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Abstract— Over the past years, there has been a tremendous
progress in the area of robot navigation. Most of the systems
developed thus far, however, are restricted to indoor scenarios,
non-urban outdoor environments, or road usage with cars.
Urban areas introduce numerous challenges to autonomous
mobile robots as they are highly complex and in addition to
that dynamic. In this paper, we present a navigation system for
pedestrian-like autonomous navigation with mobile robots in
city environments. We describe different components including
a SLAM system for dealing which huge maps of city centers,
a planning approach for inferring feasible paths taking also
into account the traversability and type of terrain, and an
approach for accurate localization in dynamic environments.
The navigation system has been implemented and tested in
several large-scale field tests in which the robot Obelix managed
to autonomously navigate from our University Campus over a
3.3 km long route to the city center of Freiburg.

I. I NTRODUCTION

Navigation is a central capability of mobile robots and
substantial progress has been made in the area of autonomous
navigation over the past years. The majority of navigation
systems developed thus far, however, focuses on navigation
in indoor environments, through rough outdoor terrain, or
based on road usage. Only few systems have been designed
for robot navigation in populated urban environments such
as pedestrian zones, for example, the autonomous city ex-
plorer [1]. Robots that are able to successfully navigate in
urban environments and pedestrian zones have to cope with
a series of challenges including complex three-dimensional
settings and highly dynamic scenes paired with unreliable
GPS information.

In this paper, we describe a navigation system that enables
mobile robots to autonomously navigate through city-center
scenes. Our system builds upon and extends existing tech-
nology for autonomous navigation. In particular, it contains a
SLAM system for learning accurate maps of urban city areas,
a dedicated map data structure for dealing with large-scale
maps, a variant of Monte-Carlo localization that utilizes this
data structure, and a dedicated approach for terrain analysis
that deals with vegetation, dynamic objects, and negative
obstacles. We furthermore describe how these individual
components are integrated. Additionally, we will present the
result of a large-scale experiment during which the robot
Obelix traveled autonomously from our university campus to
the city center of Freiburg during a busy day during August
2012. During that trial, the robot had to master a distance of
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Fig. 1. Example trajectory traveled by our robot navigating in an urban
environments including a pedestrian zone with a large number of people.

over 3km. The trajectory taken by the robot and two pictures
taken during its run are depicted in Figure 1.

Thus, the aim of this paper is to not only describe the
relevant components but also to highlight the capabilitiesthat
can be achieved with a system like that. We try to motivate
our design decisions, critical aspects, as well as limitations
of the current setup. The robot Obelix and its navigation
system will be demonstrated live during ICRA 2013.

II. RELATED WORK

The problem of autonomous navigation in populated ar-
eas has been studied intensively in the past. One of the
pioneering systems were the robots RHINO [2] and Min-
erva [3] which operated as interactive mobile tour-guides in
crowded museums. An extension of this tour-guide concept
to interactive multi-robot systems was the RoboX system
developed by Siegwartet al. [4] for the Expo’02 Swiss
National Exhibition. Grosset al. [5] installed a robot as
a shopping assistant that provided wayfinding assistance
in home improvement stores. Although these systems were
able to robustly navigate in heavily crowded environments,
they were restricted to two-dimensional representations of
the environment and assumed that the robots operated in a
relatively confined planar area.

Relatively few robotic systems have been developed for
autonomous navigation in city centers. The concept closest
to the one described in this paper probably is the one of



the Munich City Explorer developed by Baueret al. [1].
In contrast to our system, which operates completely au-
tonomously and does not require human intervention, the
city exploration system relies on interaction with humans to
get the direction where to move next. The city explorer only
builds local maps and does not autonomously plan its path
from its position to the overall goal location. A further related
approach has been developed in the context of the URUS
project [6], which considered urban navigation but focused
more on networking and collaborative actions as well as the
integration with surveillance cameras and portable devices.

