
Control of Dynamic Gaits for a Quadrupedal Robot
Christian Gehring∗†, Stelian Coros†, Marco Hutter∗,

Michael Bloesch∗, Markus A. Hoepflinger∗ and Roland Siegwart∗
∗Autonomous Systems Laboratory, ETH Zurich, Switzerland, gehrinch@ethz.ch

†Disney Research Zurich, Switzerland

Abstract—Quadrupedal animals move through their environ-
ments with unmatched agility and grace. An important part of
this is the ability to choose between different gaits in order
to travel optimally at a certain speed or to robustly deal
with unanticipated perturbations. In this paper, we present a
control framework for a quadrupedal robot that is capable of
locomoting using several gaits. We demonstrate the flexibility
of the algorithm by performing experiments on StarlETH, a
recently-developed quadrupedal robot. We implement controllers
for a static walk, a walking trot, and a running trot, and show
that smooth transitions between them can be performed. Using
this control strategy, StarlETH is able to trot unassisted in 3D
space with speeds of up to 0.7m/s, it can dynamically navigate
over unperceived 5-cm high obstacles and it can recover from
significant external pushes.

I. INTRODUCTION

Legged robots are better suited for rough terrain locomotion
than their wheeled or tracked counterparts. As a result, they
have the potential of being used for a wider variety of tasks.
The drawback of multi-legged systems, however, is that they
are more complex, inherently unstable and therefore more
difficult to control. In addition, appropriate control meth-
ods need to be robust to unplanned disturbances because
the environments, in general, are only partially observable.
Statically stable solutions for this problem rely on position
control algorithms and have been studied extensively [1], [2].
However, they have not yet been shown to produce motions
that are as agile as the motions observed in nature [3].

To date, considerable progress has been made towards bridg-
ing the gap between the skill sets of legged robotic systems
and that of real animals. In constrast to Boston Dynamic’s
LittleDog [4], which is only capable of static walking, its
larger counterpart, BigDog [5], looks more agile and life-like
and is capable of a variety of locomotion behaviors: standing
up, squatting down, walking, trotting and bounding. Stable and
robust locomotion has been demonstrated on this platform, but
the exact details of the employed control algorithms are not
known. More information is available regarding the control
scheme of the IIT’s HyQ [6], another hydraulically actuated
quadruped, which was recently shown trotting robustly by
employing a simple virtual model control approach for each
leg [7].

Recent progress has also been made in simulation, where it
is possible to decouple the control laws from the limitations
of specific hardware platforms. For instance, Coros et al. [8]

This research was supported by the Swiss National Science Foundation
through the National Centre of Competence in Research Robotics.

low-level
controller

motion
generator

position
control

torque
control

,

d d

j j
q q&

d
τ

d
I , , ,q q cτ&

d

F
r

,

d d

b b
q q&

, ,

d d d

x y
v v &ψ

motion controller

Fig. 1. The control framework (blue) computes the desired joint positions,
velocities, and torques based on the desired walking speed and direction,
whereas the low-level controller (green) generates the desired motor current
from these outputs.

described a control framework that was successfully used to
control a broad range of dynamic gaits for a dog-like simulated
quadruped, and Krasny and Orin [9] developed a control
algorithm for galloping quadrupeds.

At a high level, successful control strategies are based
on the observations noted by Raibert [10], who showed the
importance of two essential ingredients: control of the body
through the stance hips and foot placement control for balance
recovery.

For this work we use a set of conceptually similar ideas
in order to control StarlETH (Springy Tetrapod with Articu-
lated Robotic Legs), a recently developed, electrically driven
quadruped robot [11]. StarlETH’s weight of 23kg and leg
length of 0.4m correspond to the dimensions of a medium
sized dog, and it uses an actuation scheme based on highly
compliant series-elastic actuators that enable torque control.
Our aim is to increase StarlETH’s repertoire of motions to
include faster, more life-like dynamic gaits. To this end we
build on the framework described by Coros et al. [8]. The
control scheme combines several simple building blocks. An
inverted pendulum model computes desired foot fall locations,
PD controllers regulate the motions of the legs and virtual
forces are used to continuously modulate the position and
orientation of the main body. In addition to discussing the
changes needed to apply the control scheme to StarlETH, we
describe an improved method for distributing virtual forces to
the stance legs. We demonstrate the flexibility of the described
framework by generating walking and trotting controllers that
are robust to pushes and significant, unanticipated variations in
the terrain. In addition, we show that our method can produce
smooth gait transitions that depend on the walking speed,
resulting in increased agility.

