
“© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



Efficient Neighbourhood-Based Information Gain Approach for
Exploration of Complex 3D Environments∗

Phillip Quin, Gavin Paul, Alen Alempijevic, Dikai Liu and Gamini Dissanayake
Center for Autonomous Systems

University of Technology Sydney, Sydney 2007, Australia
phillip.d.quin@student.uts.edu.au, gavin.paul@uts.edu.au, alen.alempijevic@uts.edu.au

dkliu@eng.uts.edu.au, gdissa@eng.uts.edu.au

Abstract— This paper presents an approach for exploring a
complex 3D environment with a sensor mounted on the end
effector of a robot manipulator. In contrast to many current
approaches which plan as far ahead as possible using as much
environment information as is available, our approach considers
only a small set of poses (vector of joint angles) neighbouring
the robot’s current pose in configuration space. Our approach
is compared to an existing exploration strategy for a similar
robot. Our results demonstrate a significant decrease in the
number of information gain estimation calculations that need
to be performed, while still gathering an equivalent or increased
amount of information about the environment.

I. INTRODUCTION

Many environments which require detailed inspection are
hazardous for humans or too time consuming to maneuver
through and explore. Some examples are mines, tunnels,
and bridges. Using robots to explore these environments
will reduce potential hazards to workers and also allow for
exploration of confined spaces that human workers might
have difficulty reaching.

Ideally, a robot should be able to explore an environment
autonomously, without guidance from an operator. This
would enable exploration of an environment even when
communication with the robot is not feasible. Exploring
autonomously requires the robot to intrinsically determine
(a) safety - where it is safe to move, (b) efficiency - the
shortest sequence of movements which will gather descrip-
tive information about the environment, and (c) completeness
of information - if there is any information left to discover.

Several existing strategies [1], [2], [3] select the goal
position and associated path for the end effector based on
maximising expected information gain whilst utilizing the
existing environment representation. While these approaches
were suitable for sensors which have a large acquisition
time (such as a tilting laser rangefinder), the advancements
of 3D sensors such as the Microsoft Kinect allow us to
simultaneously capture information as the end effector moves
through the environment. Hence, it is possible to update the
environment map not only at the goal position, but also along
the calculated path. It is probable that information gathered
whilst in motion would suggest several new, more optimal,

∗This work is supported by the Australian Research Council (ARC)
Linkage Grant (LP100200750), the NSW Roads and Maritime Services, and
the Centre for Autonomous Systems (CAS) at the University of Technology,
Sydney.

paths than the one currently being followed. Consequently,
one disadvantage of current approaches is that information
discovered along a trajectory will not be taken into account
until the trajectory is completed.

The approach presented in this paper builds upon our
previous next-best-view exploration algorithm used as part
of the Autonomous eXploration to Build a Map system [3].
The AXBAM Next Best View algorithm (AXBAM NBV)
is based on sampling the robot’s configuration space (c-
space) and determining the next pose based on estimated
information gain and the effort required. While many current
approaches to exploration plan as far ahead as possible using
all of the available map information, our approach instead
attempts to reduce the number of gain calculations required.
This is done by considering only the poses closest to the
robot’s current position and delaying evaluation of poses
further afield.

Our exploration scenario involves a robot arm placed at
a fixed location within the environment. The sensor used to
perceive the environment is an RGB-D camera attached to
the end effector. Our goal is to gather as much information
about the environment around the robot as possible and store
the location of free space and obstacles using an octomap [4].

This paper demonstrates the results of a new approach
called Nearest Neighbour Next Best View (NN NBV), where
the robot first considers nearby poses in c-space until it
reaches a dead-end (either in terms of possible motion or
information gain), in which case it selects a pose from
a larger set distributed evenly amongst its c-space. These
results are then compared to results when exploring with
AXBAM NBV.

NN NBV is shown to result in significantly fewer infor-
mation gain calculations being performed, therefore reducing
computation time. It also results in either comparable or
reduced robot movement, meaning the total exploration time
including computation is also reduced, while still gathering
comparable or increased information about the environment.

The remainder of this document is organized as follows:
Section II presents an overview of existing approaches to
exploration. Section III details the Nearest Neighbour Next
Best View approach and results are provided in Section IV.
Finally, conclusions are drawn and future work proposed in
Section V.



