
Exploiting Domain Knowledge for Object Discovery
Alvaro Collet∗ Bo Xiong† Corina Gurau‡ Martial Hebert∗ Siddhartha S. Srinivasa∗

∗Carnegie Mellon University †Connecticut College ‡Jacobs University
{acollet, hebert, siddh}@cs.cmu.edu bxiong@conncoll.edu cgurau@jacobs-university.de

Abstract—In this paper, we consider the problem of Lifelong
Robotic Object Discovery (LROD) as the long-term goal of
discovering novel objects in the environment while the robot
operates, for as long as the robot operates. As a first step towards
LROD, we automatically process the raw video stream of an
entire workday of a robotic agent to discover objects.

We claim that the key to achieve this goal is to incorporate
domain knowledge whenever available, in order to detect and
adapt to changes in the environment. We propose a general
graph-based formulation for LROD in which generic domain
knowledge is encoded as constraints. Our formulation enables
new sources of domain knowledge—metadata—to be added
dynamically to the system, as they become available or as
conditions change. By adding domain knowledge, we discover
2.7× more objects and decrease processing time 190 times. Our
optimized implementation, HerbDisc, processes 6 h 20 min of
RGBD video of real human environments in 18 min 30 s, and
discovers 121 correct novel objects with their 3D models.

I. INTRODUCTION

We focus on the problem of Lifelong Robotic Object
Discovery (LROD): discovering new objects unsupervised in
an environment while the robot operates, for as long as the
robot operates. Key challenges in LROD are scalability to
massive datasets, robustness in dynamic human environments,
and adaptability to different conditions over time. As a first
step towards LROD, we address these challenges on an entire
workday of data, collected as our robot explored a cluttered
and populated office building. We show for the first time
a system that processes, in under 19 minutes, hundreds of
thousands of samples and over 6 h of continous exploration,
to discover over a hundred new objects in cluttered human
environments.

Our key insight to making LROD feasible is to incorporate
domain knowledge. More precisely, the data gathered by a
service robot is not an unordered collection of anonymous im-
ages: range data is also available; we may know where and/or
when the images are captured, as well as their ordering; we
may know where interesting objects usually appear for a
particular environment, such as in tables or cabinets; we may
have additional sensing (e.g., robot localization, odometry)
for some or all the images; or we may only be interested
in objects of certain sizes or shapes relevant to the robot. In
our work, we define the term metadata to encode any source
of domain knowledge. Our definition includes any additional
robotic sensing, assumptions, or prior information; in short,
any non-visual data that can provide information about the
object candidates.

Prior work in robotics has widely used metadata to limit
computational costs and improve robustness in perception.
The metadata is mostly incorporated by imposing restrictions
on the environment, data acquisition, or agent motion, which

 
 

 
 

 
 

(a)

(c)

(e)

(b)

Metadata

(d)

Fig. 1: Object Discovery with Metadata. (Top) Robotic agent navigates
through office environment storing an RGBD video stream and localization
information. (a) Spatial/temporal constraints separate the video stream in
subsets red, green and blue. (b) Images in the sequence are segmented to
generate object candidates. (c) Object Discovery with Metadata: the different
sequence subsets are processed independently for efficiency, using robot
localization and external knowledge to find (d) individual object instances.
(e) Global Object Discovery performed on discovered object instances to
obtain a single representation for each object.

may result in solutions of limited applicability. [1] assumes
that interesting objects lie on tables to segment novel objects
in 3D point clouds. A horizontal plane detector is used to
pre-segment the scene and enforce the tabletop assumption.
This same assumption is shared by other works in the robotics
literature, such as [2], [3]. [4] use 3-frame sequences, motion
cues, and assume that images contain a table with known
color distribution to discover and accurately segment objects
in cluttered scenes. [5] assumes that relevant objects may be
modeled by simple shapes (such as boxes or cylinders) and
that images come in sequences to perform automated mod-
eling of household objects, enforcing temporal consistency
with tracking. Both [4] and [5] assume knowledge about the
image ordering and sequencing. [6] use datasets consisting of
multiple sequences of images collected repeteadly in the same
locations, in order to compute per-sequence environment

maps and perform scene differencing to discover movable
objects. The implicit assumptions include a rough knowledge
of the robot location, recording time, and that the robotic
agent visits the same locations multiple times.

Consider the example in Fig. 1, in which a robotic agent
navigates through an office environment recording an RGBD
video stream (Fig. 1(a)). Unsupervised Object Discovery
techniques (e.g., [7]) create a pool of object candidates (e.g.,
the RGBD regions in Fig. 1(b)), which are represented as
nodes in a pairwise graph (Fig. 1(c)). The graph edges are
computed by comparing the visual similarity between every
pair of object candidates. Then, clustering techniques are
used to group similar object candidates—recurring patterns—
(Fig. 1(d-e)). Building the pairwise graph requires O(n2)
similarity comparisons; as the length of the video stream
grows, this cost becomes prohibitively expensive.

In contrast, we can exploit metadata to make the problem
feasible. In Fig. 1(a), we can split the datastream according
to the robot’s location and data acquisition timestamps (red-
blue-green subsets). The object candidates for each subset
(Fig. 1(b)) are compared only within the same subset. The
pairwise graphs in Fig. 1(c) can encode the visual similarity
between candidates and other cues such as staticity constraints
or object priors. In Fig. 1(d), we can group object candidates
with similar visual information and metadata. The metadata-
augmented similarity graphs encode local information to
discover individual object instances, and we may discover
multiple instances of the same objects in different data sub-
sets. Therefore, we perform a global clustering step (Fig. 1(e))
to join the multiple object instances as single object models.