II. CONTROL FRAMEWORK

The goal of our control framework is to provide quadruped
robots with the ability to move through their environments

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5642-8/13/$31.00 ©2013 IEEE 3272

while robustly dealing with perturbations due to external
pushes or unperceived variations in the terrain. In order to
allow the robots to be steered, the desired forward speed vdx ,
lateral speed vdy or turning rate ψ̇d are treated as high-level
parameters that can be modified at any time.

Figure 1 shows the different building blocks of our control
system. Our control framework (blue) computes desired joint
positions qd and torques τ d that are passed to the low-level
controller (green). The latter considers the dynamics of the
actuators and regulates the motor currents Id. The motion
generator and motion controller modules shown in Fig. 1
illustrate the two core questions addressed by our method:
how do we generate appropriate motion objectives for the
whole-body system (Section II-B), and how do we best achieve
them (Section II-C)? Before we discuss in detail these two
components, we first describe the characteristics of the plant.

A. The Plant

Our quadruped robot, StarlETH, has four articulated legs
with three actuated degrees-of-freedom (DoF) each: hip abduc-
tion/adduction (HAA), hip flexion/extension (HFE), and knee
flexion/extension (KFE). The mechanical system therefore has
12 actuated DoFs and 18 DoFs in total. The controller has
access to all joint angles qj ∈ R12, joint velocities q̇j , as well
as to the pose qb ∈ R6 and velocities q̇b of the main body,
which are estimated by an Extended Kalman filter that fuses
IMU data and leg kinematics [12]. The minimal coordinates
of the free-floating robot are thus given by q = [qb, qj]

T .
Additionally, pressure sensors in the feet indicate whether
the legs are in contact with the ground. By thresholding
the pressure readings, a boolean contact flag for each leg
(cflag ∈ {0, 1}) is available for the control algorithm.

The control framework described in this paper outputs
desired joint angles qdj for the swing legs and desired joint
torques τ d for the stance legs, as the series-elastic actuators
employed by StarlETH enable torque control. The high com-
pliance of the system, however, requires sophisticated low-
level torque and position controllers in order to cope with the
resulting low control bandwidth. We therefore use the low-
level control system described by Hutter et al. [13] to generate
desirable motor currents.

B. Motion Generation

The motions of the legs and the main body are described in
our framework either in the inertial (world) frame I or in the
body frame B that is located at the center of the main body,
namely in the center of the HAA joints. The main frame’s
x-axis is aligned with the robot’s heading direction, which we
also refer to as the sagittal direction. The vertical direction is
collinear with the z-axis of the inertial frame. The y-axis of
the main frame denotes the robot’s coronal direction.

1) Terrain: To plan the locations of the footholds, it is
essential to know where the ground is located in the inertial
frame. Since the estimated vertical position of the robot can
drift, and we restrict ourselves from using any external sensors,
we estimate the ground height hg by filtering the vertical

0 0.25 0.5 0.75 1
RH
RF
LF
LH

φ

Fig. 2. Gait graph for a walking trot: the black bar defines the stance phase
of the left hind (LH), left front (LF), right front (RF), and right hind (RH)
leg, respectively.

position of the stance feet, IrF,z, expressed in the inertial
frame:

hg(t) =

N=4∑
i=0

cflagi(IrFi,z · α+ hg(t−∆t) · (1− α)), (1)

where α = 0.2 is the parameter of a first order filter.
2) Timing: Quadruped gaits are to a large extent defined

by the foot fall pattern and the duration of the gait cycle Ts.
In our implementation, this is controlled by the Gait Pattern,
which explicitly defines the role of each leg at any moment
in time. Legs that are in swing mode need to safely reach the
next foothold location in order to ensure that the robot can
move at the desired speed or that it can recover balance. In
contrast, the legs that are in stance mode must help satisfy the
motion objectives of the main body in a coordinated way.

