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Abstract— Over the past years, there has been a tremendous
progress in the area of robot navigation. Most of the systems
developed thus far, however, are restricted to indoor scenarigs
non-urban outdoor environments, or road usage with cars.
Urban areas introduce numerous challenges to autonomous
mobile robots as they are highly complex and in addition to
that dynamic. In this paper, we present a navigation system for
pedestrian-like autonomous navigation with mobile robots in
city environments. We describe different components including
a SLAM system for dealing which huge maps of city centers,
a planning approach for inferring feasible paths taking also
into account the traversability and type of terrain, and an
approach for accurate localization in dynamic environments.
The navigation system has been implemented and tested in
several large-scale field tests in which the robot Obelix managed
to autonomously navigate from our University Campus over a
3.3km long route to the city center of Freiburg.

I. INTRODUCTION

Navigation is a central capability of mobile robots and _ o
substantial progress has been made in the area of autonomps’: Example trajectory traveled by our robot navigatingah urban
. s ... ernvironments including a pedestrian zone with a large numbpeaple.
navigation over the past years. The majority of navigation

systems developed thus far, however, focuses on navigatigper 3km. The trajectory taken by the robot and two pictures
in indoor environments, through rough outdoor terrain, ofzxen during its run are depicted in Figure 1.

based on road usage. Only few systems have been designeqlhus, the aim of this paper is to not only describe the

for robot ngvigation in populated urban environments_sucraevam components but also to highlight the capabiltfies
as pedestrian zones, for example, the autonomous city €4 pe achieved with a system like that. We try to motivate
plorer [1]..Robots that are able _to successfully navigate iBur design decisions, critical aspects, as well as linaitei
urban environments and pedestrian zones have to cope Wi the current setup. The robot Obelix and its navigation

a series of challenges including complex three-dimeni;iongxystem will be demonstrated live during ICRA 2013.
settings and highly dynamic scenes paired with unreliable

GPS information. Il. RELATED WORK
In this paper, we describe a navigation system that enablesThe problem of autonomous navigation in populated ar-
mobile robots to autonomously navigate through city-cente

. S as has been studied intensively in the past. One of the
scenes. Our system builds upon and extends existing tec& y P

nology for autonomous navigation. In particular, it contaa oneering systems were the robots RHINO [2] and Min-
gy 9 -inp ’ erva [3] which operated as interactive mobile tour-guides i

SLAM system for learning accurate maps of urban city area?rowded museums. An extension of this tour-guide concept

a dedicated map data structure for dealing with Iarge-scatg interactive multi-robot systems was the RoboX system

maps, a variant of Monte-Carlo localization that utilizbst developed by Siegwaret al. [4] for the Expo’02 Swiss
data structure, and a dedicated approach for terrain aﬂalyﬁlational Exhibition. Grosse'é al. [9] installed a robot as

that deals with vegetation, dynamic objects, and negative shopping assistant that provided wayfinding assistance

obstacles. We furthermore describe how these individu% home improvement stores. Although these systems were
components are integrated. Additionally, we will presémd t able to robustly navigate in heavily crowded environments,

resuI.t of a large-scale experiment durlng Wh.'Ch the rob%ey were restricted to two-dimensional representatidns o
Obelix traveled autonomously from our university campus t e environment and assumed that the robots operated in a
the city center of Freiburg during a busy day during Augus

. : ) lativel nfin lanar area.
2012. During that trial, the robot had to master a distance o? at ey co ed pla \ar area
Relatively few robotic systems have been developed for

This work has been supported by the EC under FP7-231888-F4RO autonomous ”aVi_gatiOV? in (_:ity centers. The ancept closest
All authors are with the Dept. of Comp. Science, UniversityFoéiburg.  to the one described in this paper probably is the one of



