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Abstract—

Poor sensor data because of uncertainty and hardware
limitations results in a robot misinterpreting the state of its
surrounding environment, leading to bad decisions and even-
tually failure to successfully perform its desired tasks. These
limitations can be overcome if a teammate robot with a better
view shares its visual information. Our work aims to investigate
why current approaches fail to effectively use teammate sensor
data, propose an alternative where a teammate helps to better
capture the state of the environment, and demonstrate that the
robot can make better decisions when a teammate shares its
perceptual data. Raw teammate sensor data is not meaningful
unless provided a relative, geometric transform to place this
data within another robot’s own egocentric coordinates. There
are few approaches that are able to discover this relative
localization accurately in sparse environments while remaining
computationally light. Our approach addresses these limitations
by accumulating correspondence matches of objects over time
from the overlapping views of two stationary robots to compute
an accurate relative localization. We evaluate the benefits
of teammate sensor data used with our computed relative
localization with a challenging, time critical task where the
robot’s cameras alone are lacking. Our empirical results with
two coordinating robots indicates that our approach is able to
successfully take advantage of teammate robots with a better
view within the challenging physical and hardware constraints
of our robots.

I. INTRODUCTION

Estimating the state of the surrounding environment from
its sensor data is essential for a robot to react appropriately
to perform difficult open loop tasks. Unfortunately, the robot
cannot always make good decisions given that its cameras
have hardware limitations resulting in limited sensor range,
field of view, and resolution in addition to the reality that
its camera will not always be in advantageous positions or
angles to perceive all objects of interest within its environ-
ment. Another teammate robot with a better view can help to
augment a robot’s own limited sensors but requires knowing
the relative transform between the two robots to effectively
use this valuable sensor data. It is also valuable to take into
consideration the time delay of teammate observations so
that observations by both robots do not conflict.

Relative localization is difficult to perform in real time
using robots with standard HD cameras and limited process-
ing power. Most techniques extract either computationally
expensive features or known objects from perception sensor
data. A robot can either match these against a teammate
robot’s sensor data to directly compute their relative trans-
form or against a known map to compute the robot’s global
localization. Computing the relative transform between two
robots by instantaneously matching features or objects from

overlapping views fails in sparse environments when pre-
sented with an insufficient number of robust correspondence
points to match on. An alternative is for both robots to
individually compute their global position on the known map
and then share their globally transformed sensor data. Either
robot can then take this global sensor data and transform
it back into its own relative coordinates to use. This sensor
data has now been passed through two transforms based on
noisy global localization estimates by two different robots,
potentially magnifying any errors such that the transformed
teammate’s sensor data cannot be relied upon for accurate
estimates.

Prior to using teammate sensor data with our approach, the
two robots must have been stationary with overlapping views
sufficiently long to capture correspondence points from a
moving object to compute their relative localization. It is the
hope that this approach can be extended in the future so that
their relative transform can be discovered so quickly that the
robots appear as if only momentarily stationary before being
able to fully take advantage of a teammate’s sensor readings.
In our approach, relative localization is computed by directly
matching sensor data from two robots for increased accuracy
within the limitations of a sparse environment and limited
processing. Reduced processing requirements are achieved
by extracting known objects instead of image features. A
robot can capture some correspondence points from the
few identifiable objects in a sparse environment but simply
lacks a sufficient number to instantaneously compute a good
relative localization. Our approach creates a rich environment
over time by composing a unique set of correspondence
points from these sparse environments until a sufficient
number are accumulated to both compute their relative
localization and overcome sensor noise.

We evaluate our computed relative transform by presenting
a robot with the challenging, time critical task of altering
the path of a ball with its feet, where its own camera sensor
data is often insufficient for reacting correctly in time. The
robot must capture the state of the environment accurately to
determine where and when it should actuate but also early
enough to overcome the robot’s limited physical walking
speed. Our empirical results indicate that our computed
relative localization increases the ability of the robot to
perform this task, especially once the time delay of teammate
sensor data is taken into consideration.

II. RELATED WORK

While many robots rely on standard HD cameras and are
found in sparse environments, we choose to focus on the Nao



humanoid robots used in the RoboCup Standard Platform
League (SPL) given that all teams are constrained to the
same set of robot hardware and competition means that the
robot’s abilities are constantly pushed to their limits. From
our knowledge of the league, teammate observations cannot
be relied upon for tasks where this data must be accurately
transformed into another robot’s egocentric coordinates. We
focus on the task of altering the path of a ball with a robot’s
feet because it seems to be physically possible but sensor
challenges make this difficult.