The Gait Pattern defines the sequence of swing and stance
modes for each leg with respect to the time-normalized stride
phase φ ∈ [0, 1], as illustrated in Figure 2. The white areas
indicate the fraction of the stride when a leg is in swing phase,
which is characterized by the relative timing of the lift-off and
touch-down events. The dark areas indicate that a leg is in
stance mode. In addition to informing the controller of whether
a leg is in swing or stance, the gait pattern is used to estimate
the amount of time left before a leg should transition to the
next mode. This information is useful as it helps the controller
anticipate how the support polygon will change in the near
future and plan accordingly.

The stance phase φst ∈ [0, 1] of a leg indicates the time
normalized progress made during the stance mode. The swing
phase of a leg, φsw, determines the amount of time left before
the next foot touch-down event, and it is set to −1 if the stance
phase φst > 0. We define the rule used to determine if a leg
is in stance mode ιst ∈ {0, 1} as:

ιst =

{
1 if cflag ∧ (φsw > 0.9)
φsw < 0 otherwise (2)

The first case employed in the equation above ensures that legs
are free to transition to stance mode earlier than predicted in
order to support the main body, if early contacts are detected.
The swing mode ιsw ∈ {0, 1} is defined as ιsw = ¬ιst.

We introduce another variable, the grounded flag gflag =
ιst ∧ cflag ∈ {0, 1}, to select the appropriate low-level con-
troller. The flag is only true if the leg is, and should be, in
contact with the ground. In this case it is safe to apply torque
control at all the joints of the leg, including the knee.

3) Swing Leg Configuration: Appropriate foot placement
control for the swing legs can provide the robot with the ability
to recover balance when it is pushed, or when it encounters

3273

unanticipated variations in the terrain. Our foot placement
algorithm currently considers each leg independently of the
others. At every control cycle we calculate, for each swing
leg, an appropriate foothold position. Subsequently, we plan a
trajectory for the foot in order to ensure that the target stepping
location is reached safely. This results in desired swing foot
positions at every moment moment in time.

The target foothold location IrF is computed relative to the
HAA joint IrH:

IrHF = Ir
fb
HF + Ir

ff
HF, (3)

where Ir
fb
HF is a feedback term predicted by an inverted

pendulum model [14], and Ir
ff
HF is a feedforward step length

that depends on the robot’s desired speed. This formulation is
similar to the one described in [15].

We use a slightly modified version of the inverted pendulum
prediction in order to compute the feedback component of the
stepping location:

Ir
fb
HF = η(Ivref − Iv

d)

√
h

g
, (4)

where h = IrH,z − hg is the current height of the hip with
respect to the ground, Iv

d = Iv
d
x+Iv

d
y is the desired velocity,

g is the gravitational acceleration, and Ivref is an estimated
reference linear velocity, and η is a scaling parameter that
was set to 1.2 for all our experiments. This particular form of
the feedback term ensures that, when moving at the desired
speed, only the feedforward component of the step location
is used. Consequently, only differences between the current
speed and the desired speed are taken into account by the
feedback component. In practice we noticed that the feedback
component of the step can be too large when the robot
is mostly rotating about the yaw axis. For this reason, we
compute the estimated reference velocity used in the equation
above as the average between the leg’s hip velocity and that
of the body’s COM:

Ivref =
1

2
(IvH + IvCoM). (5)

The feedforward component of the stepping location is
computed as half the distance the CoM is expected to travel
during the stance duration ∆tst that is defined by the Gait
Pattern:

Ir
ff
HF =

1

2
Iv

d∆tst. (6)

We can optionally add an additional offset, Br
d
HF, to the

feedforward stepping location in order to control the width of
the steps that are taken. This is particularly useful for slower
gaits such as the static walk.

The stepping offset IrHF constitutes the final desired lo-
cation for foot placement. However, we need to provide the
robot with a continuous trajectory that ensures that the final
foot location can be reached safely. We therefore linearly
interpolate between the initial location of the foot at the
beginning of the swing phase, and this final target location.

To provide enough ground clearance for the foot, we use a
pre-defined height trajectory that varies as a function of the
swing phase, as shown in Fig. 3a. This trajectory is defined
by a spline, and all values are relative to the estimated ground
height hg .