The main contribution of this work is a general framework
for object discovery that leverages any form of metadata. In
our formulation, we do not distinguish between visual simi-
larity and metadata. We encode all similarities and metadata
as an intermediate representation that we term a constraint.
The definition of a constraint is very simple: a measurable
yes/no question about an object candidate or a relationship
between candidates, with a probability p that quantifies the
answer’s confidence. For example, an appearance similarity
function s(·, ·) is encoded as the constraint “are candidates hi
and hj similar in appearance?” The answer would be yes/no,
with probability p = s(hi, hj).

With constraints, we can seamlessly combine multiple
similarities and metadata. We define a set of logic operations
over constraints to form complex constraint expressions that
encode all our knowledge relevant to discovering objects.
We formulate the LROD problem as a partitioning of graphs
built over constraints, which we term Constrained Similarity
Graphs (CSGs). CSGs, coupled with service robotics con-
straints, are by construction much sparser than regular visual
similarity graphs, and produce many connected components.
This graph sparsity effectively reduces the number of visual
similarities to compute—the most expensive operations—
from O(n2) (with respect to the number of images n) to
O(n), as well as greatly improving the performance of the
graph partitioning algorithm. We exploit this advantage in our
optimized implementation, HerbDisc, to process over 6 h of
RGBD video in under 19 min and discover 121 objects.

By formalizing domain knowledge and visual similarity as

constraints, we can change the entire system behavior online,
and exploit metadata adaptively, as conditions change. In ad-
dition, our constraints-based formulation is general, it covers
both generic Unsupervised Object Discovery algorithms (e.g.,
[8], [7]) and special-purpose algorithms (e.g., [5]).

II. PROBLEM FORMULATION

A. Inputs and Outputs

The visual input to HerbDisc is a set I of N images with
associated range data, which we refer to as data samples In.
A candidate generator processes the data samples in I to
compute a set of data fragments h, which we consider the
object candidates (e.g., Fig. 1(b)). Each object candidate hi =
{hrgbi , hPi , h

Φ
i } is defined by a set of image pixels hrgbi , a

set of 3D points hPi , and a set of metadata attributes hΦi .
The output of this framework is a set of 3D object models

M . Each object Mk = {Mrgb
k ,MP

k ,M
h
k } is defined by a

set of 3D points MP
k with associated color Mrgb

k and the
set of object candidates Mh

k = {h1,k, . . . , hi,k, . . .} used to
create object Mk.

B. Constraints

Constraints encode generic information about an object
candidate hi or a relationship between candidates hi, hj .
There are two types of constraints: node constraints Θn

(which encode information about a single candidate) and
edge constraints Θe (which encode information about the
relationship between a pair of candidates). Table I shows
a list of the constraints we use in this work. We model
each constraint Θ as a Bernoulli distribution with probability
of success p. Node constraints Θn modify a single object
candidate hi, such that

Θn : hi 7→ {0, 1} P (Θn(hi) = 1) = p. (1)

Analogously, edge constraints Θe modify the edge between
a pair of object candidates hi, hj , such that

Θe : hi, hj 7→ {0, 1} P (Θe(hi, hj) = 1) = p. (2)

In a slight abuse of notation, we use the forms PΘn(h) ≡
P (Θn(h) = 1) and PΘe(hi, hj) ≡ P (Θe(hi, hj) = 1) in the
remainder of this paper.

III. FRAMEWORK OVERVIEW

We describe the general flowchart of our framework in
this section. In the following sections, we focus on the novel
elements of this paper: defining constraints (Section IV),
generating CSGs (Section IV-C), and the implementation of
constraints and CSGs in HerbDisc (Section VI). We provide
a list of the constraints implemented in HerbDisc in Table I.

1. Candidate Generation. We compute object candidates
hi from each data sample In ∈ I . We use the objectness-
based segmentation algorithm of [9] (Section VI-A).

2. CSG Generation. We create a graph of relationships
between object candidates using constraints Θ. We denote
the CSG built by Θ as GΘ = (EΘ, V Θ) (Section IV-C).

If Θ encodes a visual similarity, then GΘ is equivalent
to regular pairwise similarity graphs in Unsupervised Object
Discovery (e.g., [7]). Applying the constraints in Table I to
create GΘ produces multiple connected components GΘ

g .

Constraint Type Information Source Description Section

Θmotion node Relative camera motion A Acquire data samples only if there is motion (no repeated frames). VI-B
Θseq edge “data comes in sequences” S Split data stream in sequences based on camera motion and maximum length. VI-B
Θsupport node “objects have surfaces of support” E Reject candidates not supported by horizontal or vertical planes (tables or

walls).
VI-A

Θstatic edge “scene is static for a few seconds” E Measure 3D overlap between candidates. VI-C
Θsize node Object size E Compare candidate’s size with object prior. VI-D
Θshape node Object shape E Compare candidate’s shape with object prior. VI-D
Θapp edge Visual Similarity V Compare visual similarity between candidates using color histograms. VI-E
Θ3D edge Shape Similarity V Compare shape similarity between candidates using FPFH features. VI-E

TABLE I: Constraints used in HerbDisc. For each Θi, we provide: the type of information encoded in Θi; whether Θi is applied on a single object
candidate (node) or a relation between a pair of candidates (edge); the information source(s) encoded in Θi; uses any metadata or not; a short description
of the meaning of Θi; and the section in which Θi is described in detail. The possible sources of information are: E (metadata about the environment),
A (metadata about the robotic agent), S (metadata about the sensors), or V (visual information).