Altering the path of the ball has been successful with
goalkeeper diving since 2009; however, performing this task
with a robot’s feet requires more accurate sensor data. Diving
covers a wide area very quickly to circumvent the robot’s
slow walk but comes with the risk of damaging the robot
and also also incapacitates the robot until it can stand up
again. Diving is successfully performed by capturing ball
trajectory estimates with both interpolation from consecutive
frames [10] as well as particle filters [7]. Compared to
diving, a robot needs more accurate and earlier ball trajectory
estimates since its feet cover much less area than its body
and a walk is very slow compared to a nearly instantaneous
dive. The increased accuracy requirements of ball trajectories
will require much more accurate sensor data that is difficult
to capture by the robot on its own.

In the RoboCup Standard Platform League (SPL), team-
mate sensor data is typically only relied upon for tasks
where global positions are important, like which part of
the field to look for the ball. For tasks requiring accurate
relative positions, like approaching a ball, a robot ends up
relying on its own sensor readings because teammate sensor
data is unreliable in the robot’s own egocentric coordinates
[1]. Current techniques are unreliable because the relative
transform is computed indirectly from global localization
estimates by each robot. Recent global localization work
on cooperative world modeling [9] performs UKF-SLAM
on both static and dynamic objects [2] and has the ability
to globally localize within 5 cm. Even with such accurate
global localization, the resulting relative transform by current
techniques magnify any errors resulting from each robot’s
individually computed global localization.

Work from the RoboCup Middle Size League (MSL)
has studied the analogous problem of sensor fusion that
attempts to estimate a single global estimate of an object
from the individual global estimates by multiple robots on
a soccer field. Robots in this league, custom designed with
distinct advantages of faster movement and omni-directional
cameras, impressively compute global localization with er-
rors of only 2.5 cm [5]. Despite these advantages over the
Nao’s, sensor fusion results in errors of 20 cm [3]. The
increase in error over global localization is a result of at-
tempting to combine conflicting globally transformed sensor
data computed from each robot’s noisy global localization
estimates. Transforming global estimates from sensor fusion
into a robot’s egocentric coordinates can only increase errors
because of the additional transformation from one’s own
imperfect global localization estimate. Nevertheless, this is
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Fig. 1. Position estimates of the same unique object over time by two robots
located at different positions in their own egocentric coordinates centered
at the origin.

common practice because one can instantaneously use sensor
data from another robot but ends up being used only as
a last resort. Taking these difficulties into consideration, it
appears that accurate incorporation of teammate sensor data
requires direct estimates of relative localization as opposed
to indirectly through global localization.

IIT. RELATIVE LOCALIZATION IN SPARSE
ENVIRONMENTS WITH LIMITED COMPUTE

The accuracy of relative localization is directly related to
the accuracy of the correspondence points used to compute
it. We assume that there are insufficient identifiable objects
within the overlapping views of both robots to instanta-
neously compute their relative localization but some objects
can and will move to different positions in the environment.
Our approach creates correspondence points of an object
rich environment by composing these points from sparse
object environments over time. Evidenced in Figure 1, two
robots with the ability to identify only a single object in
the environment can take advantage of position estimates
over time to suggest a reasonable relative transform. The
challenge of composing object poor environments is that
it must result in a set of diverse correspondence points, a
minimum of eight with perfect sensor data [4]. Sensor data
noise also means that a relative transform estimate benefits as
more diverse correspondences points are accumulated. The
challenge is to carefully choose the correspondence points
from object poor environments over time.

Intuitively, a stationary object no matter how long we
observe it provides only a single unique correspondence
point. Thus, capturing a diverse set of these points requires
identifying the state of the objects across many frames
over time. It would be difficult to completely model every
potential object state but the algorithm has the option to
accumulate correspondences only when it feels confident
about correctly capturing the state of the object. An added
benefit once the state of the object has been identified is
the simultaneous filtering of noise from sensor data. The
relative localization of the two robots can be computed
once a sufficient number of correspondence points have been



accumulated and then either robot can use sensor readings
from the other.

Capturing correspondences by identifying, filtering, and
accumulating correspondences followed by computation of
the relative localization is explained in Section IV. We
then measure the added benefit of our computed relative
localization for ball trajectory estimates followed by the
effect of teammate sensor data in performing the challenging
task of altering the trajectory of a ball’s path with its feet in
Section V.

IV. DISCOVERING RELATIVE TRANSFORM OVER
TIME

The key intuition is to create an object rich environment
from the composition of object poor environments. This is
possible because we assume that the robots remain station-
ary with overlapping views so that their relative transform
remains constant while we accumulate correspondences from
the object poor environments. Accumulating good correspon-
dence points from both robots’ sensor data requires that we
identify the state of the object, carefully pick a diverse set,
and finally eliminate sensor noise.