Also, the problem of autonomous navigation with robotic
cars has been studied intensively. For example, there has
been the DARPA Grand Challenge during which autonomous
vehicles showed the ability to navigate successfully over
large distances through desert areas [7], [8], [9]. During
the DARPA urban challenge, several car systems have been
presented that are able to autonomously navigate through dy-
namic city street networks with complex car traffic scenarios
and under consideration of road traffic navigation rules [10],
[11]. Recently, commercial self-driving cars [12] have been
developed and legalized to perform autonomous navigation
with cars. In contrast to these methods, which focused on
car navigation, the system described in this paper has been
developed to enable mobile robots to perform pedestrian-like
autonomous navigation in urban environments with many
types of dynamic objects like pedestrians, cyclists, or pets.

A long-term experiment about the robustness of an in-
door navigation system was recently presented by Marder-
Eppsteinet al. [13]. Here, the accurate and efficient obstacle
detection operating on the data obtained by tilting a laser
range finder has been realized. In contrast to this system, our
approach has a component for tracking moving obstacles to
explicitly deal with the dynamic objects in highly populated
environments and also includes a terrain analysis component
that is able to deal with a larger variety of terrain.

III. T HE ROBOT OBELIX USED FOR THEEVALUATION

The robot used to carry out the field experiments is a cus-
tom made platform developed within the EC-funded project
EUROPA [14], which is an acronym for the EUROpean
Pedestrian Assistant. The robot has a differential drive that
allows it to move with a maximum velocity of 1 m/s. Using
flexibly mounted caster wheels in the front and the back,
the robot is able to climb steps up to a maximum height of
approximately 3 cm. Whereas this is sufficient to negotiate a
lowered pedestrian sidewalk, it has not been designed to go
up and down normal curbs so that the robot needs to avoid
such larger steps. The robot’s footprint is 0.9 m× 0.75 m
and it is around 1.7 m tall.

The main sensor input is provided by laser range finders.
Two SICK LMS 151 are mounted horizontally in the front
and in the back of the robot. The horizontal field of view of
the front laser is restricted to 180◦. The remaining beams
are reflected by a mirror to observe the ground surface in
front of the robot. Additionally, another scanner is tilted70◦

downwards to detect obstacles and to identify the terrain

Fig. 2. One laser is mounted downwards (left) to sense the surface in front
of the robot to decide whether it is safe to navigate over a particular area. A
second horizontally mounted laser is combined with mirrors, which reflect
a portion of its beams towards the ground (right). The data from those two
lasers is used to find obstacles that are not visible in the horizontal beams.

the robot drives upon. Fig. 2 visualizes the setup of the
non-horizontal laser beams. A Hokuyo UTM-30LX mounted
on top of the head of the robot is used for mapping and
localization, whereas the data of an XSens IMU is integrated
to align the UTM horizontally with the ground surface by
controlling a servo accordingly. The robot is furthermore
equipped with a Trimple GPS Pathfinder Pro to provide prior
information about its position during mapping tasks. While
the robot also has a stereo cameras onboard, its data is not
used for the described navigation tasks and the images are
only used for the sake of visualization in this paper.

IV. SYSTEM OVERVIEW

In order to autonomously navigate in an environment, our
system requires to have a map of the area. This might seem
like a huge drawback, but mapping an environment can be
done in a considerably small amount of time. For example,
it took us around 3 hours to map a 7.4 km long trajectory
by controlling the robot with a joystick. Furthermore, this
only has to be done once, as the main structures of an
urban area do not change quickly. Small modifications to
the environment, like billboards or shelfs placed in front of
shops, can be handled by our system in a robust manner.
In the following, we describe how we obtain the map
of the environment by means of a SLAM algorithm as
well as the most important components of the autonomous
navigation system, such as the algorithms for localization,
path planning, and obstacle detection, which enable our robot
to operate in large scale city centers. The entire navigation
system described in this section runs on one standard quad
core i7 laptop operating at 2.3 GHz.