3. CSG Clustering. We compute groups of candidates for
each GΘ

g ∈ GΘ with the graph partitioning algorithm of
[10]. [10] is a greedy community discovery method based
on Betweenness Centrality, which is very efficient for sparse
graphs and works well for our problem. Each cluster Ci

contains a set of candidates hi, which are registered together
and merged to compute partial 3D models mi using [11].

4. Object CSG Generation. We compute a CSG Gm =
(Em, V m) over partial object models mi ∈m. The number
of nodes in this graph is orders of magnitude smaller than GΘ.
Only a subset of the constraints from Table I are available
(we use Θsize, Θshape, Θapp, and Θ3D), as many constraints
require local information not relevant for the partial objects.

5. Object Clustering. We compute clusters of partial 3D
models using the graph partitioning of [10] on Gm. Each
cluster Ck contains partial object models mi.

6. 3D model generation. We generate full object models
Mk from clusters of partial object models Ck. We globally
register the partial models with Global Alignment [11] to
produce full 3D models.

IV. INFORMATION AS CONSTRAINTS

A. Defining Constraints
Consider the pair of scenes illustrated in Fig. 2, in

which we encode as constraints the assumptions Θn
planar =

“objects are planar”, Θe
static = “scene is static”, and Θn

tables =
“objects lie on tables”. Encoding Θn

planar requires answering
the question “is candidate hi planar?”. If we can measure
whether an object is planar or not (e.g., by computing the
reconstruction error of a planar approximation of hi’s 3D
points), then we can encode the assumption as a constraint,
with the result shown in Fig. 2(2,2). Similarly, to encode
Θtables we must answer the question “is candidate hi on a ta-
ble?” for which we need to 1) detect a table, and 2) determine
if candidate hi is on it. If we can measure these two factors,
then the assumption can be encoded as a node constraint,
with the result shown in Fig. 2(2,3). Finally, the assumption
“the scene is static” implies to answer affirmatively that “do
candidates hi at time t and hj at time t+ 1 occupy the same
location in space?” If we can register the two scenes and hi
and hj occupy the same 3D location, then Θe

static would be
satisfied with p proportional to the overlap between hi and
hj . The result of Θe

static is shown in Fig. 2(1,3).
Some sources of metadata may also operate over both

nodes and edges. For example, object tracking can be encoded
as a union of an edge constraint Θe = “are candidates hi

at time t and hj at time t + 1 the same object?,” and
a node constraint Θn = “is candidate hi being tracked?”
To incorporate such constraints, we redefine Θ as a pair
Θ ≡ (Θn,Θe). Constraints that operate only on nodes or
edges should implement a default operator for nodes (Θn = 1)
or edges (Θe = 1) which satisfies the constraint with p = 1
for any input.

Pairwise similarity functions also induce constraints Θ. In
particular, a normalized similarity function s(hi, hj) ∈ [0, 1]
induces an edge constraint Θe with PΘe(hi, hj) = s(hi, hj).
In HerbDisc, we do not distinguish between visual similarity
and metadata: they are all encoded as constraints Θi. This
unification is very useful to combine multiple constraints
(Section IV-B) and build CSGs (Section IV-C).

B. The Logic of Constraints

A key consequence of our generic constraint formulation is
that we can seamlessly combine multiple sources of metadata
using logic statements. In order to take full advantage of
Boolean algebra, we define the logic operations of conjunc-
tion ∧, disjunction ∨ and negation ¬ over node and edge
constraints induced by metadata. Let Θn

i , Θn
j be indepen-

dent node constraints induced by metadata, and PΘ(h) the
probability of candidate h satisfying Θn. Then, the negation
operator ¬Θn

i is computed as

P¬Θn
i
(h) = 1− PΘn

i
(h), (3)

which represents the probability of h not satisfying Θn. The
conjunction operator Θn

i ∧Θn
j is then computed as

PΘn
i∧Θn

j
(h) = PΘn

i
(h)PΘn

j
(h). (4)

Finally, the disjunction operator Θn
i ∨Θn

j is computed as

PΘn
i∨Θn

j
(h) = 1− P¬Θn

i∧¬Θn
j
(h). (5)

We analogously define the conjunction ∧, disjunction ∨
and negation ¬ operators for edge constraints, by substituting
PΘn(·) for PΘe(·, ·) in Eq. (3), Eq. (4) and Eq. (5).