A. Identifying Known Object States with Confidence

Our work attempts to identify objects when they are
either stationary or moving with fixed velocity since these
two states are common to many objects although another
set of object states could easily work with our approach.
These states are identified with a Switching Kalman Filter
(SKF) [6], a Markov Model composed of several Kalman
Filter models. We have a Kalman Filter that models the
object while stationary and another while moving with fixed
velocity. The SKF maintains the likelihood of each Kalman
Filter model based on measurement sensor data and we
interpret the most likely model as the current state of the
object. An added benefit of the Kalman Filter is that its
output already attempts to filter out sensor noise.

We will take advantage of the identified states by the
SKF to ensure that both robots confidently agree on the
state of the object, collect a diverse set of correspondence
points, and provide the Kalman Filters sufficient opportunity
to filter out noise as shown in Listing 1. At a minimum,
sensor data from both robots should agree on the same
state of the object as noise and false positives may result
in very poor correspondences. Another challenge is that the
SKF is unaware of every potential state of the object. Our
experience finds that when the SKF lacks a sufficient model,
the SKF fails to settle on a single state over a sequence of
frames. As a result, we are confident of a good potential
correspondence point when both robots agree on the state of
the object for a consecutive threshold number of frames with
the added benefit of simultaneously providing the Kalman
Filter ample sensor data to filter out noise. A naive approach
to accumulating unique correspondences is to require state
changes in between captures of correspondence points. The
result of this process is a set of hopefully very accurate

function SelectCorrespondences(Obsl, Obs2)

if (Dist(Obsl) < GOODSENSORRANGE)
ObjStatel, ObjKFPosEstl = SKF(Obs1);

if (Dist(Obs2) < GOODSENSORRANGE)
ObjState2, ObjKFPosEst2 = SKF(Obs2);

if (ObjStatel == ObjState2) { AgreedStateCnt++; }
else { AgreedStateCnt = 0; }

if (AgreedStateCnt > CONFIDENCETHRESH)
Correspondences.add(ObjKFPosEst1, ObjKFPosEst2);

Listing 1.  Selecting correspondence points from Kalman Filter position
estimates after both robots agree on state of object exceeding a confidence
threshold.

and diverse correspondence points for computing the relative
localization.

B. Computing the Relative Localization

Provided the matched correspondence points, relative lo-
calization is computed with the shape matching algorithm
of Procrustes Analysis [8] because it is fast to compute
and correspondences are already matched. Given an initial
coarse relative transform estimate, the algorithm computes
a rotation that minimizes the distance error followed by a
translation that together is our best estimate of the relative
transform between the two robots. The rotation is computed
by translating both sets of correspondences to their origin,
scaled to 1, and then rotated to find the angle that mini-
mizes the sum of square distance between both robots. The
resulting translation centers the rotated points of one robot
around the other robot’s correspondence points. The two
robots with their relative transform can now freely use each
other’s sensor data as long as they remain stationary.

V. EVALUATING BENEFITS OF TEAMMATE
SENSOR DATA

We wish to observe that teammate sensor data is the
pivotal factor contributing to an increase in a robot’s success
when performing a difficult task. We choose to evaluate the
task of altering the path of a ball moving towards a robot us-
ing its feet. We have found that Nao humanoid robots benefit
by taking advantage of teammate sensor data and additionally
benefits when considering the time delay in processing the
teammate’s observations. We describe the evaluation task
presented to the robot, show how teammate observations are
beneficial with our computed relative localization, and the
increased success rate when performing a difficult task with
teammate observations.

A. Developing an Evaluation Scenario

To evaluate our computation of relative localization, a ball
is rolled down a ramp towards the intercepting robot as
depicted in Figure 2(a) with an abstract representation in the
robot’s own egocentric coordinates and in Figure 2(b) with an
actual overhead view. In the robot’s egocentric coordinates,
the robot itself is located at (0, 0) and the ball is originally
observed on the right of the robot at (190, 0). The ramp
is raised to three different heights to present the robot with
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Fig. 2. Depiction of our evaluation scenario with an (a) abstract represen-
tation and (b) actual overhead view. The forward facing 180 field of view
is shown between each robot’s semicircles in (a).

different ball speeds: Slow, Medium, and Fast. The robot
must estimate ball trajectory, project an interception point
directly in front or in back, and then walk to this point in
time to influence the motion of the ball with its feet. The
Nao’s have an approximately 180° forward facing horizontal
field of view as depicted within the two semicircles, where
objects too close or too far are difficult to capture. This is
a difficult task for the robot because the ball approaches
almost directly from its right, which is close to the limit
of its perceivable range. The teammate robot will be placed
with an approximate relative position of (80, -45) and angle
of 0° with an excellent view of the entire path of the ball. We
will demonstrate that taking advantage of teammate sensor
data is pivotal in helping the robot to better accomplish this
task.