A. Mapping

We apply a graph-based SLAM formulation to esti-
mate the maximum-likelihood (ML) configuration. Letx =
(x1, . . . ,xn)

T be a vector where each element describes
the pose of the robot at a certain time.zij and Σij are
respectively the mean and the covariance matrix of an
observation describing the motion of the robot between the
time indicesi andj, whereas we assume Gaussian noise. Let
eij(x) be an error function which computes the difference
between the observationzij and the expected value given the
current state of nodei and j. Additionally, let ei(x) be an
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Fig. 3. Influence of outliers in the set of prior measurements. Left: Our
method rejects prior measurements having a large error. Middle: The map
as it is estimated by taking into account all prior measurements. Right: Our
method achieves a good estimate for the map by rejecting priors which are
likely to be outliers.

error function which relates the state of nodei to its priorzi
having the covariance matrixΣi.

Assuming the measurements are independent, we obtain
the ML configuration of the robot’s trajectory as

x
∗ = argmin

x

∑

ij∈C

‖eij(x)‖Σij
+

∑

i∈P

‖ei(x)‖Σi
, (1)

where‖e‖Σ
def.
= e

TΣ−1
e computes the Mahalanobis distance

of its argument, andC and P are a set of constraints and
priors, respectively. We employ our g2o toolkit [15] for
solving Eq. (1), which iteratively linearizes and solves the
linear approximation until a convergence criterion is reached.

The laser-based front-end generating the set of con-
straints C is an extension of the approach proposed by
Olson [16]. It applies a correlative scan-matcher to estimate
the motion of the robot between successive time indices.
Furthermore, it obtains loop closures by matching the current
scan against all scans which are within the three-sigma uncer-
tainty ellipsoid. It filters false-positives by spectral clustering.
The GPS sensor provides the set of priorsP. As GPS signals
may be corrupted by multi-path effects, we apply an outlier
rejection method to remove those measurements. Instead of
directly solving Eq. (1), we consider a robust cost function
– namely the Pseudo Huber cost function [17] – for the
prior measurements. After optimization, we remove 2 % of
the prior edges having the largest residual. We repeat this
process five times. Thus, we keep approximately 90 % of the
original prior information. Using this approach, some good
GPS measurements might be rejected. However, we found
in our practical experiments that the effect of outliers in the
prior measurements may be severe (see Fig. 3). Including the
prior information has several advantages. First, it improves
the accuracy of the obtained maps [18]. Second, if the robot
extends its map, coordinates are easy to transform between
different maps, because the maps share a common global
coordinate frame.

B. Map Data Structure

Obtaining a 2D map given the graph-based SLAM solution
and the laser data is typically done in a straight-forward
manner, for example, by computing an occupancy grid.
However, storing one monolithic occupancy grid for a large-
scale environment may lead to a large memory footprint.
For example, a 2 by 2 km area at a resolution of 0.1 m and
4 bytes per cell requires around 1.5 GB of main memory.

Instead of computing one large map, we use the information
stored in the graph to render maps locally and close to the
robot’s position. A similar approach was recently described
by Konoligeet al. [19].

We generate the local map as follows. We apply Dijkstra’s
algorithm to compute the distance between the nodes in the
graph. This allows us to only consider observations that have
been obtained by the robot in the local neighborhood of its
current location. We compute the set of nodes to be used to
build the local map as

Vmap = {xi ∈ x | dijkstra(xi,xbase) < δ} , (2)

whereVmap is the set of observations that will be used for
obtaining the local map,xbase the closest node to the robot’s
current position,dijkstra(xi,xbase) the distance between
the two nodes according to Dijkstra’s algorithm, andδ the
maximal allowed distance for a node to be used in the map
rendering process. As hard-disk space is rather cheap and its
usage does not affect the performance of other processes, we
store each local map on the disk after the first access to it
by the system.

The localization and path-planning algorithms described
in the following sections all operate on these local maps.
The map is expressed in the local frame ofxbase and we
currently use a local map of 40 m× 40 m.

C. Localization

To estimate the posex of the robot given a map, we
maintain a probability densityp(xt | z1:t,u0:t−1) of the
locationxt of the robot at timet given all observationsz1:t
and all control inputsu0:t−1.