Logic operations over constraint pairs Θ = (Θn,Θe) oper-
ate on Θn and Θe independently, so we define negation ¬Θi =
(¬Θn

i ,¬Θe
i), conjunction Θi∧Θj = (Θn

i ∧Θn
j ,Θ

e
i ∧Θe

j), and
disjunction Θi ∨Θj = (Θn

i ∨Θn
j ,Θ

e
i ∨Θe

j).
Any logic operation can be derived from the negation,

conjunction, and disjunction operators. We can now define
arbitrarily complex constraint expressions based on logic
operations over primitive constraints. In Fig. 2(4,1), to search
for objects assuming that “the scene is static” AND that

Candidate Generation Fully unconstrained graph

“Objects lie on tables”

“Scene is static” (3D overlap)

“Objects are planar”

“Scene is static” AND
(“Objects lie on tables”

OR “Objects are planar”)

Fig. 2: Metadata induces constraints on pairwise graphs. The fully unconstrained graph is seldom computed in practice, as techniques such as inverted
indexes are used to preselect potential matches [12]. Our formulation generalizes such techniques, constraining a graph based on any source of metadata
(columns 2-3). Most importantly, our formulation facilitates the creation of complex constraint expressions combining multiple constraints (column 4).

“objects that lie on tables” OR “objects are planar”, we simply
define the constraint Θ = Θstatic ∧ (Θtables ∨Θplanar).

A generic Θ can be composed of multiple Θi using the
logic operators defined above,

Θ = Θ1 ◦Θ2 ◦ . . . ◦Θi ◦ . . . , (6)

where the composition operator ◦ denotes any logic operation
using Boolean algebra.

C. Constrained Similarity Graphs

CSGs are undirected graphs which encode information
from constraints into nodes, edges, node weights and edge
weights. Let GΘ = (EΘ, V Θ) be an undirected pairwise
graph. GΘ is a CSG of Θ if and only if: 1) Every node
hi ∈ V Θ satisfies Θn, 2) every edge ei,j ∈ EΘ satisfies Θe,
and 3) GΘ has node weights w(hi) = PΘn(hi), and edge
weights w(hi, hj) = PΘe(hi, hj). We generate GΘ for Θ
following Algorithm 1.

Algorithm 1 Building a Constrained Similarity Graph

1: V Θ = ∅
2: EΘ = ∅
3: for hi in h do . Add nodes that satisfy Θ
4: if PΘn (hi) > pmin then
5: V Θ ← V Θ

⋃
{hi}

6: w(hi)← PΘn (hi)

7: for hi in V Θ do . Add edges that satisfy Θ
8: for hj in h with j > i do
9: if PΘe (hi, hj) > pmin then

10: EΘ ← EΘ
⋃
{ei,j}

11: w(ei,j)← PΘe (hi, hj)

In Algorithm 1, pmin denotes the threshold probability for
nodes and edges (in normal conditions, pmin = 0.5). The CSG
construction and the entire framework are independent of the
particular choice of Θ. Θ can be any arbitrarily complex
constraint expression, ranging from visual similarity only to
multiple sources of metadata, as we implement in HerbDisc.

The CSG construction has necessarily a worst-case com-
plexity of O(n2), where n = |h|, since the CSG must be
able to build any graph, even complete graphs, which are
O(n2). Evaluating a constraint for a node or edge can also
be expensive (e.g., visual similarities).

In practice, we can speed up the CSG construction by
using conjunctive constraint expressions (as in Eq. (4)), and

positioning the most restrictive constraints first. We only need
to evaluate a constraint in the constraint expression if all
previous constraints are successful. Consider a constraint Θ0

that generates the CSG GΘ0 = (EΘ0 , V Θ0). We can compute
the CSG GΘ from GΘ0 as in Algorithm 2.

Algorithm 2 Building a CSG with conjunctive constraints

1: V Θ = V Θ0

2: EΘ = EΘ0

3: for hi in V Θ do
4: for Θk in Θ do . Erase nodes that do not satisfy Θk
5: if PΘn

k
(hi) < pmin then

6: V Θ ← V Θ − {hi}
7: break
8: else
9: w(hi)← w(hi)PΘn

k
(hi)

10: for hi in V Θ do
11: for Θk in Θ do . Erase edges that do not satisfy Θk
12: for hj in NΘ(hi) do
13: if PΘe

k
(hi, hj) < pmin then

14: EΘ ← EΘ − {ei,j}
15: break
16: else
17: w(ei,j)← w(ei,j)PΘe

k
(hi, hj)

The complexity of Algorithm 2 for a given Θ and GΘ0 is
O(|EΘ0 |). The size of GΘ0 determines the complexity of
building GΘ. Therefore, an appropriate choice of Θ0 can
greatly improve the performance of the overall algorithm.
Some of the natural constraints in service robotics are ex-
cellent for this purpose, such as spatiotemporal constraints.
The motion and sequencing constraints Θmotion ∧ Θseq (see
Section VI-B for details) split the data stream into subsets
of samples with limited motion and at most m samples per
subset. Using Θ0 = Θmotion ∧ Θseq yields a CSG GΘ0 with
|EΘ0 | = O(nm) ≈ O(n) edges, considering that m is fixed
and m � n in realistic situations (in the NSH Dataset,
m = 50 and n = 521234). Then, the CSG construction
given GΘ0 has a complexity of O(n) for the remaining con-
straints Θk ∈ Θ. Visual similarities are the most expensive
constraints, so it is crucial to perform this optimization to
only compute O(n) of them. See Table II for a quantitative
evaluation of the reduced complexity of this method.

The constraints Θ and the generic CSG construction of
Algorithm 1 are designed for both soft constraints (i.e. Θ
such that PΘ ∈ [0, 1]) and hard constraints (i.e. Θ such that

Fig. 3: The Kitchen Dataset (top row) and the NSH Dataset (bottom three
rows). Each row show images with ground truth annotations for some of the
environments we visited. Some scenes were so challenging (e.g., row 2, col
3-5) that the annotators could not separate the objects in the scene.