B. Evaluating Benefits of Teammate Observations

We present the robot with real sensor data for which we
know the ground truth and compare the robot’s estimates of
the state of the ball with and without using its teammate’s
sensor data. We expect that teammate sensor data is able to
better capture the state of the object.

Figure 3 depicts ball trajectory estimates of an actual
instance of our evaluation scenario relying on each robot’s
individual sensor data in (a) and (b) and then combined
sensor data in (c), all overlayed with the actual ground truth
ball trajectory in blue. The robot on its own in Figure 3(a)
reveals that its raw sensor data in black is noisy when far
away and fails to perceive the ball when close due to its
cameras being occluded by its own shoulder. To project when
and where to alter the path of the ball, the estimated ball
trajectory by the robot on its own in green is short lived
and provides only a few frames for the robot to capture an
accurate ball trajectory and then make a good decision. This
places an enormous burden on the SKF to capture accurate
trajectory estimates from little evidence; however, it can be
aided by a teammate robot with a much better view.

Our algorithm computes the teammate robot to be at a
relative location of (82.3654, -44.9545) and angle of 2.89°
during the calibration step. The transformed teammate sensor
data is shown in Figure 3(b), where it is evident that the
teammate captures many more raw ball observations during
the entire path of the ball. In fact, unapparent from the

function AlterBallPath(Obsl1, Obs2)
BestObs = RobotClosestObs(Obs1, Obs2);
if (BestObs == Obs2)
BestObs = BallTransform(Obs2);

BallState, BallPos, BallVel = SKF(BestObs);

if BallState == MOVING {
BalllntcptTime, BalllntcptDist =
ProjectIntercept(BallPos, BallVel);
RobotIntcptTime = ComputeTimeToWalk(BalllntcptDist);
DiffIntcpTime = RobotIntcptTime — BalllntcptTime;

if LittleTimeToReact(DiffIntcpTime)
Walk(BalllntcpDist);
}

Listing 2. Intercepting robot uses observations from robot currently closest
to the ball, projects the estimated trajectory of ball, then decides when and
where to walk to in order to alter the path of the ball.

intercepting robot’s observations is a slight unevenness in the
floor slightly influencing the ball’s trajectory more in the y-
direction as reflected in the ground truth path. The teammate
captures a much more complete and accurate set of trajectory
estimates as shown in red. Suppose teammate sensor data
had been transformed using our desired relative localization
of (80, -45) and 0° angle. We can see in Figure 3(d) and (e)
that the intercepting robot would then have an estimate of the
state of the ball that poorly follows from the ground truth
path. Clearly, teammate sensor data transformed with our
computed relative localization helps the intercepting robot
to better capture the state of its surrounding environment for
making better informed decisions.

With a relative transform, the intercepting robot has the
benefit of using both its own and its teammate’s sensor data.
Listing 2 shows the decision process made by the intercept-
ing robot. From our experience, ball position estimates are
more accurate the smaller its distance is to the robot’s camera
so the intercepting robot chooses to use the closest observed
ball position by either robot. Ball trajectory is estimated
with a SKF providing ball position and velocity estimates.
It is then straightforward to project the interception point
and decide how the robot should react. We do not allow
the robot to use any more sensor data once it decides to
actuate. As a result, the robot walks the entire distance that
it projects the moment it decides to actuate so that we can
indirectly observe its belief of the state of the ball at the time.
Not all tasks allow robots the luxury to reverse their initial
decisions so it seems important to evaluate how effectively
the intercepting robot is able to make its initial decision. As
a result, the robot benefits by waiting as long as possible
to both capture better trajectory estimates and account for
any unevenness in the floor that may change slightly the
ball’s trajectory. Once there is little time remaining to react,
the robot actuates and hopefully alters the path of the ball.
We expect through many trials that sensor data that is able
to better capture the state of the environment will be more
successful in performing this task.
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Fig. 3. Raw sensor data in black of the same rolling ball by (a) the

intercepting robot and (b) the teammate robot. Ground truth path of the
ball is shown in blue. Each estimated trajectory is the center of each circle
depicted by (a) the intercepting robot shown in green, (b) the teammate
robot shown in red, and (c) combined observations by both robots in orange.
Effects of a poor relative localization in (d) and (e) provide the intercepting
robot a misleading estimate of the state of the ball.

