
Sparse Tangential Network (SPARTAN):
Motion Planning for Micro Aerial Vehicles

Hugh Cover, Sanjiban Choudhury, Sebastian Scherer and Sanjiv Singh

Abstract— Micro aerial vehicles operating outdoors must be

able to maneuver through both dense vegetation and across

empty fields. Existing approaches do not exploit the nature of

such an environment. We have designed an algorithm which

plans rapidly through free space and is efficiently guided

around obstacles. In this paper we present SPARTAN (Sparse

Tangential Network) as an approach to create a sparsely

connected graph across a tangential surface around obstacles.

We find that SPARTAN can navigate a vehicle autonomously

through an outdoor environment producing plans 172 times

faster than the state of the art (RRT*). As a result SPARTAN

can reliably deliver safe plans, with low latency, using the

limited computational resources of a lightweight aerial vehicle.

I. INTRODUCTION

The demand for UAVs that can carry out missions in out-
door remote environments is ever increasing. These vehicles,
with little or no prior information of the area and relying on
limited on-board sensing capabilities, will have to carry out
high level mission plans.

Typically the robot (Fig 1) is given a goal point, and a high
level mission planner generates a sequence of waypoints for
the vehicle to reach. Such environments could be confined,
such as under bridges or between trees, or sparse like empty
fields. Flying autonomously in such unstructured outdoors
environment is challenging because it implies consistently
delivering safe, feasible paths in real time. Such environ-
ments tend to have clusters of objects separated by vast
empty space. Standard motion planning approaches which
spend as much effort on free space as in obstacle dense
regions do not exploit this situation. There is a need for a
light weight planner which computes only when it needs to
and sits idle otherwise.

The main contribution of this paper is to present a planner
which leverages the intermittent sparsity of its environment
and creates plans 172 times faster than the state of the art.
We present SPARTAN, (Sparse Tangential Network) which
constructs a graph wrapped in a tangential surface around
obstacles. The large speedups have been achieved by creating
vertices during the obstacle cost update process as well
as by creating careful graph construction rules to remove
redundancies. Using limited onboard resources, SPARTAN
has flown autonomously around trees, under bridges &
powerlines and over changing terrain with missions up to
200 meters in length.

H. Cover, S. Choudhury, S. Scherer and S. Singh are with The
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
U.S.A., {hcover,sanjiban,basti,ssingh}@cmu.edu

Fig. 1. Micro Aerial Vehicle navigating autonomously outdoors

We begin by summarising in Section II the progress made
in motion planning for UAVs so far and describe the specific
planning problem in Section III. In Section IV we present
our approach and the key components. In Section V we state
the properties of the algorithm and finally in Section VI we
show results for comparison with a state of the art planner.

II. RELATED WORK

The survey by Kendoul[1] classifies most practical plan-
ning approaches for UAVs in outdoor environments, while
Goerzen et al.[2] make a more broad classification. SPAR-
TAN falls in the category of generating a roadmap for
free space using a visibility graph like representation and
searching over this roadmap.

The most popular approach to planning in 3D spaces is
by performing a Heuristic Graph Search as summarized by
Ferguson et al.[3]. This search can be performed over a
generic roadmap or over regularly connected grids. Even
though the latter is more popular because the graph is easier
to construct, it becomes very computationally heavy for fine
resolutions. Multi-resolution methods have effectively over-
come this problem, for example, unmanned helicopters have
been flown by Tsenkov et al.[4] and Whalley et al.[5] using
a quad-tree grid representation and performing A* search.
However, such methods still incur discretization errors and
produce unnatural oblique paths.

Probabilistic methods allow solutions of arbitrary com-
plexity and resolution and probabilistically converge on a
solution. By sampling uniformly in free space, probabilistic
roadmaps (Kavrakil et al.[6]) can be generated for graph
search, or rapidly exploring random trees (LaValle[7]) for



faster solutions. However the convergence of these methods
are slow, the plans found are not optimal and no performance
bounds can be claimed about them. More recently, the
introduction of the RRT* by Karaman et al.[8] improves the
performance by bringing asymptotic optimality to sampling
based planners.