Our implementation employs a sample-based approach
which is commonly known asMonte Carlo localization
(MCL) [20]. MCL is a variant of particle filtering [21] where
each particle corresponds to a possible robot pose and has
an assigned weightw[i]. In the prediction step, we draw for
each sample a new particle according to the prediction model
p(xt | ut−1,xt−1). Based on the sensor modelp(zt | xt)
each particle within thecorrection stepgets assigned a new
weight. To focus the finite number of particles in the regions
of high likelihood, we need to re-sample the particles. A
particle is drawn with a probability proportional to its weight.
However, re-sampling may drop good particles. To this end,
the decision when to re-sample is based on the number
of effective particles [22]. Our current implementation uses
1,000 particles.

A crucial question in the context of localization is the
design of the observation model that calculates the likelihood
p(z | x) of a sensor measurementz given the robot is located
at the positionx. We employ the so-called endpoint model or
likelihood fields [23]. Letz′k be thekth range measurement of
z re-projected into the map given the robot posex. Assuming
that the beams are independent and the noise is Gaussian,
the endpoint model evaluates the likelihoodp(z | x) as

p(z | x) ∝
∏

i

exp

(

‖z′i − d′i‖
2

σ2

)

, (3)
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Fig. 4. Range and remission data collected by the robot observing either
a concrete surface or vegetation.

whered′i is the point in the map which is closest toz′i. As
described above and in contrast to most existing localization
approaches, our system does not employ a single grid map
to estimate the pose of the robot. Given our graph-based
structure, we need to determine a vertexxbase whose map
should be taken into account for evaluatingp(z | x). We
determine the base nodexbase as the pose-graph vertex
that minimizes the distance tox and furthermore guarantees
that the current location of the robot was observed in the
map. This visibility constraint is important to maximize
the overlap between the map and the current observation.
Without this constraint, the closest vertex might be outside
a building while the robot is actually inside of it.

D. Traversability Analysis

The correct identification of obstacles is a critical com-
ponent for autonomous navigation with a robot. Given our
robotic platform, we need to identify obstacles having a
height just above 3 cm. Such obstacles are commonly de-
scribed as positive obstacles, as they stick out of the ground
surface the robot travels upon. In contrast to that, negative
obstacles are dips above the maximum traversable height
of 3 cm and such obstacles should also be avoided by the
robot. In the following, we describe the module which detects
positive and negative obstacles while at the same time allows
the robot to drive over manhole covers and grids which might
be falsely classified as negative obstacles. Furthermore, while
navigating in urban areas the robot may encounter other
undesirable surfaces, such as lawn. Here, considering only
the range data is not sufficient, as the surface appears to
be smooth and drivable. Since our platform cannot safely
traverse grass areas, where it might easily get stuck due to
the small caster wheels, we also have to identify such areas
to allow the robot to avoid them and thus to reduce the risk
of getting stuck while trying to reach a desired location.

1) Vegetation Detection:In our implementation, we detect
flat vegetation, such as grass, which cannot be reliably
identified using only range measurements, by considering
the remission values returned by the laser scanner along with
the range [24]. We exploit the fact that living plants show a
different characteristic with respect to the reflected intensity
than the concrete surface found on streets.

In contrast to Wurmet al. [24], we detect vegetation with
a fixed downward looking laser instead of a tilting laser. This
results in an easier classification problem, as the range of a
beam hitting the presumably flat ground surface correlates
with the incidence angle. Fig. 4 visualizes the data obtained

with our platform. As can be seen from the image, the two
classes can be separated by a non-linear function. We choose
to fit a function to the lower boundary of the vegetation
measurements which allows us to identify measurements
which are likely to be vegetation with a high efficiency. The
resulting classification accuracy is slightly worse compared
to the original approach but faster and, as can be seen in
Fig. 5, still sufficient for identifying regions covered by
vegetation that should be avoided by the robot.