PΘ ∈ 0, 1). In HerbDisc, we use Algorithm 2 with a mix of
soft and hard constraints.

V. DATASETS

We present two datasets of real human environments in
which we evaluate HerbDisc: the Kitchen Dataset, and the
NSH Dataset (see Fig. 3). We recorded both datasets by driv-
ing our robot HERB around the environment and capturing
data with a Kinect RGBD camera at 640 × 480 resolution
and an effective framerate of approximately 22 fps (due to
throughput limitations).

We manually annotated both datasets to obtain ground
truth, with the following labeling procedure. Our goal is to
obtain the list of objects that HERB could potentially grasp.
Since it is infeasible to annotate every single data sample—
there are over half a million—we process each data stream
with a motion filter to eliminate redundant samples (described
in Section VI-B). We select 10 images for each scene (e.g.,
office, lab, kitchen), and label all objects in these images
with the LabelMe tool [13]. As an estimate of the objects
that HERB can grasp, we label any object that:

• is at least 10× 5 cm (e.g., a smartphone),
• is at most 60 cm long in its longest dimension (e.g., a

monitor),
• appears unoccluded in at least one data sample, and
• is movable, with free space around it to be grasped (e.g.,

a stack of books in a bookshelf is not labeled).

Fig. 3 shows annotated examples from the Kitchen (top
row) and NSH datasets (bottom 3 rows).

The Kitchen Dataset captures a 12-minute recording
of HERB in a kitchen environment, with relatively clean
scenarios and 40 ground truth objects.

The NSH Dataset is a stream of 6 hours and 20 minutes
of HERB exploring the NSH building of Carnegie Mellon
University, comprising 521234 data samples. We divided
the recording in four fragments (NSH-1 to NSH-4) lasting
between 1 h and 1 h 50 min each, one per building floor. For
this dataset, we visited over 200 real offices and laboratories
to capture the real conditions in which people work, with
scenes ranging from moderate to extreme clutter. We labeled
a total of 423 unique ground truth objects.

Time (min) 58.0 102.7 186.9 262.2 319.9 380.6

Θmotion ∧Θseq 686K 1.2M 2.5M 3.3M 4.0M 4.9M
Θmotion 29.1M 83.9M 263M 517M 803M 1.2B

Raw data 2.9B 10.4B 30.4B 59.9B 89.2B 126.0B

TABLE II: Effect of motion and sequencing in computational cost, for
the NSH Dataset. Number of edges to evaluate using 1) the motion and
sequencing constraints, 2) the motion constraint, and 3) the raw data stream.

VI. IMPLEMENTATION OF HERBDISC

In this section, we describe the novel components of Herb-
Disc, focusing on how to formulate similarities, assumptions,
and other metadata from Table I as constraints.

A. Constrained Candidate Generation
Candidate generators that rely on metadata are common

in the robotics literature. For example, algorithms that track
objects [5], that assume tabletop scenes [2], or that perform
scene differencing [6] usually compute better candidates than
generic objectness segmentation algorithms. In our frame-
work, we can include multiple candidate generators and use
them when their assumptions are met, and revert to more
generic candidate generators otherwise.

In HerbDisc, we combine the generic objectness segmen-
tation algorithm of [9] with the assumption that objects have
surfaces of support in floors, tables and walls. Θsupport is
defined as Θn

support(hi) = 1 with p = 1 if supported(hi, Ij).
The supported(·, ·) function searches for large planes in the
data sample Ij that generated candidate hi, and accepts hi if
it lies within some distance (50 cm) above the planes found.

B. Motion and Sequencing
In LROD, we receive a neverending data stream of in-

formation from the robot sensing. We assume that the data
stream is 1) an ordered sequence of data samples, and 2)
recorded at a frame rate high enough so that there is spatial
overlap between data samples.

We define Θmotion to sample the input data stream at a
dynamic framerate depending on HERB’s motion, and we
define Θseq to split the subsampled data stream into small
subsets that we term sequences. We enforce a maximum
sequence length m to limit the order |V Θseq | of any connected
component in the CSG.

In practice, Θmotion samples the data stream when there
is enough motion γmin between data samples. Given the
transformation Tk,k−1 between consecutive samples Ik and
Ik−1, and with M : T 7→ R a magnitude of the motion
T , we model the motion constraint Θmotion for hi ∈ Ik as
Θn

motion(hi) = 1 with p = 1 if M(Tk,k−1) > γmin.
The sequencing constraint Θseq is defined as Θe

seq(hi, hj) =
1 with p = 1 if seq(hi) = seq(hj). For data sample Ik, the
sequence identifier seq(Ik) is incremented if there is too much
motion (M(Tk,k−1) > γmax) between sample Ik and Ik−1, or
if we reach the maximum sequence length m.

We use M(T) = ‖T‖F as an estimate of the relative
motion T . γmin and γmax are calibrated so that we capture
m data samples in 20 seconds moving in a straight line at
HERB’s slowest and fastest speed.