C. Using Teammate Observations to Perform a Task

To perceive any difference in the ability of the robot to
make good decisions based on its own sensor data and com-
bined sensor data, we measure the success rate in performing
multiple instances of our evaluation task. The intercepting
robot is presented with three different ball speeds to see if
there are any differences in success rate as faster moving
balls demand even more accurate trajectory estimates with
less sensor data to work with. Each ball speed type using
a particular set of sensor data is evaluated 25 times each
for a total of 225 instances of the task performed. While
we attempt to have identical execution, factors like uneven
floors results in the ball crossing robot within a range of
420 cm requires that the robot correctly captures the state
of the ball. We have a very strict criteria for an instance of
the task to be considered a success. Figure 5 is a successful
instance of a ball moving at medium speed with the robot
successfully altering the path of the ball and demonstrating
a good projected interception point. Figure 6 is considered a
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Fig. 4. Comparing the success rate in successfully performing the

evaluation task using different sets of sensor data with different ball speeds.

failure despite altering the path of a ball moving at slow
speed because the point at which it stops reveals a poor
projected ball interception point when it made its decision.

In Figure 4, it is evident that the success rate using only
the intercepting robot’s sensor data in green is dominated by
nearly 10% when also taking advantage of teammate sensor
data in red. For the slow moving ball, teammate sensor data
has an impressive success rate of nearly 60%. When the time
delay of processing teammate sensor data is also considered,
the success rate dominates the intercepting robot using only
its own sensors by nearly 30%. These trends suggest that
teammate sensor data, especially when used effectively, helps
a robot to better capture the state of the environment leading
to better decisions and ultimately allow the robot to more
successfully perform difficult tasks.

D. Accounting for the Time Delay of Teammate Sensor Data

When the intercepting robot receives teammate sensor
data, it was taken from a different time than the robot’s
own current observations. A number of factors contribute
to this delay like network communication, processing, etc.
The wireless network over a single router introduces almost
negligible overheads of 3-5 ms. The stunning difference
in success rates by considering delays in Figure 4 is the
result of considering the total delay by the time teammate
observations are actually processed by the intercepting robot.
Our estimates of processing delay from our robot’s control
loop in addition to network communication delay of approx-
imately 100 ms. This is a reflection of the limited compute
of the Nao humanoids but does not indicate that the robot
cannot work with this limitation. By recognizing the delay
in processing of teammate sensor data, the intercepting robot
can overcome this limitation by either delaying processing
of its own observations or projecting past teammate sensor
data forward in time by this delay. We choose to project
teammate sensor data forward using trajectory estimates by
our SKF. The success rate in Figure 4 when considering
delay, especially with fast ball speeds, suggests that process-
ing delay is incredibly important for successfully performing
difficult tasks by effectively taking advantage of teammates
with better views.



Fig. 5. Robot successfully altering path of ball at medium speed with its
feet using teammate sensor data including delay. Initial decision to actuate
occurs at 1.0 s. Robot’s right foot kicks ball immediately before 2.0 s.
Robot’s body settles at 3.0 s indicating good projection of ball trajectory.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an algorithm for computing the
relative transform between overlapping views of two robots
over time in sparse environments with limited compute.
Relative localization is computed by identifying, matching,
and capturing robust, confident correspondence points from
state estimates of an object by both robots. Our results show
effective use of teammates with a better view is pivotal for
increasing the success rate of performing a difficult, time
critical task, especially once the time delay of teammate
observations is accounted for. This increased success rate is
the result of the robot being able to better capture the state
of its surrounding environment leading to better decisions by
taking advantage of teammate sensor data.

Discovering the relative localization should be a nearly
seamless process in the operation of both robots. The time
to compute relative localization can be reduced in the future
by better capturing correspondence points from objects in
motion and working with robots in motion. It would also be
beneficial for two robots without overlapping views to share
their observations indirectly through the direct overlapping
views of other robots. Automatic estimation of the delay
in using teammate sensor data would be important to most
effectively use these observations.

Fig. 6. Robot altering path of ball at slow speed with its feet using only
its own sensor data but fails to demonstrate accurate projection of ball
interception point is considered a failure in performing the evaluation task.
Robot actuates just after 1.0 s and ball just happens to luckily hit robot’s foot
at 2.0 s. Robot settles at 3.5 s indicating poor projection of ball trajectory.
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