4) Stance Leg Configuration: In case a leg is in stance
mode according to the Gait Pattern, but loses contact with
the ground (gflag = 1), we compute a desired foot target that
is 1cm lower than the leg’s current position, in order to re-
gain contact with the ground as soon as possible. Otherwise,
because there are no kinematic redundancies in the mechanical
design, we do not need to actively control the pose of the
stance legs.

5) Main Body Configuration: The pose qb and velocity q̇b
of the main body need to be controlled in order to increase
robustness, i.e. prevent the robot from tumbling over, and to
meet the desired velocity commands. By default, the desired
orientation of the main body is defined by zero roll and pitch
angles, whereas the yaw angle is unconstrained. The desired
height of the body relative to the estimated ground height,
hH , is specified by a spline as a function of the stride phase,
and it can be used, for instance, to propel the body upwards
at the right moment in time in anticipation of a flight phase.
The desired position of the body along the sagittal and coronal
directions is computed relative to the positions of the feet:

Ir
d
B =

∑N
i=1 wi(φ)IrFi∑N

i=1 wi(φ)
, (7)

where the leg weights wi depend on the stride phase φ as
illustrated in Fig. 3b. We compute the desired position based
not only on the grounded legs, but also based on the swing
legs, in order to get smooth trajectories for the desired position
of the body. With the strategy we implemented, as a grounded
leg approaches the end of the stance phase (φst = φst,0), the
body can start shifting away from it. Similarly, the body starts
shifting towards a swing leg, as it reaches the end of the
swing phase (φsw = φsw,0) and prepares for landing. This
anticipatory behavior is flexible enough to control traditional
static gaits, and it allows us to also implement dynamic gaits
that are increasingly more agile. The minimal weight wmin

depends on the gait and is found experimentally.
The generalized desired position of the main body is given

by qdb = (Ir
d
Bx, Ir

d
By, hg +hH(φ), 0, 0, 0)T , while its desired

velocity is q̇db = (vdx, v
d
y, 0, 0, 0, ψ̇

d)T .

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

he
ig

ht
 o

f f
oo

t a
bo

ve
 g

ro
un

d
[m

]

φ

(a) Swing foot trajectory

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w
i

φ

stance mode
swing mode

φ
st0

φ
sw0

w
min

(b) Weights for balance control

Fig. 3. Most of the motion characteristics are described with respect to the
stride phase φ.

3274

C. Motion Control

We use low level position controllers in order to get fast and
precise tracking of the swing leg joint trajectories [13]. For
the legs that are in stance mode, we make use of virtual force
control, as it is an intuitive and effective method. However,
due to the particular mechanical setup of the knee joint, we
cannot apply torque control to the knee joints of the stance
legs unless the knee spring is under tension. In practice, we
detect ground contacts, or lack thereof, at a fast enough rate to
employ a hybrid control approach, using torque control for the
stance legs that are in contact with the ground, and position
control otherwise.

1) Position Control: We use position control whenever a
leg is not, or should not be (gflag = 0), in contact with the
ground. The desired joint angles qdj are obtained from the
desired foot positions through inverse kinematics, and are then
passed directly to the low level controller.

2) Torque Control: The joint torques that need to be applied
through the stance legs are computed in three steps. We first
compute virtual forces and torques that should ideally act on
the main body in order to control the robot’s posture. These
are then optimally distributed to the stance legs given the
current kinematic configuration of the robot. Lastly, we map
the virtual leg forces F leg to the joint torques by applying
Jacobian transpose control: τ = JTF leg.

The desired forces and torques that should act on the main
body are computed based on the desired pose qdb , the current
pose qb and their derivatives, as:

[
BF

d
B

BT
d
B

]
= kp(qdb − qb) + kd(q̇db − q̇b) + kff


vdx
vdy
mg
0
0

ψ̇d

 (8)

where kp, kd, and kff are the proportional, derivative and
feed-forward gains, respectively and m is the total mass of
the robot. The feed-forward gains improve tracking the desired
velocities and compensate for gravity.