Table II shows the impact of Θmotion ∧ Θseq. On the
NSH Dataset, the number of edges remaining in the CSG

� � � =E⇥
casc =

⇥motion ^⇥seq ⇥static ⇥app ⇥

� =E⇥
visual =

⇥3D

Fig. 4: CSG graphs for the edge constraints in HerbDisc, displayed as
adjacency matrices (where a black dot indicates an edge between candidates),
in the Kitchen Dataset. The overall graph EΘ (rightmost column) is the
Hadamard product of all adjacency matrices in a row. (top) CSGs using
conjunctive constraints, as implemented in HerbDisc. (bottom) CSGs for
visual similarity Θapp and Θ3D (in this case, EΘ is a regular pairwise
similarity graph). The CSG using metadata (top) is much more discriminative
than the CSG for visual similarity only.

is decreased from 126 billion to 4.9 million (6 orders of
magnitude) when using Θmotion ∧Θseq.

To implement this motion filter, we modify the Kinect
Fusion [14] 6DoF tracker available in PCL [15].

C. Spatial Overlap
We described Θstatic in Section IV-A. We model Θstatic as

a soft constraint that measures the amount of 3D overlap
soverlap
i,j = soverlap(hi, hj) between candidates hi, hj , so that

Θe
static = 1 with p = soverlap

i,j if soverlap
i,j > soverlap

min .
This constraint is designed to operate in unison with the

sequencing constraint Θseq. Θseq splits the data stream into
small subsets of samples close in time (sequences), and Θstatic
ensures that, within the same sequence, we only evaluate
groups of candidates in a similar position in space. We mea-
sure soverlap

i,j between 3D point clouds hPi , h
P
j by comparing

their voxel grids (using the relative transformations from
Kinect Fusion for registration).

D. Size/shape priors
We define a prior based on the sizes and shapes of known

objects that HERB can grasp. The soft constraint Θprior =
Θsize ∧Θshape is composed of size and shape components.

The function ssize
i = ssize(hi, hprior) estimates the likelihood

that the longest dimension of hi is sampled from a Gaussian
distribution centered at the size given by hprior. The measure
sshape
i = sshape(hi, hprior) estimates the similarity between hi

and hprior according to the PCA-based shape features of [16]
(linearity, planarity and scatterness). We then define Θsize and
Θshape analogously to previous sections, using the similarities
ssize
i and sshape

i respectively.

E. Visual and 3D shape similarity
For appearance features, we compute the color histogram

of each candidate in LAB color space, as in [17], and compare
a pair of candidates hi, hj with the χ2 distance between
normalized color histograms. For 3D shape, we use the FPFH
features of [18], which compute a histogram of the local
geometry around each 3D point. We compare the FPFH
features of a pair of candidates hi, hj by estimating the
average χ2 distance among the nearest neighbor 3D points
between hi, hj . Both similarity metrics sapp(·, ·) and s3D(·, ·)
are normalized so that s(·, ·) ∈ [0, 1]. We formulate these
similarities as the soft constraints Θapp and Θ3D analogously
to previous sections.

VII. EXPERIMENTS

In this section, we evaluate the impact of metadata in object
discovery. We first compare the performance of HerbDisc
with and without any metadata. We then evaluate the scal-
ability of metadata-augmented object discovery to very large
datasets, such as the NSH Dataset.

A. Baseline and training
The baseline for all our experiments is the full system

HerbDisc, with all constraints enabled. The default candidate
generator is the Objectness segmentation of [9] with Θsupport.

The constraint expression Θlocal in the CSG construction
step of HerbDisc is

Θlocal =Θmotion∧Θseq ∧Θsupport∧Θstatic∧
Θsize ∧Θshape∧Θapp ∧Θ3D.

(7)

In the Object CSG Clustering, we cluster the CSG built
with

Θglobal =Θsize∧Θshape∧Θapp∧Θ3D. (8)

In Θlocal, we compute the histograms in Θapp with 6 bins
per channel, and compute the FPFH features of Θ3D for the
centers of a 1 cm voxel grid. In Θglobal, we use 10 bins in Θapp,
and a 3 mm voxel grid for Θ3D. In our experience, of Θlocal
has significantly more impact in the overall performance
than Θglobal. We therefore focus our experiments on the local
step and modify only Θlocal, while we keep Θglobal constant
throughout the experiments.

We use the first 20% of the NSH-1 Dataset (not included
in the evaluation) to train the parameters and thresholds
in HerbDisc, by maximizing the average F1-measure. We
discretize each parameter in 5 settings in the range [0, 1]
and choose the best-performer configuration according to
a grid search. We do not modify any parameter in any
experiment after the initial training phase. All experiments
were performed on a computer with an Intel Core i7-920
CPU, 16GB of RAM, a nVidia GTX 580 GPU, and runninng
64-bit Ubuntu Linux 10.04.

B. Evaluation Procedure
We define three purity metrics to evaluate object discovery.

Candidate purity: We describe an object candidate hi as
pure if over 80% of the area in hi,k overlaps with a ground
truth object. Group purity: Following [19], we measure the
group purity of model M as the largest percentage of pure
object candidates in Mh

k = {h1,k, . . . , hi,k} that belong to
the same object. 3D purity: We define an object’s 3D point
cloud MP

k as pure if the 3D points in MP
k cover over 80% of

the area visible in the data samples for that particular object.
We distinguish between three categories of objects: correct,

valid, and invalid (see Table III for the evaluation criteria).
We define Precision and Recall as in [7]. In [7], Precision

is the ratio of correct+valid object models to the total number
of discovered models, and Recall is the ratio of unique correct
objects to the total number of ground truth objects.