II. RELATED WORK

Though autonomous exploration has been an active field
of research for some time, finding a single optimal path to
explore an entire environment has been found to be NP-hard
[5], [6]. For this reason, current exploration strategies tend
to approach exploration in a greedy fashion.

Frontier-based exploration strategies such as [7] examine a
frontier and then move towards the closest or largest frontier
until no more frontiers are reachable. Frontier-based explo-
ration has been combined with potential field exploration and
shown to be an effective method of exploration [8]. However,
while Shade and Newman’s approach is able to run in real-
time for 2D environments, it is computationally expensive
when used in 3D environments.

Exploration strategies can either examine c-space, the
workspace; or typically both. C-space allows for path plan-
ning for a robot manipulator with a fixed base and does
not require inverse kinematics to be calculated. C-space
exploration strategies become intractable as the c-space di-
mensionality increases. There has been work in analyzing
the growth of c-space and determining how to explore it
efficiently [9]. Typically this means sampling points in c-
space rather than fully creating the space. Rapidly-exploring
Random Trees (RRTs) and various other path planning
strategies are examples of such c-space sampling approaches
[10]. Work has been done in combining the benefits of both
workspace and c-space exploration by switching between the
two as needed [11].

Potthast and Sukhatme [1] give an example of frontier-
based exploration using probabilistic road maps and an
information gain metric that counts unknown voxels. Their
approach is demonstrated using a PR2 robot equipped with
a Kinect to explore a table covered in objects. This approach
selects a goal pose from a set of possible goal poses based on
information gain. A set of paths to get to this selected goal
position is then considered based on probabilistic road maps.
An optimal path is chosen by selecting the one which gathers
the most information along its entire trajectory. However, all
calculations are performed on a current map and the robot’s
motion is not adapted mid-trajectory to take into account in-
formation acquired whilst in motion. Hence, during the time
required to perform these calculations several less optimal
paths could have been chosen and completed, resulting in
more captured information than would have been gathered
with the single more optimal path. It is also possible that
information gathered partway through a trajectory reveals
several more promising directions in which information can
be gathered, and in Potthast and Sukhatme’s approach, would
not be taken advantage of.

Instead of starting with a sample set of poses in c-space,
it is possible to work backwards from the workspace and
generate candidate members from c-space [2]. Dornhege and
Kleiner do this by detecting frontier cells and voids (col-
lections of unknown cells), generating possible viewpoints,
determining which are valid in c-space and then choosing
the one with the most gain. In order for the algorithm to ter-

minate, an initially bounded search space is assumed. Since
our robot must explore a space with unknown boundaries and
obstacles that may seriously limit its mobility, our approach
cannot use this assumption.

In the above approaches with 5 or 6DOF robots and even
the PR2 robot manipulator (7DOF), substantial calculation is
performed evaluating viewpoints which are never used. An
optimal method for reducing information gain calculations
would only update the gain information of viewpoints known
to have changed after the last scan was taken. This can
become difficult to determine though, particularly when the
robot gathers information as it moves from one viewpoint to
another, meaning that in the worst case all possible remain-
ing poses must have their estimated gain recalculated. Our
approach reduces the number of gain calculations required
as much as possible. Thus, only poses closest to the robot’s
current position are considered and evaluation of future poses
is delayed.

III. NEAREST-NEIGHBOURS NEXT BEST VIEW
ALGORITHM

In this section an outline of the algorithm will be given,
followed by an analysis of the estimated information gain
calculations required.

A. The Algorithm

When observing a scene, the human eye makes fast
motions called saccades [12]. These motions orient the focal
area of the eye (the fovea) to center on the object or position
of interest. When searching for a target, saccades do not
randomly move the eye’s focus around the scene, but can
use the information that has been seen so far to determine
the most likely position of the target [13].

It is therefore intuitive for a robot to use what it has seen
so far to select a neighbouring viewing position (analogous
to a person’s peripheral vision) that will give the most
information, and to reorient itself to observe the scene from
that position.

In the NN NBV exploration algorithm (Algorithm 1),
neighbour poses, Qn, need to be generated (Algorithm 2),
and the best chosen from among them. Beginning with
the current pose qcurr = (θ1, ..., θj), a vector of j joint
angles, each joint angle in qcurr is iterated over, adding or
subtracting a chosen angle ∆q . The resulting pairs of poses
are then added to Qn.