Visibility graphs and their reduced forms have been anal-
ysed in detail by LaValle[9]. Despite the computational
complexity, it has been used for navigation in an outdoor
scenario by Wooden et al.[10]. In UAV planning, visibility
graphs have been used by Hoffmann et al.[11] to generate a
2D initial guess to navigate within a polygonal environment.
It also has been used to plan in a limited horizon by Kuwata
et al.[12]. However, these methods projected real data into
a polygonal environment and planned in a geometric space,
thus making the method sensitive to sensor noise. Similar
in nature to visibility methods, the tactic of staying close
to obstacle and moving tangentially to them is present in
reactive planning techniques (Hrabar [13]). This algorithm
checks collisions within a cylindrical safety volume, and
finds an escape point. The 3D Dodger approach by Scherer
et al.[14] also results in trajectories lying on a tangential like
safety distance from obstacles.

III. PROBLEM

We wish to compute command plans for an UAV as the
shortest path to goal while avoiding obstacles. Since the paths
are to be tracked by a controller, we impose a limit on the
angle between two consecutive segments of the path. Thus
the planning problem is to find a solution trajectory σ(t) =
(x(t),u(t)) for

minimize : J =
´ t f

0 �x(t)�+[max(0,dmax −d(x(t)))]2dt
constraints : x(0) = x0,x(t f ) = x f

g(x(t),u(t), t f )≤ 0
(1)

where dmax is the maximum distance upto which an
obstacle cost is applicable, x0 the initial conditions, x f the
goal point and g denotes the consecutive segment angle
constraint. The specific details of the problem are:

1) Environment: Unstructured outdoors with varying clut-
ter. Obstacle density may increase in a forest region or
be sparse over empty fields. No prior is provided.

2) Sensor Range: Limited sensor range implying that
obstacle information is updated on the fly.

3) Planning horizon: Limited to 3-4 times the sensor
range. A local scrolling map upto this horizon is
maintained and updated as the planner only navigates
through a local area.

4) Planning time: It should have a frequency around 10
Hz.

An effective approach to solve such problems is to plan
quickly through free space and focus efforts on critical
regions near obstacles.

IV. SPARTAN
SPARTAN (Sparse Tangential Network) is a planning

approach that uses a sparsely connected graph to quickly find

Fig. 2. A simple 2D example; obstacles are shown in bright red; distance
to the closest obstacle up to the nominal clearance distance is shown as
a color scale from light red to green; vertices are shown as solid circles;
vertices on a ridge are shown as empty circles; edges expanded during graph
search are shown as blue lines.

good paths through cluttered environments. The vertices of
the graph exist only nearby obstacles because that is where
avoidance maneuvers must be carried out. Only edges that
are useful to guide the graph search around nearby obstacles
or to cut quickly across free space are included. SPARTAN
works by defining a planning surface, or in 2 dimensions a
line, around obstacles with some nominal clearance. As a
vehicle approaches the obstacle a short and safe path can
be made by taking the tangent to the circle, then following
the circle until another safe tangent can be followed to leave
the circle and cut quickly through free space to the next
interesting region. Tangential connections can also be made
between different parts of the surface around a more complex
obstacle, e.g. across the entrance of a cul-de-sac. The center
of narrow corridors between obstacles, known as a ridges,
are also included in the planning surface which allows for
paths that get closer to obstacles than the nominal clearance
distance when required, e.g. to pass through a doorway.

By cutting through free space using only tangential jumps
SPARTAN can provide real-time solutions in unstructured
environments with both cluttered and clear regions. A simple
2D example showing the SPARTAN approach can be seen in
Fig. 2, only edges that were expanded during graph search
are shown. The example shows that only a small number of
possible path branches have to be searched.