We use the cluster size to estimate the quality of an object,
and use it as the variable to threshold to compute the P-R
curves. To summarize the P-R curves in a single number, we
use the average F1-measure.

H
er

bD
isc

N
o

M
et

ad
at

a

pr
ec

isi
on

recall

pr
ec

isi
on

pr
ec

isi
on

recall recall

Fig. 5: (a) PR curve comparing Visual similarity vs. HerbDisc for the Kitchen Dataset. (b) Computation time of Visual Similarity vs. HerbDisc for the
Kitchen Dataset. HerbDisc is 190× faster. (c) PR curve of the ablative analysis of HerbDisc for the NSH-1 Dataset, disabling one constraint at a time. (d)
Results for global NSH Dataset and per floor (NSH-1 to NSH-4).

C. HerbDisc vs. Visual Similarity
Fig. 5(a) shows the performance of using a CSG with visual

similarity only (Θvisual = Θmotion ∧Θ3D ∧Θapp), compared to
the full HerbDisc, in the Kitchen Dataset. We include the
motion filter Θmotion in the evaluation of Θvisual so that both
systems have the same initial pool of object candidates.

HerbDisc is the clear winner in the Kitchen Dataset, with a
maximum recall of 65% at 62% precision, compared to 24%
maximum recall at 77% precision. For the same recall of 24%,
HerbDisc achieves 90% precision (13% higher than Θvisual
alone). The additional constraints provided by the metadata
(and especially Θseq) allow HerbDisc to process the Kitchen
Dataset 190 times faster than if using visual similarity alone,
as shown in Fig. 5(b). The main reason for this speedup is the
limited number of pairwise visual similarities to evaluate in
the CSG compared to the regular pairwise similarity graph
from Θvisual. Namely, HerbDisc evaluates 16271 pairwise
visual similarities, compared to 1.6 millions in Θvisual.

To illustrate the impact of different constraints on the
CSG, we show in Fig. 4 the graphs (displayed as adjacency
matrices) generated by each edge constraint for the Kitchen
Dataset. Fig. 4(top) displays the CSG after each constraint
as evaluated in HerbDisc, cascading the multiple conjunctive
constraints for efficiency. The metadata-based constraints
Θseq, Θstatic are significantly more discriminative than the
visual features Θ3D and Θapp. Fig. 4(bottom) shows the result
of using visual similarity constraints with no metadata. Using
visual similarity alone, the product of all adjacency matrices
is significantly denser (i.e., noisier), which accounts for the
increased computation time shown in Fig. 5(b).

D. HerbDisc in the NSH Dataset
In this section, we evaluate the performance of HerbDisc on

the NSH Dataset. We could not evaluate the visual similarity
baseline Θvisual on this dataset, because the testing machine
had barely made any progress after a week of processing.

Cand. purity Group purity 3D purity In ground truth

correct 80% 100% 80% X
valid 80% 100% 80% 7
invalid (not correct and not valid)

TABLE III: Criteria for correct, valid, and invalid objects. We rely on an
“oracle” evaluation [19], a human annotator who answers the question “Is
Mk an object?” when faced with object model Mk . Examples of valid
objects include those too big or too small to be grasped, immovable objects
(e.g., attached to a wall), or parts of complex objects (e.g., a bicycle’s seat).

HerbDisc processes the NSH Dataset in 18 min 30 s. This
running time does not include data acquisition time (and
motion filtering and candidate generation, which we execute
in parallel with the data acquisition). Fig. 5(c) shows the PR
curves for an ablative analysis of HerbDisc on NSH-1, in
which we disable one constraint at a time and evaluate the
resulting performance. Metadata constraints such as Θstatic
show the largest impact on HerbDisc’s performance, over
visual similarity ones.

Evaluating HerbDisc in the entire NSH Dataset Fig. 5(d),
we discover a total of 464 object models, where 121 unique
objects are correct (28.6% recall) and 85 are valid (44.4%
precision). We see a clear difference in performance as we
move from regular office environments (NSH-1) to labora-
tories and machine shops. In office environments, HerbDisc
displays a maximum recall of 43.9% at 52% precision, and
78% precision at 20% recall. In contrast, we only achieve a
maximum recall of 15% at 41% precision in the laboratories
of NSH-3 (e.g., Fig. 3(2, 3-5)), which include multiple
metallic objects, specular reflections, and extreme clutter. We
show examples of correct, valid and invalid objects in Fig. 6.

In an open task such as object discovery, it is nearly
impossible to obtain comprehensive ground truth. HerbDisc
discovers objects that the annotators considered outside the
guidelines for ground truth in Section V, such as chairs,
trashcans, or wall-mounted paper holders (see Fig. 6). We
believe that the only way to disambiguate between valid and
invalid objects is to interact with them during the discovery
process, which is a future direction for us. Our framework
can be used to leverage interaction information if available,
as well as any other metadata, when formulated as constraints.

VIII. CONCLUSIONS

We have introduced Lifelong Robotic Object Discovery, the
problem of discovering new objects in the environment during
an entire robot’s lifetime. As a first step towards LROD, we
have processed the raw video stream of an entire workday of
a robotic agent.