the Munich City Explorer developed by Bauet al. [1].
In contrast to our system, which operates completely au-
tonomously and does not require human intervention, the
city exploration system relies on interaction with humams t
get the direction where to move next. The city explorer only
builds local maps and does not autonomously plan its path
from its position to the overall goal location. A furtheratgd
approach has been developed in the context of the URUS
project [6], which considered urban navigation but focused
more on networking and collaborative actions as well as th@g. 2. One laser is mounted downwards (left) to sense theaiif front
integration with surveillance cameras and portable device 2 ¢85 022 ST IR E g S S et
Also, the problem of autonomous navigation with robotic portion of its beams towards the ground (right). The daten fleose two
cars has been studied intensively. For example, there Hasgers is used to find obstacles that are not visible in thizdvtal beams.
been the DARPA Grand Challenge during which autonomo
vehicles showed the ability to navigate successfully ov

u . . . .
éfue robot drives upon. Fig. 2 visualizes the setup of the
large distances through desert areas [7], [8], [9]. Durin on-horizontal laser beams. A Hokuyo UTM-30LX mounted

the DARPA urban challenge, several car systems have be R tlc?p t(')f thehhead OL th; trobcht |sxussed flc:\;lum'applng an(;Jj
presented that are able to autonomously navigate through (%gcal_lza |31n, VLVJT?vrleﬁSt. € ta”a 0 3? th ens d IS |?tegrz;1)te
namic city street networks with complex car traffic scergrio align the orizontally wi € ground surface by

and under consideration of road traffic navigation rules},[locon?rOIIing a senvo accordingly. The robot is furthermore
[11]. Recently, commercial self-driving cars [12] have bee equipped with a Trimple GPS Pathfinder Pro to provide prior
' information about its position during mapping tasks. While

developed and legalized to perform autonomous navigatid . .
e robot also has a stereo cameras onboard, its data is not

with cars. In contrast to these methods, which focused 4 for the d bed iation task d the i
car navigation, the system described in this paper has bedpcd for the described navigation tasks an € Images are

developed to enable mobile robots to perform pedestrian-li only used for the sake of visualization in this paper.
autonomous navigation in urban environments with many
types of dynamic objects like pedestrians, cyclists, os.pet
A long-term experiment about the robustness of an in- In order to autonomously navigate in an environment, our
door navigation system was recently presented by Mardefystem requires to have a map of the area. This might seem
Eppsteinet al. [13]. Here, the accurate and efficient obstacldike a huge drawback, but mapping an environment can be
detection operating on the data obtained by tilting a lasélone in a considerably small amount of time. For example,
range finder has been realized. In contrast to this system, dtitook us around 3 hours to map a 7.4km long trajectory
approach has a component for tracking moving obstacles &y controlling the robot with a joystick. Furthermore, this
explicitly deal with the dynamic objects in highly populdte only has to be done once, as the main structures of an
environments and also includes a terrain analysis componefiban area do not change quickly. Small modifications to

IV. SYSTEM OVERVIEW

that is able to deal with a larger variety of terrain. the environment, like billboards or shelfs placed in froft o
shops, can be handled by our system in a robust manner.
[1l. THE ROBOT OBELIX USED FOR THEEVALUATION In the following, we describe how we obtain the map

The robot used to carry out the field experiments is a cu¢f the environment by means of a SLAM algorithm as
tom made platform developed within the EC-funded projedell as the most important components of the autonomous
EUROPA [14], which is an acronym for the EUROpeannavigation system, such as the algorithms for localization
Pedestrian Assistant. The robot has a differential driw thpath planning, and obstacle detection, which enable owtrob
allows it to move with a maximum velocity of 1 m/s. Usingto operate in large scale city centers. The entire navigatio
flexibly mounted caster wheels in the front and the baclgystem described in this section runs on one standard quad
the robot is able to climb steps up to a maximum height ofore i7 laptop operating at 2.3 GHz.
approximately 3cm. Whereas this is sufficient to negotiate a )
lowered pedestrian sidewalk, it has not been designed to §o MaPPIng
up and down normal curbs so that the robot needs to avoidWe apply a graph-based SLAM formulation to esti-
such larger steps. The robot’s footprint is 0.2m0.75m mate the maximum-likelihood (ML) configuration. Let=
and it is around 1.7 m tall. (x1, ... ,x,)" be a vector where each element describes