2) Tracking Dynamic Obstacles:To detect moving obsta-
cles in the vicinity of the robot, like pedestrians or bicyclists,
we employ a blob tracker based on the 2D range scanner
data. We first accumulate the 2D laser readings in a 2D grid
map for a short time window (about 100 ms in our current
implementation). In addition to that, we keep a history of
these maps for a larger amount of time (about 1 s). To find
the dynamic elements in the map we compare the current
map with the oldest in the history and mark the obstacles that
only appear in the newer map as dynamic. Then, we filter
out those obstacles that appear to be dynamic but that were
occluded in the older map and are therefore probably false
positives. In the next step we cluster the dynamic obstacles
into blobs using a region growing approach. Then, we find
corresponding blobs in the preceding map using a nearest
neighbor approach (rejecting neighbors above a predefined
distance). Based on the mean positions of the corresponding
blobs we estimate velocities and bounding boxes that are
aligned to the movement direction.

While this method is relatively simple (and occasion-
ally creates false positives and sometimes wrongly merges
multiple moving objects into one), it proved to be highly
effective for the city navigation task. It can be calculatedin
a highly efficient manner and provides a sufficient movement
prediction for avoidance purposes, as can be seen in Fig. 5.

3) Detection of 3D Obstacles:Unfortunately, not all
obstacles that might block the robot’s path are visible in
the horizontal laser scans. For this reason, we implemented
a module that analyzes the scan lines captured by the
downwards facing laser and the mirrored laser beams in
front of the robot (see Section III). These lasers provide 3D
information about the environment when the robot is moving.

In a first step, we perform a filtering on the raw scans to
get rid of some false measurements. This especially targets
at spurious points typically returned at the borders of objects
in the form of interpolated point positions between the fore-
ground and the background. These points might create false
obstacles. To detect them, we check for sudden changes in
depth which are noticeable as very small viewing angles from
one point in the 2D scan to its immediate neighbors. Those
border areas are erased from the scans before performing the
obstacle detection procedure.

The main part of the obstacle detection process is done
by analyzing only single scan lines, instead of the point
cloud which is accumulated during driving. To decide if
points in these scan lines measure flat ground or an obstacle
the robot cannot traverse, we analyze how straight the scan
lines are and if there are significant discontinuities in there,



Fig. 5. Visualization of the different kinds of detected obstacles (top
image). Blue points mark obstacles that are visible in the horizontal 2D
laser scanners (areasa and b). Red points mark 3D obstacles that are
visible in the downwards facing laser beams, but not in the 2D laser beams
(mainly areac). Green points mark the detected vegetation/grass (aread).
The black boxes with the arrows mark detected dynamic obstacles (area
b). The remaining small yellow dots visualize the accumulated point cloud
from the laser measurements. The scene depicts the robot and its planned
trajectory in an environment with a lawn on the right, a building with a
two-step staircase on the left (see bottom image) and four people moving
behind it.

since a flat ground would lead to straight scan lines. To
be robust to noise, we use polynomial approximations for
small segments of the scan lines and analyze their incline.
Every point that lies in a segment which has an incline
above a maximum value (10◦) and a height difference above
a maximum allowed step height (3 cm) is reported as a
potential obstacle.

This heuristic proved to be very effective and has the
advantage of being very efficient for single 2D scans, without
the need of integration over a longer period of time. It also
does not require information about position changes of the
robot, which would be a source of considerable noise. In
addition to that, there are no strong requirements regarding
the external calibration parameters of the lasers.

Unfortunately, there are rare cases where this procedure
fails. The main source of failures are false positives on
manhole covers or gutters in the ground. Example images can
be seen in Fig. 6 (top). Since some laser beams go through
the structure and some not, they appear to be negative
obstacles. We implemented a heuristic to detect those cases
by identifying areas with small holes. For this purpose, we
extended the method described above and build a height
map from the accumulated scan points while driving. For
every scan point, we check if it lies substantially below the
estimated height in both directions. This indicates a small

Fig. 6. Top: Traversable structures that might be detected asnegative
obstacles by a naive method, because some laser beams can go through
them. Bottom: Example case for the obstacle detection module. While the
small canals on the robot’s right side are classified as negative obstacles, the
gutters are identified as traversable even though there are laser measurements
going through the holes.

hole. Obstacles close to such holes are ignored, if they are
below a certain height (10 cm). This approach proved to pro-
vide the desired reliability for different settings in which the
naive approach would have reported non-traversable negative
obstacles (see Fig. 6, bottom image, for an example).