The desired net virtual force BF
d
B and torque BT

d
B that

should be applied to the main body are bounded before being
distributed to the stance legs, in order to ensure that the robot
does not apply excessively large forces through the stance
legs. In the framework described in [8], BF

d
B and BT

d
B are

equally distributed to the stance legs. This strategy did not
work for our static walking gait. Instead, at each control step,
we solve a convex optimization problem with linear constraints
in order to compute desirable contact and friction forces to be
applied through the stance feet. More formally, the problem
formulation is as follows:

minimize (Ax− b)TS(Ax− b) + xTWx (9)
subject to Fn

leg,i ≥ Fn
min, (10)

− µFn
leg,i ≤ F t

leg,i ≤ µFn
leg,i (11)

where x = [F T
leg,0, · · · ,F

T
leg,i, · · ·F

T
leg,m]T , F T

leg,i represents
the net force to be applied through the ith stance leg and m is
the number of legs that are and should be grounded (gflag = 1).

In order to ensure that the forces applied through the stance
legs result in a net force and torque that are as close as possible
to the desired values, we compute A and b using:

[
I I · · · I
r0× r1× · · · rm×

]
︸ ︷︷ ︸

A


F leg,0

F leg,1

...
F leg,m


︸ ︷︷ ︸

x

=

(
F d

B

T d
B

)
︸ ︷︷ ︸

b

, (12)

where ri is the vector between the CoM and the location of
the foot of stance leg i. The weighting matrix S trades off
the degree to which we want to match the net resulting torque
over the net resulting force, and the term xTWx acts as a
regularizer that discourages the use of large virtual forces.

The constraints applied ensure that the normal component
of the force applied through each leg, Fn

leg,i, is strictly positive
(no pulling on the ground). In practice we found that requiring
a minimal force Fn

min = 2N to always be applied results in
fewer instances where the feet slip. We also restrict the tangen-
tial component F t

leg,i to remain within an approximate friction
cone defined by the assumed friction coefficient µ = 0.8 in
order to avoid slipping.

D. Gait Transitions

Gaits are mainly characterized by the gait pattern and the
stride duration, but several parameters in our ontrol framework
have to be adjusted specifically for each gait in order to
increase performance. Fortunately, we have observed that
smooth transitions between gaits can be generated by lineary
interpolating the individual parameter sets. As long as the gait
patterns are compatible (there is no smooth transition between
trot and gallop, but there is one between walking to trotting,
for instance), this approach seems to work well and does not
require additional parameter tuning. However, it is likely that
the resulting transitions may be suboptimal. We define a time
horizon for the interpolation procedure, and the gait transitions
are either initiated manually by an operator, or as a function
of the desired speed.

III. RESULTS

Before conducting any experiments on StarlETH, we veri-
fied the control framework in simulation. Here we only discuss
the results obtained by running the control strategy on the
physical robot. Our results are best seen in the accompanying
video. For more information about the simulation environment
and the software package we refer the interested reader to
Hutter et al. [11].

StarlETH was able to move freely in 3D during all our
experiments, and was not aided by any support structures.
A static walk, a walking trot, and a running trot (with
flight phase) were successfully implemented on StarlETH. The
walking trot reached a top speed of 0.7m/s on a treadmill

3275

TABLE I
PARAMETER SETS FOR DIFFERENT GAITS

Parameter Symbol Static Walk Walking Trot Running Trot

gait graph

stride duration Ts[s] 1.5 0.8 0.7
min. leg weight for support polygon wmin 0.35 0.15 0.15
start of increasing the weight of a swing
leg for support polygon

φsw,0 0.7 0.7 0.7

start of decreasing the weight of the
stance leg for support polygon

φst,0 0.7 0.7 0.7

default left front swing leg offset Brd
HF[m] [0,−0.01, 0]T [0, 0, 0]T [0, 0, 0]T

default left hind swing leg offset Brd
HF[m] [0, 0.14, 0]T [0, 0, 0]T [0, 0, 0]T

height of middle of hip AA joints hH [m] 0.39 0.44 0.44

virt. force proportional gain kp [500, 640, 600, 400, 200, 0]T [0, 640, 600, 400, 200, 0]T [0, 640, 2600, 400, 200, 0]T

virt. force derivative gain kd [150, 100, 120, 6, 9, 0]T [150, 100, 120, 6, 9, 0]T [90, 60, 120, 6, 9, 0]T

virt. force feed-forward gain kff [25, 0, 1, 0, 0, 0]T [60, 0, 1, 0, 0, 0]T [25, 0, 1, 0, 0, 0]T

weights for matching the des. virt. forces S diag(1, 1, 1, 10, 10, 5) diag(1, 1, 0.2, 20, 20, 5) diag(1, 1, 0.2, 20, 20, 5)
weights for reducing joint torques W diag(0.00001 . . .) diag(0.00001 . . .) diag(0.00001 . . .)