The main sensor input is provided by laser range finderthe pose of the robot at a certain time,; and ¥;; are
Two SICK LMS 151 are mounted horizontally in the frontrespectively the mean and the covariance matrix of an
and in the back of the robot. The horizontal field of view ofobservation describing the motion of the robot between the
the front laser is restricted to 180 The remaining beams time indicesi andj, whereas we assume Gaussian noise. Let
are reflected by a mirror to observe the ground surface i ;(x) be an error function which computes the difference
front of the robot. Additionally, another scanner is tilféd°  between the observation; and the expected value given the
downwards to detect obstacles and to identify the terraicurrent state of nodé and j. Additionally, lete;(x) be an



Instead of computing one large map, we use the information

stored in the graph to render maps locally and close to the

robot’s position. A similar approach was recently desatibe

by Konoligeet al. [19].

o ¢ g L We generate the local map as follows. We apply Dijkstra’s
---- Trajectory — ~ & = 5 algorithm to compute the distance between the nodes in the

Fig. 3. Influence of outliers in the set of prior measuremenést: LOur graph. Thl.s allows us to only_c0n3|der Obse.rvatlons thaeha.lv

method rejects prior measurements having a large error. Midtie map P€€N obtained by the robot in the local neighborhood of its

as it is estimated by taking into account all prior measurem&ight: Our  current location. We compute the set of nodes to be used to
method achieves a good estimate for the map by rejecting pribichvare 1y jild the local map as
likely to be outliers.

. . . . Vma,p = {Xi €x | diijtTa(Xia Xbase) < 6} ) (2)
error function which relates the state of nod® its prior z;

having the covariance matrix;. whereV,,,, is the set of observations that will be used for
Assuming the measurements are independent, we obt&Rt&ining the local mapx,,. the closest node to the robot's
the ML configuration of the robot’s trajectory as current position, dijkstra(x;, Xs.se) the distance between

the two nodes according to Dijkstra’s algorithm, ahdhe
x* = argmin Z llei; (%)=, + Z llei(x)]ls,, (1) maximal allowed distance for a node to be used in the map
*  ijec icP rendering process. As hard-disk space is rather cheapsand it
def. o usage does not affect the performance of other processes, we

wherelle[s = e”X~"e computes the Mahalanobis distancestore each local map on the disk after the first access to it
of its argument, and’ and P are a set of constraints and by the system.

priors, respectively. We employ our g2o toolkit [15] for The |ocalization and path-planning algorithms described

solving Eq. (1), which iteratively linearizes and solvee th iy the following sections all operate on these local maps.

linear approximation until a convergence criterion is fteit  The map is expressed in the local framesof,.. and we
The laser-based front-end generating the set of CORurrently use a local map of 40m 40 m.

straints C is an extension of the approach proposed by o

Olson [16]. It applies a correlative scan-matcher to esemaC- Localization

the motion of the robot between successive time indices. To estimate the pos& of the robot given a map, we
Furthermore, it obtains loop closures by matching the eirremaintain a probability density(x: | zi.+, up.t—1) of the
scan against all scans which are within the three-sigmaruncéocationx; of the robot at time given all observations; .,
tainty ellipsoid. It filters false-positives by spectralistering. and all control inputaig.; ;.

The GPS sensor provides the set of priBrsAs GPS signals ~ Our implementation employs a sample-based approach
may be corrupted by multi-path effects, we apply an outliewhich is commonly known asMonte Carlo localization
rejection method to remove those measurements. Instead(MCL) [20]. MCL is a variant of particle filtering [21] where
directly solving Eq. (1), we consider a robust cost functioreach particle corresponds to a possible robot pose and has
— namely the Pseudo Huber cost function [17] — for than assigned weight!”. In the prediction stepwe draw for
prior measurements. After optimization, we remove 2% oéach sample a new particle according to the prediction model
the prior edges having the largest residual. We repeat thp$x; | u;—1,x:—1). Based on the sensor modelz; | x;)
process five times. Thus, we keep approximately 90 % of treach particle within theorrection stepgets assigned a new
original prior information. Using this approach, some goodveight. To focus the finite number of particles in the regions
GPS measurements might be rejected. However, we found high likelihood, we need to re-sample the particles. A
in our practical experiments that the effect of outliershe t particle is drawn with a probability proportional to its \gét.