This results in c neighbouring poses, where c = 2∗j, since
two neighbours are created for each joint. The step size ∆q is
chosen in such a way that any neighbouring poses are close
enough to the current pose that checking for obstacles before
moving to them is unnecessary; it is possible to assume that
if both the current and the neighbour pose are valid then it
is safe to move directly from one to the other.

A function to check pose validity is used, V (), which
takes in a set Q of poses, and an octomap M . Each pose
in Q is a vector of length j where j is the number of
joints, e.g. (θ1, ..., θj). Function V () returns subsets of poses
under consideration Q: Qp, containing valid poses assuming



unknown space is occupied, and Qu, poses that are only
valid if the unknown space in the map is assumed to be free
space. Poses that cause collisions with occupied voxels or
the robot itself are discarded.

The function G(), which takes in a pose and the octomap,
raytraces into the octomap and returns the number of un-
known voxels encountered.

Note that it is unnecessary to calculate or compare the
effort of moving from qcurr to any pose q ∈ Qn; the effort
for all poses is the same by construction. Since both poses
are close enough that path planning to avoid obstacles is not
necessary, the effort to move between poses is equivalent to
the actual joint motion required by the robot to move to the
new position

These steps are then repeated (e.g. generate neighbour
poses, select a pose, move to the pose, and scan from that
pose) until none of the neighbouring poses has a gain value
greater than some threshold, or when no neighbour poses are
valid. This may or may not mean that the entire environment
has been explored. To be sure that the environment has
been adequately explored, the AXBAM NBV strategy which
samples the entire c-space, is invoked. This means checking
the set of sample poses from c-space and finding the one
with the highest non-zero gain/effort ratio, or terminating if
there are no valid poses with greater information gain than
a predetermined threshold.

Algorithm 1: NN Next Best V iew

Input: qcurr ←−Current robot pose , M ←−Octomap,
Q←−Set of poses under consideration

Output: qnbv, Q
1 Qn = Generate Neighbour Poses(qcurr,M);
2 qnbv = ∅;
3 best neighbour gain = 0;
4 if Qn 6= ∅ then
5 for q ∈ Qn do
6 gain = G(q,M);
7 if gain > best neighbour gain then
8 best neighbour gain = gain;
9 qnbv = q;

10 if qnbv == ∅ then
11 qnbv, Q = AXBAM NBV (qcurr,M,Q);

B. Complexity of Calculations

The number of gain calculations required depends on
how many optimally chosen scans are required to cover the
environment. Each scan taken requires c gain calculations,
one for each neighbour (or c−1 if the robot’s past trajectory
is remembered and repeated calculations avoided).

If for each pose chosen by AXBAM NBV (Algorithm 3),
α nearest neighbour poses have to be chosen (α > 0) to
gather approximately the same amount of information, and
assuming c is the constant number of nearest neighbours
considered at each step, then the best case running time is:

Algorithm 2: Generate Neighbour Poses
Input: qcurr = (θ1, ..., θj) , M ←−Octomap,

∆q ←−Step size
Output: Qn

1 for i ∈ [1, j] do
2 qnew = qcurr;
3 qnew.θi = q.θi + ∆q;
4 Qn = Qn ∪ qnew;
5 qnew.θi = q.θi −∆q;
6 Qn = Qn ∪ qnew;

7 Qn, Qu = V (Qn,M);

NCmin
= e× α× c (1)

The worst case results in the same gain calculations as
required for AXBAM NBV, plus c gain calculations each
time the robot moves to a new viewpoint and determines
that no neighour poses result in any worthwhile gain.

NCmax
=
n(n+ 1)

2
− (n− e)((n− e) + 1)

2
+ e× c (2)

Note that the range between NCmin and NCmax is quite
large; the maximum number of gain calculations could also
end up being larger by a small factor than the calcula-
tions required by AXBAM NBV. However, every scan at
a neighbouring pose increases the probability that when
AXBAM NBV is eventually called, more poses in Q will
have zero gain and therefore be discarded. Furthermore, the
earlier a pose is discarded from Q, the more calculations can
be avoided.

C. AXBAM Algorithm

AXBAM NBV is used as a module in the NN NBV
algorithm, so a brief overview will be presented here for
completeness, and the reader is referred to our original
publication for full details [3].