For every positive obstacle detected by the approach
above, we check if this obstacle also has a corresponding
obstacle in its vicinity in the 2D scans from the horizontal
lasers. If not, the corresponding 3D position is reported as
a 3D obstacle. If yes, it is considered to belong to the 2D
obstacle and only stored for a short amount of time. The
reason for this is that our sensor setup does typically not
allow us to reobserve a 3D obstacle in regular intervals, since
it is just seen once while driving by. Therefore, we have to
keep the 3D obstacles in the map for an indefinite amount
of time. On the other hand, obstacles observed in the 2D
scanners can be reobserved and therefore do not have to be
kept for a long time. This procedure prevents most dynamic
objects (those that are also visible in 2D) from trapping
the robot because it does not notice their disappearance. An
example regarding the different obstacle types can be seen
in Fig. 5.

4) Vibration Based Ground Evaluation:While the ap-
proach described above allows the robot to identify objects
that need to be avoided, the ground surface itself needs to be
taken into account while driving autonomously. Cobble stone
pavement, which can typically be found in the centers of old
European cities leads to a substantial vibration and shaking of
the platform. Hence, we consider the measurements provided
by the IMU to control the speed of the platform based
on the current vibration. If the vibration exceeds a certain
limit, the maximum allowed velocity of the platform is
gradually decreased. As the accuracy of the laser sensors is



not sufficient to classify the smoothness of the surface, the
robot has no means to identify whether the surface allows
driving fast again without inducing vibrations. Hence, we
greedily increase the maximum velocity again after a short
delay and repeat the entire process.

E. Planner

Our planner considers different levels of abstraction to
compute a feasible path for the robot towards a goal location.
The architecture consists of three levels. On the highest
level, only the topology of the environment is considered,
i.e., the graph connecting local maps. The intermediate level
employs Dijkstra’s algorithm on the local maps to calculate
way-points which serve as input for the low-level planner
developed by Rufliet al. [25]. This low-level planner actually
computes the velocity commands sent to the robot. Note
that by using this hierarchy, we loose the optimality of
the computed paths. However, as reported by Konoligeet
al. [19], the resulting paths are only approximately 10 %
longer while the time needed to obtain them can actually
be several orders of magnitude shorter.

Given the pose estimates of the SLAM module, our
planner constructs a topologyT represented by a graph.
This graph is constructed as follows: Each nodexi of the
graph is labeled with its absolute coordinates in the world.
Furthermore, each node comes with its local traversability
map describing the drivable environment in the neighborhood
of xi which serves as the background information for the
planner. Additionally, each cell in the map encodes the cost
of driving fromxi to the cell. This can be pre-computed effi-
ciently by a single execution of Dijkstra’s algorithm starting
from xi. We refer to this as the reachability information of
the map.

Two nodes are connected by an edge if there is a path from
one node to the other given the information stored in their
local maps. The edge is labeled with the cost for traversing
the path which is determined by planning on the local maps.
If such a path cannot be found, we assign a cost of infinity
to this edge. Otherwise, we assign to the edge the cost
returned by the intermediate level planner which is typically
proportional to the length of the path. Yet, in contrast to
the straight-line distance, the cost better reflects the local
characteristics of the environment. By this procedure, which
is carried out once as a pre-processing step, the planner will
consider the real costs for the robot to traverse the edge
instead of only considering the Euclidean distance. Note that
the set of edges contained in the topology graphT in general
differs from the set of constraintsC generated by the SLAM
module. The topology graph exhibits a denser connectivity
as can be seen in Fig. 7.

While driving autonomously, the robot may encounter
unforeseen obstacles, e.g., a passage might be blocked by
a construction site or parked cars. Our planner handles such
situations by identifying the edges in the topology which
are not traversable in the current situation. Those edges
are temporarily marked with infinite costs which allows the

Fig. 7. Left: Partial view of the pose-graph with its constraints used for
estimating the poses. Right: The same view of the topology graph generated
by the planner shows that this graph typically features a denser connectivity.

hierarchical planner framework to determine another path to
the goal location.