prior measurements may be severe (see Fig. 3). Including th®wever, re-sampling may drop good particles. To this end,
prior information has several advantages. First, it impsov the decision when to re-sample is based on the number
the accuracy of the obtained maps [18]. Second, if the robof effective particles [22]. Our current implementatioresis
extends its map, coordinates are easy to transform betwek@00 particles.

different maps, because the maps share a common globalA crucial question in the context of localization is the

coordinate frame. design of the observation model that calculates the likelh
p(z | x) of a sensor measuremengiven the robot is located
B. Map Data Structure at the positionx. We employ the so-called endpoint model or

Obtaining a 2D map given the graph-based SLAM solutiofikelihood fields [23]. Letz}, be thek™ range measurement of
and the laser data is typically done in a straight-forware re-projected into the map given the robot paséssuming
manner, for example, by computing an occupancy gridhat the beams are independent and the noise is Gaussian,
However, storing one monolithic occupancy grid for a largethe endpoint model evaluates the likelihop(: | x) as
scale environment may lead to a large memory footprint. 12 — |2
For example, a 2 by 2km area at a resolution of 0.1 m and p(z | x) Hexp (‘2‘> , 3
4 bytes per cell requires around 1.5GB of main memory. i 7



0.6 | Vegetation o | with our platform. As can be seen from the image, the two
*  Concrete . .
w . e classes can be separated by a non-linear function. We choose
0.5 |9 vie oo

Remission

dne P ‘] to fit a function to the lower boundary of the vegetation
04 | | measurements which allows us to identify measurements
w w w w ! w i which are likely to be vegetation with a high efficiency. The
1 2 3 4 5 6 7 resulting classification accuracy is slightly worse conegar
Range [m] to the original approach but faster and, as can be seen in

Fig. 5, still sufficient for identifying regions covered by
vegetation that should be avoided by the robot.

2) Tracking Dynamic Obstaclesto detect moving obsta-
Whered; is the point in the map Wh|Ch is Closest Zg As CIeS in the V|C|n|ty Of the I’ObOt, ||ke pedestl’ians or bl(IS'tﬂ,
described above and in contrast to most existing locatinati We €employ a blob tracker based on the 2D range scanner
approacheS, our system does not emp|0y a Sing'e gnd mggta We first accumulate the 2D laser I’eadings ina 2D gr|d
to estimate the pose of the robot. Given our graph-basé@ap for a short time window (about 100 ms in our current
structure, we need to determine a vertex,. whose map implementation). In addition to that, we keep a history of
should be taken into account for evaluatipfz | x). We these maps for a larger amount of time (about 15s). To find
determine the base node,... as the pose-graph vertex the dynamic elements in the map we compare the current
that minimizes the distance toand furthermore guaranteesmap with the oldest in the history and mark the obstacles that
that the current location of the robot was observed in th@nly appear in the newer map as dynamic. Then, we filter
map. This visibility constraint is important to maximize Out those obstacles that appear to be dynamic but that were
the overlap between the map and the current observatidtcluded in the older map and are therefore probably false
Without this constraint, the closest vertex might be owsidPositives. In the next step we cluster the dynamic obstacles

Fig. 4. Range and remission data collected by the robot oingeeither
a concrete surface or vegetation.

a building while the robot is actually inside of it. into blobs using a region growing approach. Then, we find
- . corresponding blobs in the preceding map using a nearest
D. Traversability Analysis neighbor approach (rejecting neighbors above a predefined