First a set of possible robot configurations, or poses, is
generated. This is a uniformly distributed sampling of all
possible robot configurations. A discrete number, NS , of
sample angles is taken from each robot joint, and poses are
created using every possible combination of these samples
(duplicates are discarded). Next, poses are repeatedly chosen
and the robot moved to them, until either no poses remain
or the information gathered so far is considered sufficient.

The effort required to get from the current pose to the
candidate pose is calculated using the function E() which
takes in two poses and returns the required joint effort. Effort
in this case is defined as being the sum of the absolute
difference in each pose’s joint angle. Once the gain and effort
for each candidate pose have been calculated, any pose with
zero information gain is discarded.

To choose the optimal pose q ∈ Qp, the poses lying on
the pareto frontier are found. This allows attention to be
restricted to poses that are pareto efficient with regard to



gain and effort. A pose q1 ∈ Q is a member of the pareto
frontier, if given the current position qcurr and map M , there
is no pose q2 ∈ Q such that,

G(q1,M) ≤ G(q2,M) ∧ E(q1, qcurr) ≥ E(q2, qcurr) (3)

and there is at least one utility function where q1 is strictly
better than q2.

An optimal pose, qnbv , is chosen from the pareto frontier
by selecting the pose with the best ratio of gain over effort.
To do this, the function R() is used, which takes in a
set of tuples (pose, gain, effort) and returns the best pose
in terms of gain over effort. There are other ways the tie
between the pareto frontier elements could be broken, such
as assigning ranks to values of gain or effort, but the ratio
of gain over effort is an intuitive and straightforward way of
accomplishing the required selection.

Once qnbv has been chosen, a path to it is calculated
from qcurr using a RRT planning approach [14]. The robot
proceeds through that path, integrating scans into the map at
each time step.

The pose selection process is repeated until all poses have
either been used or discarded because they offer no gain or
are impossible due to obstacles.

Algorithm 3: AXBAM Next Best V iew

Input: qcurr ←−Current robot pose , M ←−Octomap,
Q←−Poses under consideration

Output: qnbv, Q
1 Qp, Qu = V (Q,M);
2 Candidates = ∅;
3 qnbv = ∅;
4 for q ∈ Qp do
5 gain = G(q,M);
6 effort = E(qcurr, q);
7 if gain == 0 then
8 Qp = Qp − q;

9 else
10 candidate = (q, gain, effort);
11 Candidates = Candidates ∪ candidate;

12 if Candidates 6= ∅ then
13 Candidates = paretoFrontier(Candidates);
14 qnbv = R(Candidates);
15 Qp = Qp − qnbv;

16 Q = Qp ∪Qu;

IV. EXPERIMENTAL RESULTS
Several sets of experiments were performed, including

both simulations and using a real robot in the lab.
The simulations were run on an Intel Core 2 Duo (3.00

GHz) with 3.5 GB of RAM in MATLAB using mex files to
interface with the C++ Octomap library (v 1.4) [4].

The robot used in the simulation experiments has 5DOF,
the number of joint angle samples, NS , is set to 6, and

Fig. 1: A 6DOF robot (and sensor field of view)

the sensor is modelled to have a field-of-view and range
matching that of the Microsoft Kinect. The sensor is assumed
to be mounted on the robot’s end effector.

Four simulated environments were used. The first, the
Floor environment, used to test the performance of NN NBV
in open spaces, was a flat surface 0.5 by 0.5 meters in size,
the robot being placed in the center. The Tunnel environment,
to test NN NBV in simple enclosed environments, was 6
meters long, 1.3 meters wide and 0.8 meters tall. The
Window and Plate environments, used to test NN NBV
in more complex environments, were also based around a
tunnel, but each contained an obstacle that restricted much
of the robot’s workspace. For each of the four environments,
both algorithms were run until no more information was left
to be gathered from any of the poses generated.

Several metrics were recorded in order to compare the two
algorithms. In the tables presented here:

• Time: number of minutes the algorithms took to run to
completion,

• Information: number of voxels known to be free or
occupied,

• Gain Calculations: number of gain calculations per-
formed,

• End effector movement: distance travelled in meters
by the end effector,

• Total joint effort: amount of work done, in radians, by
the robot’s joints,

Two sets of simulated experiments were run. In the first
set, using in turn both the NBV, then the NN NBV algo-
rithms in all four environments, scans of the environment



TABLE I: Comparisons of the two exploration algorithms in the simulated environments, where scanning was performed
along the path as well as at the goal position.

