distinguish
areas in the robot’s surroundings where people commonly
traverse. The continuous nature of the underlying function
means that the navigational map can be queried at an
arbitrary coarseness. In such, the GP navigational map allows
the inference of the probability of occupied space for any
query point in continuous R? space. Whereas, path planners
utilising traditional occupancy grid based maps are limited
by the resolution of the grid size. Thus, this continuous
property maximizes the flexibility of path planner selection;
any standard sampling based algorithm can be employed. The
traditional metric for path selection is based on the shortest
distance travelled, a more suitable objective functions such as
maximizing the most traversed space is obtained from the GP
2 and can be incorporated in a Rapidly-exploring Random
Trees (RRT) or a Probabilistic Roadmap (PRM) planner.

The PRM planner procedure is presented in Alg.3 where
the inputs consist of the start pose .S goal pose (G, maximum
probability of occupancy for a valid node p,,q,, maximum
number of nearest nodes to consider k£ and ¢ distance along
each edge to query occupied space in underlying GP.

Algorithm 3 Feature Extraction
1: Input: S, G, pmaz, k, 0
2: Output: Probabilistic Roadmap Network - PRM,
Nodes to visit NV
3: while G not reached and PRM not connected do
4:  create N random samples (nodes) X and perform
inference on ¥(0) Eq.2
for j =1 to (N) do
if X, not in collision p < Pyq, then
Find k nearest nodes
Collision check along each edge at every
Determine a edge weight according to the prob-
ability of occupancy along each edge
10: end if
11:  end for
12:  Search graph to extract PRM with smallest edge
weight, save list of nodes visited N
13: end while

R A4

The nodes N produced by searching the PRM are then
passed on to a path planner that can either fit splines to
smooth the paths with kinematic constraints of the platform
or perform a reactive collision avoidance method. Further
details on our path planner and the switching between these
two modalities of path planning is discussed in [20].

IV. RESULTS

This section presents results from an empirical evaluation
conducted at the Centre for Autonomous Systems (CAS),
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Fig. 1. The RobotAssist Platform

University of Technology, Sydney 2. The research platform
and software framework are briefly presented, the environ-
mental setting and results are then discussed.

Our research platform, RobotAssist, is shown in Figure 1
and is based on a Segway RMP primarily instrumented
with an XSens IMU, two Hokuyo UTM-30LX LRF, an
RGB-D camera (the SwissRanger/Dragonfly combination
has been replaced with a Microsoft Kinect) and an artic-
ulated head (2DOF, pan and tilt). The intention is to allow
the sensors in the head to be moved quasi-independently
from the platform in order to facilitate active sensing. Our
platform stands approximately 1.6m tall and weighs approx-
imately 70kg, additional details are available from [21] and
www.robotassist.org.

Our software is built using a Component-Based Soft-
ware Engineering (CBSE) paradigm, components run asyn-
chronously and exchange information. We use ZeroC’s
Ice middleware (http://www.zeroc.com) extensively
in our system for component interface definition, inter-
component communication, component deployment, loca-
tion, activation services, etc. The multi OS and multi pro-
gramming language support of Ice was crucial for the de-
velopment of the robotic system, enabling the development
of closed loop control with use of real-time acquired data
from the platform in MATLAB environments. The GP Navi-
gational Map is constructed and queried using MATLAB on
the High Performance Cluster (by virtue of cloud computing)
containing an Intel Xeon X5690 (6 Core) @ 3.73GHz with
96GB DDR3-RAM. The cluster is particularly suited to
performing large parametric searches and to algorithms that
lend themselves to parallelisation such as the GP presented
here within.

The experiments were conducted with our person recogni-
tion system configured to operate using the Microsoft Kinect
and LRF sensor on the RobotAssist platform [21]. The
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Fig. 3. All positional traces acquired superimposed on a previously
acquired map of the CAS area

experiment was conducted in CAS office-space area where
50 students and staff share a space of approximately 50m?2.
A section of the experiment setting can be seen in Fig. 2.

A. Stationary Observer Navigational Map Creation

The first experiment was conducted with the RobotAssist
platform stationary, observing human motion over 140 min-
utes during normal work hours. A total of 512 raw positional
traces were collected over this time, all the positional traces
are denoted in Fig. 3. The resulting GP learning phase has
produced a navigational map Fig. 4 where p = 1.0 (indicated
in red) relates to areas determined to be obstacle free. The
associated covariance is presented in Fig. 5.

The more frequently traversed corridors have a lower level
of uncertainty on the predicted value of occupancy. The
sociocontextual information, such as recommending to avoid
cubicles where the flow of pedestrian traffic can not be
detected is embedded in the navigational map.

B. Path Planning on the Navigational Map

To demonstrate that the robot can continuously query and
update a Navigational Map we conduct an experiment where
the mobile platform is simultaneously performing detec-
tion, tracking, producing and updating the navigational map,
path planning and executing a trajectory. The probability
of occupancy for each cell has been updated during the
execution of the planned trajectory resulting and the final
resulting navigational map is denoted in Fig. 6 and Fig. 7.
The information of obstacles encountered (walls) is visible
by examining areas that have a probability of being free
space as p = 0.0 (noted in blue) on Fig. 6. The resulting
navigational space where the probability of free space is
p > 0.9 is superimposed on a previously acquired map of
the area Fig. 8 for comparison. The path recommended for
traversing computed by the PRM is denoted in Fig. 9 while

,)/

Fig. 4. Navigational map indicating the probability of each cell being free,
p = 1.0 in red indicates that the area is determined to be obstacle free

Fig. 5. Covariance of occupancy before the path is completely traversed

Fig. 6. Probability of occupancy after the path is completely traversed

Fig. 7. Covariance of occupancy after the path is completely traversed

a execution stage of the planned trajectory is depicted in Fig.
10.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a method for supplementing environ-
ment information through exploiting indirect observations of
occupied space. It was shown that the proposed approach
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Fig. 9. Nodes of PRM in free space are noted with blue stars, selected
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Fig. 10. A snapshot acquired during the execution of planned path by the
robot, the desired path is superimposed in red, our robot is the small red
circle and the

enables the online inclusion of novel human positional
traces and/or environment information into a probabilistic
framework for path planning. Furthermore, advantageous
sociocontextual information, such as identifying areas that
people tend to use to move through the environment, is
inherently encapsulated by our method without supervised
learning or labelling.

An empirical evaluation of our approach using an indoor
mobile robot is presented demonstrating that a robot can
efficiently and socially-appropriately reach a desired goal
through exploiting the navigational map in our Bayesian
statistical framework.

Whilst the results presented here within are promising, a
number of limitations remain to be addressed in future work.
For instance, more thorough exploitation of the sociocontex-
tual information and investigation of using the approach in
public open spaces seem viable.
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