The correct identification of obstacles is a critical comdistance). Based on the mean positions of the corresponding
ponent for autonomous navigation with a robot. Given oublobs we estimate velocities and bounding boxes that are
robotic platform, we need to identify obstacles having aligned to the movement direction.
height just above 3cm. Such obstacles are commonly de-While this method is relatively simple (and occasion-
scribed as positive obstacles, as they stick out of the groumlly creates false positives and sometimes wrongly merges
surface the robot travels upon. In contrast to that, negativnultiple moving objects into one), it proved to be highly
obstacles are dips above the maximum traversable heigéffective for the city navigation task. It can be calculated
of 3cm and such obstacles should also be avoided by thehighly efficient manner and provides a sufficient movement
robot. In the following, we describe the module which detectprediction for avoidance purposes, as can be seen in Fig. 5.
positive and negative obstacles while at the same time allow 3) Detection of 3D ObstaclesUnfortunately, not all
the robot to drive over manhole covers and grids which migtdbstacles that might block the robot’s path are visible in
be falsely classified as negative obstacles. Furthermdriée w the horizontal laser scans. For this reason, we implemented
navigating in urban areas the robot may encounter othar module that analyzes the scan lines captured by the
undesirable surfaces, such as lawn. Here, considering ordgpwnwards facing laser and the mirrored laser beams in
the range data is not sufficient, as the surface appearsftont of the robot (see Section Ill). These lasers provide 3D
be smooth and drivable. Since our platform cannot safeipformation about the environment when the robot is moving.
traverse grass areas, where it might easily get stuck due toln a first step, we perform a filtering on the raw scans to
the small caster wheels, we also have to identify such aregst rid of some false measurements. This especially targets
to allow the robot to avoid them and thus to reduce the risét spurious points typically returned at the borders of ciisje
of getting stuck while trying to reach a desired location. in the form of interpolated point positions between the fore

1) Vegetation Detectiontn our implementation, we detect ground and the background. These points might create false
flat vegetation, such as grass, which cannot be reliabbbstacles. To detect them, we check for sudden changes in
identified using only range measurements, by considerirdgpth which are noticeable as very small viewing angles from
the remission values returned by the laser scanner aloig wiine point in the 2D scan to its immediate neighbors. Those
the range [24]. We exploit the fact that living plants show dorder areas are erased from the scans before performing the
different characteristic with respect to the reflectedristy obstacle detection procedure.
than the concrete surface found on streets. The main part of the obstacle detection process is done

In contrast to Wurnet al. [24], we detect vegetation with by analyzing only single scan lines, instead of the point
a fixed downward looking laser instead of a tilting laser.sThicloud which is accumulated during driving. To decide if
results in an easier classification problem, as the range ofpaints in these scan lines measure flat ground or an obstacle
beam hitting the presumably flat ground surface correlatéBe robot cannot traverse, we analyze how straight the scan
with the incidence angle. Fig. 4 visualizes the data obthindines are and if there are significant discontinuities irre¢he
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Fig. 6. Top: Traversable structures that might be detectedegstive
obstacles by a naive method, because some laser beams can gghthro
them. Bottom: Example case for the obstacle detection modulele\ite
small canals on the robot’s right side are classified as negalistacles, the
gutters are identified as traversable even though theraseeineasurements

Fig. 5. Visualization of the different kinds of detected wlutes (top going through the holes.

image). Blue points mark obstacles that are visible in thezbotal 2D
laser scanners (areas and b). Red points mark 3D obstacles that are . .
visible in the downwards facing laser beams, but not in the i beams hole. Obstacles close to such holes are ignored, if they are

(TrRair:)I?/ alzegc)- Gre_e?‘ pr?ints mark thekdztecteddvzgetatbnlg{)ass aﬁrea below a certain height (10 cm). This approach proved to pro-
B The romaiming mall yeliow tots visualist the ac’éﬁ?nn;'l‘;tgdfgouda vide the desired reliability for different settings in whithe
from the laser measurements. The scene depicts the robotsapthiimed — Naive approach would have reported non-traversable wegati
trajectory in an environment with a lawn on the right, a buitdiwith a  opstacles (see Fig. 6, bottom image, for an example).
tt;/é%-i%epi)t.stalrcase on the left (see bottom image) and fouplpenoving For every positive obstacle detected by the approach
above, we check if this obstacle also has a corresponding
since a flat ground would lead to straight scan lines. Tebstacle in its vicinity in the 2D scans from the horizontal
be robust to noise, we use polynomial approximations fdasers. If not, the corresponding 3D position is reported as
small segments of the scan lines and analyze their incling.3D obstacle. If yes, it is considered to belong to the 2D
Every point that lies in a segment which has an inclin@bstacle and only stored for a short amount of time. The
above a maximum value (29 and a height difference above reason for this is that our sensor setup does typically not
a maximum allowed step height (3cm) is reported as allow us to reobserve a 3D obstacle in regular intervalgesin
potential obstacle. it is just seen once while driving by. Therefore, we have to