Planning a path from the current location of the robot
towards a desired goal location works as follows. First, we
need to identify the nodes or maps inT which belong to the
current position of the robot and the goal. To this end, we
refer to the reachability information of the maps. We select
the maps with the shortest path from the center of the map to
the robot and the goal, respectively. Given the robot node and
the goal node, the high level planner carries out an A∗ search
onT . Since the cost for traversing an edge corresponds to the
real cost of the robot to traverse the edge, this search provides
a fast approximation of an A∗ on the complete grid map but
is orders of magnitude faster. The result is a list of way-points
towards the goal. However, following this list closely may
lead to sub-optimal paths. Hence, we perform the Dijkstra
algorithm in the local map starting from the current location
of the robot and select as intermediate goal for the low-level
planner the farthest way-point that is still reachable. Note
that the local map containing the current position of the robot
is augmented online with the static obstacles found by the
obstacle detection.

V. EVALUATION

In this section, we describe a set of experiments in which
we evaluated the system described in this paper. The map
used to carry out the experiments was obtained by driving
the robot along a 7,405 m long trajectory. The map covers
the area between the Technical Faculty of the University of
Freiburg and the city center of Freiburg. Using this map, we
carried out a series of experiments. Among several smaller
tests, we performed six extensive navigation experiments
during which we let the robot navigate from our campus
to the city center and back. In these experiments the robot
traveled an overall distance of around 20 km and for three
times required manual intervention. In addition to a local-
ization failure discussed below, the robot once got stuck in
front of a little bump and one further time was manually
stopped by us because of an obstacle that we believed not
being perceivable by the robot.

Note that the final experiment was announced widely to
give the public and the press the opportunity to see whether
state-of-the-art robotics navigation technology can leadto
a mobile robot that can navigate autonomously through
an urban environment. The event itself attracted journalists
from both TV and newspapers and lead to a nationwide
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Fig. 8. This plot shows the fraction of valid beams returned bythe range
scanner and the fraction of beams that can be explained by the map of the
environment. The robot entered a crowded area in the city center after around
80 minutes. In this period, the localization algorithm can only consider
approximately 50 % of the valid readings for localization.

and international coverage in top-media. The multimedia
attachment documents parts of this experimental run. More
material can be found on the web1.

A. Localization

Whenever a robot navigates within an urban environment,
the measurements obtained by the sensors of the robot
are affected by the people surrounding the robot. As the
localization algorithm is one of the core components of our
system, we analyzed the occlusions in the range data caused
by people partially blocking the view of the robot.

Fig. 8 depicts the fraction of valid range readings, i.e.,
readings smaller than the maximum range of the laser
scanner, and the number of beams that match to the map
for one of the large experiments mentioned above. Here,
we regard a range reading as matching to the map, if the
distance between the measurement and the closest point in
the map is below 0.2 m. The plot depicts several interesting
aspects. A small fraction of valid beams indicates that the
robot is navigating within open regions where only a small
amount of structure is available to the robot for localizing
itself. Furthermore, the difference between the number of
valid beams and the number of beams that match to the map
indicates that the view of the robot was partially blocked. For
example, after 80 minutes the robot navigates through a very
crowded area. This leads to a large fraction of measurement
that cannot be explained by considering the map.