A. Planning Surface
The SPARTAN approach can be thought of as a reduced

visibility graph generalized for unstructured 3D environ-
ments. Obstacles are represented by a set of discrete points.
We define a surface made from the visible exterior of the
union of constant radius spheres drawn around each obstacle
location. Moving across the surface is equivalent to moving
tangentially to the current closest obstacle. Lines that are
tangential to the surface at both ends are used as connections
between one region of the surface and another or between



TABLE I
VARIABLE AND FUNCTION DEFINITIONS

distn Distance of the closest occupied cell to cell n
obstn Reference to the closest occupied cell to cell n
inQn Flag indicating cell n is in the open queue
vdistn Distance to the closest vertex to cell n
INSERT(O,n,k) Insert cell n into the priority queue O using the key k
ISVALID(n) Check if obstn points to an obstacle that currently exists
ADDVERTEX(n,Vtan) Adds cell n to the list of vertices Vtan and sets

vdist of surrounding cells to values consistent with n
being a vertex. This is done by propagating a wavefront
similar to the distance transform’s lower wavefront

REMOVEVERTEX(n,Vtan) Removes cell n from the list of vertices Vtan
and sets vdist of surrounding cells to higher values
consistent with n not being a vertex. This is done by
propagating a wavefront similar to the raise wavefront

Algorithm 1 D,Vtan = LOWER(s,D,Vtan)
Input: s = Cell being expanded, D = Distance transform, Vtan = Vertex list
Output: D = Distance transform, Vtan = Vertex list

1 if dists = ρ and vdists = vres
2 ADDVERTEX(s,Vtan)
3 foreach n ∈ Ad j(s)
4 d ←� n−obsts �2

5 if distn > d
6 distn ← d
7 obstn ← obsts
8 if �inQn
9 inQn ← true
10 INSERT(O,n,dmax +d)
11 if vdistn = 0
12 REMOVEVERTEX(n,Vtan)
13 else if distn < ρ and � obsts −obstn �> 2dmin
14 if dists � distn and vdists = vres
15 ADDVERTEX(s,Vtan)
16 if distn � dists and vdistn = vres
17 ADDVERTEX(n,Vtan)
18 inQs ← f alse

two surfaces around different objects separated by empty
space. The idea behind SPARTAN is to only move either
across the surface or along these tangential connections. In
the simplest case the surface radius ρ can be chosen as the
minimum distance allowed between a path and obstacles,
i.e. the C-space, however it can also be chosen as a nominal
clearance distance. In addition if two obstacles have inter-
secting planning surfaces, i.e. they are closer together than
2ρ , but do not have intersecting C-spaces, we also include
the ridge between them in the planning surface. The ridge
is defined as all the locations with equal distance to both
obstacles, i.e the voronoi surface.

B. Distance Transform and Vertex Sampling
The aim of vertex sampling is to get a set of uniformly

spaced vertices over the planning surface. The vertices
can be iteratively updated whenever obstacle information is
changed.

Obstacles are represented using an occupancy grid and
a distance transform, a grid that stores the distance to the
closest occupied cell at each location, is also maintained. The
distance transform allows for the calculation of an obstacle
cost and also provides the information required to sample
the planning surface. Fig. 2 shows a representation of the

Algorithm 2 D,Vtan = RAISE(s,D,Vtan)
Input: s = Cell being expanded, D = Distance transform, Vtan = Vertex list
Output: D = Distance transform, Vtan = Vertex list

1 foreach n ∈ Ad j(s)
2 if �inQn
3 if ISVALID(n)
4 inQn ← true
5 INSERT(O,n,dmax +distn)
6 if distn �= dmax
7 obstn ←∅
8 inQn ← true
9 INSERT(O,n,distn)
10 distn ← dmax
11 if vdistn = 0
12 REMOVEVERTEX(n,Vtan)
13 inQs ← f alse

distance transform in 2 dimensions using a color scale. The
incremental distance transform algorithm we use is presented
in detail in [15]. It uses expanding wavefronts to efficiently
update only distances nearby newly occupied or cleared
cells. The wavefront is terminated if it reaches a maximum
expansion distance of dmax.