keep the 3D obstacles in the map for an indefinite amount

This heuristic proved to be very effective and has th%f time. On the other hand, obstacles observed in the 2D

advantage of being very efficient for single 2D scans, W'thouscanners can be reobserved and therefore do not have to be

the need of integration over a longer period of time. It als%ept for a long time. This procedure prevents most dynamic
does not require information about position changes of th ’

robot, which would be a source of considerable noise. I&njects (those that are also visible in 2D) from trapping

addition to that. there are no strond reauirements recardir e robot because it does not notice their disappearance. An
Lo g req %@ example regarding the different obstacle types can be seen
the external calibration parameters of the lasers.

in Fig. 5.

Unfortunately, there are rare cases where this procedure4) Vibration Based Ground EvaluationWhile the ap-
fails. The main source of failures are false positives oproach described above allows the robot to identify objects
manhole covers or gutters in the ground. Example images ctrat need to be avoided, the ground surface itself needs to be
be seen in Fig. 6 (top). Since some laser beams go throutgtken into account while driving autonomously. Cobble ston
the structure and some not, they appear to be negatipavement, which can typically be found in the centers of old
obstacles. We implemented a heuristic to detect those cagasropean cities leads to a substantial vibration and shakin
by identifying areas with small holes. For this purpose, wéhe platform. Hence, we consider the measurements provided
extended the method described above and build a heidghy the IMU to control the speed of the platform based
map from the accumulated scan points while driving. Foon the current vibration. If the vibration exceeds a certain
every scan point, we check if it lies substantially below thdéimit, the maximum allowed velocity of the platform is
estimated height in both directions. This indicates a smafjradually decreased. As the accuracy of the laser sensors is



not sufficient to classify the smoothness of the surface, the
robot has no means to identify whether the surface allows
driving fast again without inducing vibrations. Hence, we
greedily increase the maximum velocity again after a short
delay and repeat the entire process.

E. Planner

Our planner considers different levels of abstraction t6ig. 7. Left: Partial view of the pose-graph with its consits used for
compute a feasible path for the robot towards a goal locatiof®imaing the poses. Right: The same view of the topologyhggaperated
. . . ){the planner shows that this graph typically features aeleconnectivity.

The architecture consists of three levels. On the highes

level, only the topology of the environment is consideredyigrarchical planner framework to determine another path t
i.e., the graph connecting local maps. The intermediatel levi,q goal location.

employ_s Dijkst_ra’s algorithm_on the local maps to calculate Planning a path from the current location of the robot
way-points which serve as input for the low-level plannefoyards a desired goal location works as follows. First, we
developed by Ruflet ql. [25]. This low-level planner actually eeq to identify the nodes or maps7hwhich belong to the
computes the velocity commands sent to the robot. Noigrrent position of the robot and the goal. To this end, we
that by using this hierarchy, we loose the optimality Ofefer to the reachability information of the maps. We select
the computed paths. However, as reported by Konotige the maps with the shortest path from the center of the map to
al. [19], the resulting paths are only approximately 10%pne ropot and the goal, respectively. Given the robot node an
longer while the time neeQed to obtain them can actually,q goal node, the high level planner carries out ars@arch
be several orders of magnitude shorter. on 7. Since the cost for traversing an edge corresponds to the
Given the pose estimates of the SLAM module, oufea] cost of the robot to traverse the edge, this searchgesvi
planner constructs a topology represented by a graph. 3 fast approximation of an*Aon the complete grid map but
This graph is constructed as follows: Each nodeof the s orders of magnitude faster. The result is a list of wayapoi
graph is labeled with its absolute coordinates in the worldgwards the goal. However, following this list closely may
Furthermore, each node comes with its local traversabilitgad to sub-optimal paths. Hence, we perform the Dijkstra
map describing the drivable environment in the neighbathoog|gorithm in the local map starting from the current locatio
of x; which serves as the background information for thef the robot and select as intermediate goal for the lowHeve
planner. Additionally, each cell in the map encodes the coglanner the farthest way-point that is still reachable. eNot
of driving from x; to the cell. This can be pre-computed effi-that the local map containing the current position of theotob

ciently by a single execution of Dijkstra’s algorithm stagt  js qugmented online with the static obstacles found by the
from x;. We refer to this as the reachability information ofgpstacle detection.

the map.