In this experiment, the autonomous run was interrupted
twice. In the first incident, the robot’s wireless emergency
stop button was pressed unintentionally, thereby being a hu-
man mistake. In the second case, a localization error occurred
after around 78 minutes. As can be seen in Fig. 8 between
minutes 70 and 78 the robot traveled 200 m in an area with
a very small amount of features while being surrounded by
many people, as depicted in Fig. 9. This mixture of very few
relevant features in the map (shown on the left hand side in
Fig. 9) and the fact that the robot was driving for an extensive

1http://europa.informatik.uni-freiburg.de/videosdowntownDemo.html
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Fig. 9. Background information for the localization failureduring an
autonomous run to Freiburg downtown. The 2D distance map is shown on
the left. As can be seen, there are only few localization features around
(mostly stems of trees) and nearly all laser observations mismatch the
provided model. The picture on the right shows that the robot is almost
completely surrounded by people.

distance while receiving mostly spurious measurements lead
to an error in the position estimate of around 2 m. This caused
problems in negotiating a sidewalk after crossing the street. It
made the robot stop and required us to re-localize the robot.

In other instances, sharing the same characteristics, for
example, around minute 37 and around minute 52 the robot
only drives substantially lower distances 100 and 50 meters
without meaningful sensations. In both situations, the system
is able to overcome the problem because it receives relevant
information early enough again.

We also analyzed a similar trajectory of the robot carried
out during night time. At night, typically a way smaller
number of people is around and less occlusions happen to
the measurements. Hence, the offset between the number of
valid beams and the number of beams matching the map is
small all the time. In this experiment, the robot successfully
reached its goal location without any problems and along a
slightly different path of 3.5 km length. A visual inspection
of the localization result revealed that the position of the
robot was correctly estimated at all times.

VI. D ISCUSSION

As mentioned above, the navigation system described in
this paper has been implemented for and on the robot Obelix
characterized in Section III. It is well-known that the design
of a platform typically has a substantial influence on the
algorithms needed for accomplishing the desired task. Given
the navigation task Obelix had to carry out, his structure
definitely also influenced the design of certain software
components. For example, its almost circular footprint makes
the planning of paths easier, as only a two-dimensional path
needs to be computed (see Fig. 1). Additionally, the specific
mounting of the range scanners, that resulted in the fact
that three-dimensional structures could only be sensed when
the robot moves, has an influence on collision avoidance
routines. We are still convinced that these platform-specific
design choices are not critical and that the mixture of
components we realized is relevant for accomplishing this
challenging navigation task and is sufficiently generic to be
easily transferable to other robotic platforms, such as robotic
wheelchairs or transportation vehicles in cities.

The experimental evaluation additionally indicated several
desiderata for sensor devices and perception processes. The



Fig. 10. Dynamic 3D obstacles which pose substantial challenges for the
navigation system.

most critical aspect of the entire navigation task was the
crossing of roads or all situations in which the robot po-
tentially had to interact with fast-driving cars. Appropriately
dealing with such situations would require enormously far-
sighted sensors such as radar or similar. Additionally, simply
looking at traffic lights at pedestrian crossings will not solve
the problem, because the robot might want to verify as
to whether a car really stops before it starts moving. For
example, a police car in action might not expect the robot
to actually start moving when it approaches that crossing.
In such a case, additional sensations such as audio and
vision might be required. In our demonstration, we solved
this problem by having the robot ask for permission to
cross streets or other safety-relevant areas, which we marked
manually in the robot’s map.

We furthermore realized that other aspects are pretty
challenging, as, for example, curly leafs on the ground
look similar to little rocks. Whereas the robot can easily
drive over leafs, rocks can actually have a substantial effect
on the platform itself. Furthermore, pets or other animals
like pigeons or ducks need to be modeled appropriately to
effectively navigate in their vicinity (see Fig. 10).

VII. C ONCLUSIONS

In this paper, we presented a navigation system that
enables a mobile robot to autonomously navigate through
city centers. To accomplish this task, our navigation system
uses an extended SLAM routine that deals with the outliers
generated by the partially GPS denied environments, a lo-
calization routine that utilizes a dedicated data structure for
large-scale maps, dedicated terrain analysis methods alsofor
dealing with negative obstacles, and a trajectory planning
system that incorporates dynamic objects.

The system has been implemented and demonstrated in
a large-scale field test, during which the robot Obelix au-
tonomously navigated over a path of more than three kilo-
meters through the city center of Freiburg thereby negotiating
with several potential hazards.

The authors plan a live demonstration of Obelix and its
capabilities during ICRA 2013.
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