whose speed was set to match that of the robot, as measured
by a motion capture system.

A. Parameter Sets

We tuned the initial gains of the virtual force controller
while perturbing the robot as it tried to stand in place. We
then adjusted the parameters for the different gaits while
the robot was walking or trotting. We found this process to
be intuitive, because a large range of parameters result in
successful motions, and the parameters are largely orthogonal
as they affect different aspects of the motion objectives or
motion control components. The parameters we used for the
static walk, walking trot, and running trot are summarized in
Table I.

B. Robustness

The robustness of the control system was examined by
asking the robot to walk and trot on flat ground, while
introducing unanticipated obstacles up to 5cm high (an eighth
of the leg length) as shown in Fig. 5. In addition, we tested
the ability of the robot to recover from external pushes. While
the duration of the push, the current phase in the locomotion
cycle and the push direction can affect the ability of the
robot to reject perturbations, we noticed that significant pushes
are generally handled well (as shown in the supplementary
video). The foot placement strategy, in conjunction with the
appropriate distribution of virtual forces to the stance legs
allowed the robot to successfully recover from various such
scenarios. When the robot failed to recover balance, this was
typically due to the HAA joints reaching their joint limits
while the legs were in stance mode.

Figure 4 presents some relevant data from one of the push
experiments we performed. As seen in the supplementary
video, StarlETH was pushed in the sagittal direction for a
duration of roughly 0.2s (indicated by the gray area). The first
sub-plot in Fig. 4 shows the sagittal position. The robot moves
forward during the push and soon thereafter steps in order to
recover balance. The second plot shows the coronal position,
where a slight lateral drift is visualized. The following three

plots show the net virtual forces for the main body in the
sagittal and coronal directions, as well as the net torque about
the y-axis of the robot. The solid lines illustrate the desired
virtual forces, whereas the dashed lines show the sum of the
contributions of the distributed leg forces. As can be seen,
the force distribution favors matching the desired torque over
matching the desired forces, as indicated by the input weight-
ing matrix S. When all four legs are in contact with ground,
the net distributed forces begin to match both the desired
forces and the desired torques, as there are enough degrees of
freedom in the system. The influence of the unilateral contact
constraints can also be observed in these plots. When only two
legs are in contact with the ground, the errors in the distributed
coronal force result in the drift observed in the second plot.
The last plot shows the measured (solid) and desired (dashed)
joint torque in the knee joint. The swing phase can be clearly
identified by the zero joint torque.

C. Gait Transitions

StarlETH can smoothly transition from the static walk to the
walking trot if we linearly interpolate between the parameter
sets shown in Table I. The duration of the interapolation
can be chosen somewhat arbitrarily, but for the results we
showed here we used a time period of 3s. The transition
from the trot to the walk takes place over 0.5s. We noticed
that the transitions are robust with respect to the exact stride
phase when they are initiated, and we therefore do not require
them to start at a particular point in the locomotion cycle.
To transition between the walking trot and the flying trot we
similarly interpolate the parameter sets of the two gaits.

IV. CONCLUSION

The control framework described by Coros et al. [8] was
extended to enable our quadruped robot to perform a static
walk, a walking trot and a running trot. In addition to detailing
the various changes needed to apply this control framework
to a real robot, we employed a new force distribution method,
without which the robot was unable to walk.

3276

Fig. 5. StarlETH performs a walking trot while dealing with unperceived obstacles.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

[m
]

sagittal position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

[m
]

coronal position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

0

100

[N
]

virtual force in sagittal direction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

0

100

[N
]

virtual force in coronal direction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−50

0

50

[N
m

]

virtual torque for pitching

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4
number of grounded legs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

joint torque of left front knee

[N
m

]

time [s]

Fig. 4. Experimental results of a push that was applied in sagittal direction
during 0.2s as indicated by the grey area.