Two nodes are connected by an edge if there is a path from V. EVALUATION
one node to the other given the information stored in their In this section, we describe a set of experiments in which
local maps. The edge is labeled with the cost for traversinge evaluated the system described in this paper. The map
the path which is determined by planning on the local mapsised to carry out the experiments was obtained by driving
If such a path cannot be found, we assign a cost of infinitthe robot along a 7,405m long trajectory. The map covers
to this edge. Otherwise, we assign to the edge the casie area between the Technical Faculty of the University of
returned by the intermediate level planner which is typycal Freiburg and the city center of Freiburg. Using this map, we
proportional to the length of the path. Yet, in contrast ta@arried out a series of experiments. Among several smaller
the straight-line distance, the cost better reflects thalloctests, we performed six extensive navigation experiments
characteristics of the environment. By this procedurecivhi during which we let the robot navigate from our campus
is carried out once as a pre-processing step, the plannler wi the city center and back. In these experiments the robot
consider the real costs for the robot to traverse the edgeveled an overall distance of around 20km and for three
instead of only considering the Euclidean distance. Nadé thtimes required manual intervention. In addition to a local-
the set of edges contained in the topology grdpim general ization failure discussed below, the robot once got stuck in
differs from the set of constraints generated by the SLAM front of a little bump and one further time was manually
module. The topology graph exhibits a denser connectivitytopped by us because of an obstacle that we believed not
as can be seen in Fig. 7. being perceivable by the robot.

While driving autonomously, the robot may encounter Note that the final experiment was announced widely to
unforeseen obstacles, e.g., a passage might be blockeddiye the public and the press the opportunity to see whether
a construction site or parked cars. Our planner handles sustate-of-the-art robotics navigation technology can léad
situations by identifying the edges in the topology whicta mobile robot that can navigate autonomously through
are not traversable in the current situation. Those edges urban environment. The event itself attracted jourtslis
are temporarily marked with infinite costs which allows thdrom both TV and newspapers and lead to a nationwide
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Fig. 9. Background information for the localization failudeiring an
autonomous run to Freiburg downtown. The 2D distance map isrstom
the left. As can be seen, there are only few localizationufest around

0 10 20 30 40 50 60 70 80 90 (mostly stems of trees) and nearly all laser observations mismiite
provided model. The picture on the right shows that the robadlinost
completely surrounded by people.