Our key insight to making LROD feasible is to incorporate
metadata. We have described a graph-based framework to
integrate any source of metadata and similarity functions as
constraints, and to combine multiple constraints using logic
expressions. With constraints, we provide a common formu-
lation to encode any source of information, both visual data
and metadata, as metadata-augmented graphs—Constrained
Similarity Graphs (CSGs)—for object discovery.

Laptop (Correct)

Plant (Correct)

Book (Correct)

Basketball ball (Correct)

Watering Can (Correct)

Apple Charger (Correct)

Monitor (Correct)

Printer (Correct)

Keyboard (Correct)

Mouse (Correct)

Phone (Correct)

Speaker (Correct)

Pineapple (Correct)

Bag (Correct)

Paper Bag (Correct)

Person'(Valid)'

Cable'(Valid)'

Chair'(Valid)'

Bike'Seat'(Valid)'

Folders'(Valid)'

Paper'Holder'(Valid)'

Trash'Bin'(Valid)'

Cup'(Invalid)'

Speakers'(Invalid)'

Plas=c'Bag'(Invalid)'

Monitor'and'Keyboard'(Invalid)'

Mul=ple'Segments'(Invalid)'

Par=al'Part'(Invalid)'

Folder'(Invalid)'

Mixture'of'Fragments'(Invalid)'

Fig. 6: Examples of Correct (left), Valid (right-top) and Invalid (right-bottom) objects. For each object, we display its object label (text box); its 3D model
(left/right); and 10 randomly selected images from the object candidates hi (center), with the 3D point clouds overlaid in red or blue over each image.

We have introduced HerbDisc, an optimized implementa-
tion of our framework which leverages metadata to efficiently
discover objects in large datasets. To evaluate the performance
of HerbDisc, we have gathered a dataset of 6 h 20 min of
raw RGBD video of office and lab environments containing
423 ground truth objects. HerbDisc processed this dataset in
under 19 minutes and discovered over a hundred novel objects
such as monitors, keyboards, plants, and food items, with
a maximum recall of 28.6% at 44.4% precision, and 68%
precision at 15% recall (and, for regular office environments,
maximum recall of 43.9% at 52% precision, and 78% preci-
sion at 20% recall). More importantly, we showed that our
framework can opportunistically leverage different sources
of information adaptively, as conditions change, which is a
necessary feature to make LROD feasible in the long term.

See the supplementary material for a demo of HerbDisc
discovering objects in a kitchen environment, which we can
process in only a few seconds.

REFERENCES

[1] Z.-c. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and
M. Beetz, “General 3D Modelling of Novel Objects from a Single
View,” in IROS, 2010, pp. 3700–3705.

[2] M. Bjorkman and D. Kragic, “Active 3D scene segmentation and
detection of unknown objects,” in ICRA. IEEE, 2010, pp. 3114–3120.

[3] G. Kootstra and D. Kragic, “Fast and Bottom-Up Object Detection,
Segmentation, and Evaluation using Gestalt Principles,” in ICRA, 2011.

[4] A. K. Mishra and Y. Aloimonos, “Visual Segmentation of Simple
Objects for Robots,” in Robotics: Science and Systems, 2011.

[5] T. Morwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze,
“BLORT - The Blocks World Robotic Vision Toolbox,” in ICRA
Workshops, 2010.

[6] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward Object Discovery
and Modeling via 3-D Scene Comparison,” in ICRA. IEEE, 2011.

[7] H. Kang, M. Hebert, and T. Kanade, “Discovering Object Instances
from Scenes of Daily Living,” in ICCV, 2011.

[8] B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman,
“Using Multiple Segmentations to Discover Objects and their Extent
in Image Collections,” in CVPR. IEEE, 2006.

[9] A. Collet, S. S. Srinivasa, and M. Hebert, “Structure Discovery in
Multi-modal Data : a Region-based Approach,” in ICRA, 2011.

[10] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” Journal
of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[11] D. Borrmann, J. Elseberg, K. Lingermann, A. Nuchter, and
J. Hertzberg, “The Efficient Extension of Globally Consistent Scan
Matching to 6 DOF,” in 3DPVT, 2008.

[12] J. Philbin, J. Sivic, and A. Zisserman, “Geometric Latent Dirichlet
Allocation on a Matching Graph for Large-scale Image Datasets,”
IJCV, vol. 95, no. 2, pp. 138–153, Jun. 2010.

[13] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“LabelMe: A Database and Web-Based Tool for Image Annotation,”
IJCV, vol. 77, no. 1-3, pp. 157–173, Oct. 2008.

[14] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, S. Hodges,
P. Kohli, J. Shotton, A. Davison, A. Fitzgibbon, and D. Freeman,
“KinectFusion: Real-time 3D Reconstruction and Interaction Using a
Moving Depth Camera,” in UIST, 2011.

[15] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in ICRA, 2011.

[16] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural
terrain classification using three-dimensional ladar data for ground
robot mobility,” Journal of Field Robotics, vol. 23, no. 10, pp.
839–861, Oct. 2006.

[17] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert, “Recovering
Occlusion Boundaries from a Single Image,” in ICCV, Oct. 2007.

[18] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms
(FPFH) for 3D registration,” ICRA, pp. 3212–3217, May 2009.

[19] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine,
“Unsupervised Object Discovery: A Comparison,” IJCV, vol. 88,
no. 2, pp. 284–302, Jul. 2009.