(a) The Floor Environment

Metrics AXBAM NBV NN NBV % Diff
Time (min) 14.78 12.49 15.45
Information 386326 395643 2.41
Viewpoints Evaluated 12289 10361 15.69
Effector Movement (m) 24.14 22.53 6.66
Joint Effort (radians) 156.76 121.70 22.36

(b) The Tunnel Environment

Metrics AXBAM NBV NN NBV % Diff
Time (min) 12.50 9.29 25.65
Information 47556 46706 -1.79
Viewpoints Evaluated 11267 8265 26.64
Effector Movement (m) 28.91 24.45 15.42
Joint Effort (radians) 169.20 164.97 2.50

(c) The Window Environment

Metrics AXBAM NBV NN NBV % Diff
Time (min) 15.75 11.32 28.11
Information 50646 49880 -1.51
Viewpoints Evaluated 14559 9051 37.83
Effector Movement (m) 31.71 27.95 11.84
Joint Effort (radians) 257.29 228.82 11.07

(d) The Plate Environment

Metrics AXBAM NBV NN NBV % Diff
Time (mins) 12.50 10.33 17.35
Information 47036 48924 4.01
Viewpoints Evaluated 10834 8353 22.90
Effector Movement (m) 25.68 26.29 -2.35
Joint Effort (radians) 240.59 282.08 -17.25

were only taken at the chosen next best viewpoint. In the
second set of tests (Table I), whenever a path to a new
viewpoint was generated (as opposed to choosing a nearest
neighbour pose), a scan was taken every 5 steps along the
path generated by the RRT (or approximately after 5 degrees
of work done by the joints).

When only scanning at chosen viewpoints, NN NBV al-
ways gathered more information than AXBAM NBV. When
AXBAM NBV was made to scan along paths to cho-
sen viewpoints as well as at the viewpoints themselves,
NN NBV gathered at worst 1.79% less information than
AXBAM NBV did and, at best, 4% more. In terms of
robot motion and effort, in the simpler environments such
as the Floor and Tunnel, and even the Window environment,
NN NBV resulted in a 6 to 15% reduction in distance
travelled by the end effector and a 2.5 to 22% reduction
in joint effort. In the more complex Plate environment,
NN NBV resulted in only slightly more work done by the
robot, with a 2% increase in end effector motion and 17%
increase in joint effort.

When not performing scans along end effector paths (on
calls to AXBAM NBV), even the worst case reduction in the
number of gain calculations required was over 70%, resulting
in 65% less time needed for overall exploration. When scan-
ning was performed along paths (on calls to AXBAM NBV),
the reduction in the number of gain calculations was still over
15% in the worst case, while in the best case, it was reduced
by over 37%. The required time for exploration is reduced
by over 15%.

TABLE II: Comparisons of the two exploration algorithms
using the Denso robot in the lab.

Metrics AXBAM NBV NN NBV % Diff
Time (min) 56.60 17.43 69.20
Information 478948 427699 -10.70
Viewpoints Evaluated 8043 1998 75.16
Effector Movement (m) 59.92 24.05 59.86
Joint Effort (radians) 323.02 90.65 71.94

Testing in a real environment was done with a robot
manipulator arm with 6DOF (Figure 1) in an open but
cluttered environment. The number of joint angle samples,

NS , was set to 4. The joint step size for NN NBV was
10 degrees. A Kinect sensor was attached to the arm’s end
effector. Both the NN NBV and AXBAM algorithms were
used to explore the environment surrounding the robot and
collect the largest amount of information possible given the
range of the sensor and reach of the arm. When moving to
points chosen by the AXBAM NBV function, a scan was
taken every 10 steps along the path.

Shown in Table II are the results comparing both al-
gorithms when exploring the lab. NN NBV was shown to
be faster while collecting approximately the same amount
of information, and collecting more information over time.
NN NBV also resulted in more efficient robot motion. Shown
in Figure 3 is the resulting voxelised representation of
environment collected by the robot using NN NBV.

From both the simulated and real experiment results,
NN NBV outperforms AXBAM NBV in terms of informa-
tion gathered over time.