Sampling requires that we can test if a location is on
the planning surface. This is done during the update of the
distance transform with vertices found as the wavefronts are
propagated from newly occupied or cleared cells. This has
two major benefits; the first is that the limited expansion of
the transform means that only the region nearby obstacles has
to be checked. The second is that as new obstacle information
causes occupied cells to be added or removed vertices are
only added or removed in the region around the change, this
makes the vertex sampling process iterative.

Algorithms 1 and 2 show the key functions used during
the distance transform and vertex sampling update step, Tab.
I provides the definition of the variables and functions that
are used. When a cell s in the distance transform becomes
newly occupied it has dists set to zero, obsts set to itself and
is added to the open queue to start a wavefront propagation.
When a cell s becomes newly empty it has dists set to dmax,
obsts set to null and is added to the queue. The distance
transform’s wavefronts are propagated by taking a cell from
the queue and calling either the LOWER or RAISE functions.
The LOWER function is called if the cell taken from the
queue has a valid distance, i.e. dist < dmax, it propagates
out new valid distances. The RAISE function is called if the
cell being expanded has dist = dmax, it propagates cleared
cells by raising their distance to dmax. As cells have their
distances changed invalid vertices must be removed and new
valid ones added. The LOWER and RAISE functions also
check for invalid vertices to be removed and valid locations
for new vertices to be added.

Lines 1 and 2 of the LOWER function check if the cell
being expanded is a good vertex. Lines 3 to 10 update
distn and obstn of the surrounding cells and add them to
queue only if they have been modified and are not already
in the queue. Lines 11 and 12 remove a vertex if it was
just given a new dist. This removes existing vertices when
a new obstacle is added nearby causing them to no longer



Algorithm 3 ei = EXPAND(i)
Input: i = Index of vertex to be expanded
Output: ei = List of vertices connected to vertex i

1 for j = 1 . . .n
2 if x j = xi
3 continue

3 l ←
��x j − xi

��
4 vi j ← (x j − xi)/l
5 if DOT(normi,vi j)> ξ or DOT(norm j,vi j)> ξ
6 continue

7 if �WILLCOLLIDE(xi,x j)
8 ei ← j

be on the planning surface. Lines 13 to 17 test if a cell is a
ridge point, the approach used is similar to the method for
finding the voronoi diagram presented in [16]. When line
5 evaluates as false it indicates that the wavefront that the
LOWER function is expanding has either expanded up to
dmax or has hit a cell that has a different closer occupied
cell. The second case will always occur at the ridge between
the two obstacles and the first case is excluded by Line 13
which prevents the addition of ridge points with distn > ρ .
In addition the distance between the two obstacles must be
greater than twice the minimum clearance distance, this is to
prevent the addition of ridge points when it is not possible
to follow the ridge all the way through. Lines 14 and 16
determine which of the cells is actually on the ridge, this
is necessary because it is unknown which of the wavefronts
expanded from the two obstacles reached the ridge first.

Lines 1 and 2 of RAISE check if any of the surrounding
cells are not already on the queue. They would be on the
queue if they were either already cleared by a different raise
wavefront or given a valid distance by a lower wavefront. In
either case they can be ignored which effectively terminates
the raise wavefront in regions where it has hit any other
wavefront. Lines 3 to 5 check if a neighboring cell is valid
and adds it to the queue to later propagate a lower wavefront.
This allows only the minimum number of cells to be cleared
and new valid distances propagated from nearby valid cells.
Lines 6 to 10 clear neighboring cells. Lines 11 and 12 check
if the cell being cleared is a vertex and remove it if it is.