The main benefits of the framework that we used are that it
is highly modular, that it allows the various parameters to be
tunned in an an intuitive way, and that it results in locomotion
controllers that are robust to pushes and unexpected variations
in the terrain. As shown in simulation, the parameter space of
this control framework is rich enough to also describe other
gaits, such as a pace, bound or gallop [8]. In the future we
plan on further extending StarlETH’s repertoir of motions by
creating controllers and transitions for this new set of gaits.

We have not yet performed a quantitative evaluation of
the performance and robustness of the control system, and
this will be part of future investigations. The clean separation
of the motion generator and the motion controller modules

will enable us to also compare different control strategies.
For instance, different models can be plugged in for the foot
placement component, or the force distribution method could
be replaced by an operational space approach [16] in order to
test the relative merits of the different building blocks we use.
Last but not least, we plan to investigate a systematic way of
finding optimal parameter sets on the real system.

REFERENCES

[1] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal,
“Compliant quadruped locomotion over rough terrain,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009.

[2] P. González-de Santos, E. Garcia, and J. Estremera, Quadrupedal
locomotion: an introduction to the control of four-legged robots.
Springer, 2006.

[3] M. Hildebrand, “The Quadrupedal Gaits of Vertebrates,” BioScience,
vol. 39, no. 11, pp. 766–775, Dec. 1989.

[4] M. P. Murphy, A. Saunders, C. Moreira, A. A. Rizzi, and M. Raibert,
“The littledog robot,” The International Journal of Robotics Research,
2010.

[5] M. Raibert, “Bigdog, the rough-terrain quadruped robot,” in Proceedings
of the 17th IFAC World Congress, M. J. Chung, Ed., vol. 17, no. 1, 2008.

[6] C. Semini, N. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and
D. Caldwell, “Design of hyq–a hydraulically and electrically actuated
quadruped robot,” Proceedings of the Institution of Mechanical Engi-
neers, Part I: Journal of Systems and Control Engineering, vol. 225,
no. 6, pp. 831–849, 2011.

[7] J. B. I. Havoutis, C. Semini and D. Caldwell, “Progress in quadrupedal
trotting with active compliance,” Dynamic Walking, 2012.

[8] S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. van de Panne,
“Locomotion skills for simulated quadrupeds,” ACM Transactions on
Graphics, vol. 30, no. 4, 2011.

[9] D. Krasny and D. Orin, “Evolution of a 3d gallop in a quadrupedal
model with biological characteristics,” Journal of Intelligent and
Robotic Systems, vol. 60, pp. 59–82, 2010.

[10] M. H. Raibert, “Symmetry in running,” Science, vol. 231, no. 4743, pp.
pp. 1292–1294, 1986.

[11] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, C. Remy, and
R. Siegwart, “StarlETH: a compliant quadrupedal robot for fast, efficient,
and versatile locomotion,” in Proc. of the International Conference on
Climbing and Walking Robots (CLAWAR), 2012.

[12] M. Bloesch, M. Hutter, M. H. Hoepflinger, C. D. Remy, C. Gehring, and
R. Siegwart, “State estimation for legged robots - consistent fusion of leg
kinematics and IMU,” Proceedings of Robotics: Science and Systems,
2012.

[13] M. Hutter, C. D. Remy, M. H. Hoepflinger, and R. Siegwart, “High
compliant series elastic actuation for the robotic leg ScarlETH,” in Int.
Conference on Climbing and Walking Robots (CLAWAR), 2011.

[14] J. E. Pratt and R. Tedrake, “Velocity-based stability margins for fast
bipedal walking,” Fast Motions in Biomechanics and Robotics, vol.
340, pp. 1–27, 2006.

[15] M. H. Raibert, Legged Robot that Balance. MIT Press, 1986.
[16] M. Hutter, M. Hoepflinger, C. Gehring, M. Bloesch, C. D. Remy, and

R. Siegwart, “Hybrid operational space control for compliant legged
systems,” in Proceedings of Robotics: Science and Systems, 2012.

3277