V. CONCLUSIONS AND REMARKS

An extension to an existing frontier-based exploration
algorithm has been presented that can be adapted to other
robots and scenarios for exploring 2D and 3D environments,
particularly for robots involving manipulators equipped with
one or more sensors.

It was demonstrated that considering only the closest
viewpoints for as long as possible can help significantly
reduce the number of viewpoints that have to be evaluated
while still offering comparable and even superior results in
information gathered and an economy in robot motion. This
results from the fact that planning further ahead yields dimin-
ishing improvements, which become eclipsed by planning
costs. Our results also confirm that in each test, there was a
significant reduction in the number of gain calculations and,
as a result, in the overall computation time.

The Nearest Neighbour exploration strategy also exhibits
a reduction in overall distance travelled by the end effector
and the total amount of work done by the robot’s joints.
Combined with the reduced computation time, this results in
a reduction of the total time required for the robot to explore
the environment.



(a) (b) (c) (d)

Fig. 2: Simulated Environments and resulting maps, ceilings of each representation have been removed for clarity and only
the occupied voxels of the maps are shown: (a) Window Environment (with robot inserted for scale), (c) Plate Environment
with an obstacle that the robot can reach under, (b) and (d) the resulting maps.

Options to further improve the efficiency of NN NBV will
be investigated by testing the different manners in which
the nearest neighbour poses could be generated to ensure
a more even spread of possible information gain between
neighbours.

REFERENCES

[1] C. Potthast and G. S. Sukhatme, “Next best view estimation with eye
in hand camera,” IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS): The PR2 Workshop, 2011.

[2] C. Dornhege and A. Kleiner, “A frontier-void-based approach for
autonomous exploration in 3d,” Safety, Security, and Rescue Robotics
(SSRR), IEEE International Symposium on, pp. 351–356, 2011.

[3] G. Paul, S. Webb, D. K. Liu, and G. Dissanayake, “Autonomous
robot manipulator-based exploration and mapping system for bridge
maintenance,” Robotics and Autonomous Systems, vol. 59, no. 78, pp.
543–554, 2011.

[4] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: A probabilistic, flexible, and compact 3d map repre-
sentation for robotic systems,” In Proc. of the ICRA workshop, 2010.

[5] A. Krause, “Near-optimal observation selection using submodular
functions,” In AAAI Nectar, 2007.

[6] J. Hawley, “Hierarchical task allocation in robotic exploration,” Mas-
ter’s thesis, Rochester Institute of Technology, 2009.

[7] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
Computational Intelligence in Robotics and Automation, CIRA. IEEE
International Symposium on., pp. 146 – 151, 1997.

[8] R. Shade and P. Newman, “Choosing where to go: Complete 3d
exploration with stereo,” Robotics and Automation, IEEE International
Conference on, pp. 2806–2811, 2011.

[9] M. Morales, R. Pearce, and N. Amato, “Analysis of the evolution of
c-space models built through incremental exploration,” Robotics and
Automation, IEEE International Conference on, pp. 1029–1034, 2007.

[10] B. Adorno and G. Borges, “iARW: An incremental path planner
algorithm based on adaptive random walks,” Intelligent Robots and
Systems, IROS. IEEE/RSJ International Conference on, pp. 988–993,
2009.

[11] Y. Huang and K. Gupta, “An adaptive configuration-space and work-
space based criterion for view planning,” Intelligent Robots and
Systems, IROS. IEEE/RSJ International Conference on, pp. 3366–
3371, 2005.

[12] K. Rayner, “Eye movements in reading and information processing: 20
years of research.” Psychological Bulletin, vol. 124(3), pp. 372–422,
1998.

[13] J. M. Henderson, “Human gaze control during real-world scene
perception,” Trends in Cognitive Sciences, vol. 7, no. 11, pp. 498 –
504, 2003.

[14] M. Clifton, G. Paul, N. Kwok, D. Liu, and D. L. Wang, “Evaluating
performance of multiple RRTs,” Mechtronic and Embedded Systems
and Applications. MESA. IEEE/ASME International Conference on,
pp. 564 –569, 2008.

(a)

(b)

Fig. 3: Experimental results with Denso robotic arm: (a) the
resulting voxel map of the lab environment (occupied voxels
only), and (b) the experimental setup in the lab.