C. Graph Connectivity

The edge connection rules reflect the underlying approach
of moving only over the planning surface. A normal vector at
each vertex pointing towards it’s closest obstacle is obtained
from the distance transform during sampling. Edges, defined
here as straight lines, are required to be perpendicular to the
normal vector of the vertices at both ends. Some slack is
allowed to account for the discrete sampling of the surface
that the vertices represent. This first condition eliminates the
majority of potential edges, the remaining are checked to
ensure they are collision free. Alg. 3 shows the function used
to determine the set of vertices ei that share an edge with
the ith vertex. xi indicates the cartesian position of the ith
vertex and ξ is the slack allowed on the cosine of the angle
between an edge and the surface normal.

D. Graph Search and Construction
The optimal path through the underlying graph is found

using the A* search algorithm. The start and goal locations
are added to the list of vertices with their normal vectors
set to zeroes. To prevent extra work edges are only found as
needed by A*, the EXPAND function shown in Alg. 3 can
be used to find the neighbors of a node being expanded by
A*.

V. PROPERTIES

A. Completeness
SPARTAN is resolution complete if a feasible path through

vertices on the planning surface exists and the graph search
method is complete (proven by Rina et al. [17]). The
assumptions are:

1) Let σ = {x(t),u(t)} be a path such that it is composed
of straight line segments joining its vertices V .

2) V ∈
�

vroot,vgoal,Vtan
�

where vroot and vgoal are the root
and goal points

3) Vtan =
�

xi | d(xi) = ρ,
��xi − x j

��> vres
�

where d is the
distance from the nearest obstacle, ρ is the nominal
distance of SPARTAN, vres is the vertex separation of
SPARTAN

If ∃σ , SPARTAN is resolution complete, where the resolu-
tion is vres.

B. Optimality
The graph search method applied to SPARTAN is optimal

(proven by Rina et al. [17]), thus SPARTAN will find the
optimal path belonging to the set described in Section V-A.

A reduced visibility graph has been proven to be optimal
for minimum length problems by Latombe [18]. SPARTAN,
being the discrete analogue of the reduced visibility graph,
is thus optimal for a minimal length cost with obstacle con-
straints. If an obstacle cost exists in free space, SPARTAN is
no longer optimal but has suboptimal bounds. These bounds
depend on the discretization error and the cost penalty for
choosing to be restrained to a discrete tangential surface. The
upper bound to sub-optimality is the projection error η of
the optimal path σ∗ to the tangential surface Vtan

η =
J(σtan)− J(σ∗)

J(σ∗)
σtan = argminσ ,σ∈Vtan �σ −σ∗�

(2)

where J(σ) is the cost function.

C. Complexity
The worst case complexity of the entire search in SPAR-

TAN is O(N2) where N is the number of vertices. The upper
bound of N for a grid of length lgrid is

N ≤
0.7408∗ l3

grid
4
3 πρ3

∗ p f (ρ,vres) (3)

where p f is the packing fraction of the maximum number
of points at distance vres from each other that can be fitted on



a sphere of radius ρ . The value 0.7408 is the Kepler problem
[19].

This is far greater than the true running time because
the edges considered are tangents to the planning surface.
Each vertex in practice considers � N connections. Other
speedups including the heuristic design and prioritization of
ray tracing also boosts speed, reducing the average com-
plexity. However, SPARTAN is not optimized for solving
problems over distances much larger than ρ .

VI. EXPERIMENTS

A number of experiments were carried out to test the
SPARTAN planning approach in real world scenarios. All
the experiments were performed in an unstructured outdoor
environment that contained trees, dense vegetation, power
lines, bridges and non-flat terrain. The experiments rely on
a small aerial vehicle with attached lidar scanner and state
estimation system. The vehicle can be seen in Fig. 1 and
more details on the perception and state-estimation systems
can be found in [15]. The cost function used was the same
as that presented in section III.