Time [minute]
Fig. 8. This plot shows the fraction of valid beams returnedh®s/ range
scanner and the fraction of beams that can be explained by theofithe  (Jistance while receiving mostly spurious measurement$ lea
environment. The robot entered a crowded area in the citycaiter around . .. . .
80 minutes. In this period, the localization algorithm caryoconsider to an error in the position estimate of around 2m. This caused
approximately 50 % of the valid readings for localization. problems in negotiating a sidewalk after crossing the stiee
made the robot stop and required us to re-localize the robot.
and international coverage in top-media. The multimedia In other instances, sharing the same characteristics, for
attachment documents parts of this experimental run. Moeample, around minute 37 and around minute 52 the robot
material can be found on the web only drives substantially lower distances 100 and 50 meters
without meaningful sensations. In both situations, theesys
is able to overcome the problem because it receives relevant
Whenever a robot navigates within an urban environmenihformation early enough again.
the measurements obtained by the sensors of the robotwe also analyzed a similar trajectory of the robot carried
are affected by the people surrounding the robot. As theut during night time. At night, typically a way smaller
localization algorithm is one of the core components of ounumber of people is around and less occlusions happen to
system, we analyzed the occlusions in the range data causkd measurements. Hence, the offset between the number of
by people partially blocking the view of the robot. valid beams and the number of beams matching the map is
Fig. 8 depicts the fraction of valid range readings, i.e.small all the time. In this experiment, the robot succe$sful
readings smaller than the maximum range of the laseeached its goal location without any problems and along a
scanner, and the number of beams that match to the msiightly different path of 3.5km length. A visual inspectio
for one of the large experiments mentioned above. Heref the localization result revealed that the position of the
we regard a range reading as matching to the map, if thebot was correctly estimated at all times.
distance between the measurement and the closest point in
. . . . VI. DISCUSSION
the map is below 0.2m. The plot depicts several interesting
aspects. A small fraction of valid beams indicates that the As mentioned above, the navigation system described in
robot is navigating within open regions where only a smafihis paper has been implemented for and on the robot Obelix
amount of structure is available to the robot for localizingharacterized in Section IlI. It is well-known that the dgsi
itself. Furthermore, the difference between the number &f @ platform typically has a substantial influence on the
valid beams and the number of beams that match to the magorithms needed for accomplishing the desired task.rGive
indicates that the view of the robot was partially blockeok. F the navigation task Obelix had to carry out, his structure
example, after 80 minutes the robot navigates through avegyzfinitely also influenced the design of certain software
crowded area. This leads to a large fraction of measuremegmponents. For example, its almost circular footprint esak
that cannot be explained by considering the map. the planning of paths easier, as only a two-dimensional path
In this experiment, the autonomous run was interruptegeeds to be computed (see Fig. 1). Additionally, the specific
twice. In the first incident, the robot's wireless emergencynounting of the range scanners, that resulted in the fact
stop button was pressed unintentionally, thereby being-a hthat three-dimensional structures could only be sensedhwhe
man mistake. In the second case, a localization error aedurrthe robot moves, has an influence on collision avoidance
after around 78 minutes. As can be seen in Fig. 8 betweéfutines. We are still convinced that these platform-djeci
minutes 70 and 78 the robot traveled 200m in an area wif#sign choices are not critical and that the mixture of
a very small amount of features while being surrounded b§omponents we realized is relevant for accomplishing this
many people, as depicted in Fig. 9. This mixture of very fev¢hallenging navigation task and is sufficiently generic é b
relevant features in the map (shown on the left hand side f@sily transferable to other robotic platforms, such astiob

Fig. 9) and the fact that the robot was driving for an extemsivWwheelchairs or transportation vehicles in cities.
The experimental evaluation additionally indicated saler

Lhttp://europa.informatik.uni-freiburg.de/videdswntownDemo.html desiderata for sensor devices and perception processes. Th

A. Localization



(2]

(3]

(4]

Fig. 10. Dynamic 3D obstacles which pose substantial chgdierior the
navigation system.

[5]
most critical aspect of the entire navigation task was the
crossing of roads or all situations in which the robot po—[6]
tentially had to interact with fast-driving cars. Appragely
dealing with such situations would require enormously far-
sighted sensors such as radar or similar. Additionallypgim 7]
looking at traffic lights at pedestrian crossings will nolveo 8
the problem, because the robot might want to verify as
to whether a car really stops before it starts moving. For®l
example, a police car in action might not expect the robcﬁo]
to actually start moving when it approaches that crossing.
In such a case, additional sensations such as audio and
vision might be required. In our demonstration, we solved
this problem by having the robot ask for permission to
cross streets or other safety-relevant areas, which weedark12]
manually in the robot’'s map. 13]
We furthermore realized that other aspects are pret{y
challenging, as, for example, curly leafs on the ground
look similar to little rocks. Whereas the robot can easil3f1 4]
drive over leafs, rocks can actually have a substantiateffe
on the platform itself. Furthermore, pets or other animalg5]
like pigeons or ducks need to be modeled appropriately to
effectively navigate in their vicinity (see Fig. 10). [16]

VII. CONCLUSIONS [17]

In this paper, we presented a navigation system that
enables a mobile robot to autonomously navigate throud?\s]
city centers. To accomplish this task, our navigation syste
uses an extended SLAM routine that deals with the outliers
generated by the partially GPS denied environments, a 152
calization routine that utilizes a dedicated data strctor
large-scale maps, dedicated terrain analysis methodgalso [20]
dealing with negative obstacles, and a trajectory planning
system that incorporates dynamic objects. [21]

The system has been implemented and demonstrated in
a large-scale field test, during which the robot Obelix au??]
tonomously navigated over a path of more than three kilo-
meters through the city center of Freiburg thereby negngat
with several potential hazards.

The authors plan a live demonstration of Obelix and itfm]
capabilities during ICRA 2013.
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