A. Offline
The offline experiments were run using a dataset collected

by flying the vehicle manually through the environment. The
SPARTAN planner was compared to a generic RRT* ap-
proach in two scenarios. In the first the data was played back
in real time with the environment revealed up to the sensor
range as the vehicle moves through it. The two planners were
required to plan to a goal point with an average distance of
roughly 30 meters from the vehicle and achieve a reaction
time of 0.1 second (10 Hz). Different goal points were
used as the vehicle moved through the environment which
were chosen manually with the aim of creating interesting
planning problems. Cases with trivial solutions were ignored.
Table II shows that SPARTAN always found a solution in
the allowed time while RRT* has a lower success rate. The
RRT* is always given the maximum allowed 0.1 seconds
per problem, SPARTAN uses less time on average and sits
idle for the remaining allowed time. Despite this SPARTAN’s
paths have a lower average cost and standard deviation.

In the second scenario the two planners are required to
plan through a section of fully observed environment over a
distance of about 40 meters. SPARTAN was run until com-
pletion while RRT* was allowed to run until convergence.
Figure 4 shows a plot of RRT*’s cost over time with the
cost of the SPARTAN path (4429) also shown. The RRT*
eventually converges to a slightly lower cost path (4302),
however it takes a long time (94.8 seconds) to find a path
that is better than the SPARTAN solution which was found in
only 0.55 seconds. This factor of 172 is indicative of the long
time a sampling based planner takes to converge to the fact
that the optimal answer lies on the tangential surface (which
is inbuilt within SPARTAN). The small difference in cost
between the converged RRT* and SPARTAN solutions can
be attributed primarily to SPARTAN’s discretization error.
Figure 3 shows the static test case environment and resulting

TABLE II
COMPARISON FOR 116 PLANNING PROBLEMS

Success Average Cost Average Time (ms)
SPARTAN 100% 2878(±950) 71(±87)

RRT* 76.72% 3472(±1240) 102(±3)

Fig. 3. Occupancy grid representation of the problem environment (colored
by height) along with the SPARTAN solution (blue), the RRT* solution at
the time SPARTAN terminates (yellow) and the converged RRT* solution
at 400 seconds (red)

paths. The solution found by RRT* at the time SPARTAN
terminated is shown to be a low quality path with SPARTAN
finding one of higher quality. These two paths are also
typical of the quality of path observed during the replanning
experiment.

B. Online Closed-Loop Flights
The SPARTAN planner was also run online on the vehicle

flying in a fully autonomous mode. The planner was run on-
board using the vehicle’s 1.8 GHz core 2 Duo flight computer
and ran alongside the vehicle’s perception (including lidar
and stereo camera processing) and state-estimation systems.
The planner ran at 2Hz and fed paths to a flight control
system which followed the paths. A number of missions
have been flown with length’s of up to 200 meters and
which involve dense vegetation, power lines, low bridges
and terrain of changing elevation. The goal location was
manually set and remained constant for the length of each
mission. Figure 5 shows logs of vehicle position during

0 50 100 150 200 250 300 350 400
4000

4500

5000

5500

6000

6500

Time (s)

C
o
s
t

 

 
RRT*
SPARTAN

Fig. 4. Plot of cost with time. SPARTAN has a cost of 4429 after 0.55s.
RRT* at the same time has a cost of 5397. After 94.8s RRT* has the same
cost as SPARTAN. After 400s, RRT* has a cost of 4302



Fig. 5. A selection of autonomous flights by the MAV using SPARTAN;
nominal path in yellow, actual path in red. a) flying around a single tree b)
flying under a low bridge c) following a narrow tree lined road.

a selection of missions. The first shows a simple tree
avoidance, the second shows the ability to fly under a low
bridge and the third shows a longer mission through dense
vegetation up a hill which resulted in the vehicle following
a road before eventually finding a way around the line of
trees to it’s goal. In addition to the cost function used
above the vehicle’s altitude above ground was constrained
for autonomous flights.

VII. CONCLUSION

We have presented a planning approach, SPARTAN, that
can find paths in real-time through unstructured outdoor
environments with no prior knowledge and obstacles of
varying clutter that are regularly updated by a sensor with
limited range. SPARTAN can create plans 172 times faster
than the state of the art and using limited onboard resources,
has flown autonomously around trees, avoided powerlines,
under bridges and over changing terrain with missions
over 200 meters in length. This is made possible using a
graph wrapped in a tangential surface around obstacles and
leveraging the sparsity achieved by only considering edges
tangential to the surface.

As future work the path update required when changes
are made to obstacles by the sensor could be made fully
incremental. While the vertices are currently updated itera-
tively the graph must be searched from beginning because
it is unknown which edges have been affected. In addition
some slack is currently allowed when checking if an edge is

tangential, this can cause multiple similar edges to be added
and create significant extra work. A better method could be
to check neighboring vertices for the existence of a more
tangential edge and only add edges that are locally the most
tangential.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Lyle Chamberlain,
and Andrew Chambers for their help with experimentation.
The work described in this paper is funded by the Office of
Naval Research under grant number N00014-10-1-0715.

REFERENCES

[1] F. Kendoul, “Survey of advances in guidance, navigation, and control
of unmanned rotorcraft systems,” Journal of Field Robotics, 2012.

[2] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous uav guidance,” Journal
of Intelligent & Robotic Systems, vol. 57, no. 1, pp. 65–100, 2010.

[3] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-
based path planning,” in Proceedings of the international workshop
on planning under uncertainty for autonomous systems, international
conference on automated planning and scheduling (ICAPS), 2005.

[4] P. Tsenkov, J. Howlett, M. Whalley, G. Schulein, M. Takahashi,
M. Rhinehart, and B. Mettler, “A system for 3d autonomous rotorcraft
navigation in urban environments,” in AIAA Guidance, Navigation and
Control Conference and Exhibit, Honolulu, HI, 2008.

[5] M. Whalley, P. Tsenkov, M. Takahashi, G. Schulein, and G. Goerzen,
“Field-testing of a helicopter uav obstacle field navigation and landing
system,” in 65th Annual Forum of the American Helicopter Society,
Grapevine, TX, 2009.

[6] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566–580, 1996.

[7] S. LaValle, “Rapidly-exploring random trees a new tool for path
planning,” 1998.

[8] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proc. Robotics: Science and Systems,
2010.

[9] S. LaValle, Planning algorithms. Cambridge Univ Pr, 2006.
[10] D. Wooden and M. Egerstedt, “Oriented visibility graphs: Low-

complexity planning in real-time environments,” in Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on. IEEE, 2006, pp. 2354–2359.

[11] G. Hoffmann, S. Waslander, and C. Tomlin, “Quadrotor helicopter tra-
jectory tracking control,” in AIAA Guidance, Navigation and Control
Conference and Exhibit, Honolulu, Hawaii, 2008.

[12] Y. Kuwata and J. How, “Three dimensional receding horizon control
for uavs,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, vol. 3, 2004, pp. 2100–2113.

[13] S. Hrabar, “Reactive obstacle avoidance for rotorcraft uavs,” in In-
telligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE, 2011, pp. 4967–4974.

[14] S. Scherer, S. Singh, L. J. Chamberlain, and M. Elgersma, “Flying
fast and low among obstacles: Methodology and experiments,” The
International Journal of Robotics Research, vol. 27, no. 5, pp. 549–
574, May 2008.

[15] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske,
and S. Singh, “River mapping from a flying robot: state estimation,
river detection, and obstacle mapping,” Autonomous Robots, pp. 1–26,
2012.

[16] B. Lau, C. Sprunk, and W. Burgard, “Improved updating of euclidean
distance maps and voronoi diagrams,” in IEEE Intl. Conf. on Intelligent
Robots and Systems (IROS), Taipei, Taiwan, 2010.

[17] D. Rina and J. Pearl, “Generalized best-first search strategies and the
optimality of a*,” Journal of the ACM, vol. 32, no. 3, pp. 505–536,
1985.

[18] J.-C. Latombe, Robot motion planning. Springer, 1991.
[19] T. Hales, “A proof of the kepler conjecture,” The Annals of Mathe-

matics, vol. 162, no. 3, pp. 1065–1185, 2005.


