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Abstract— This paper addresses the problem of evaluating
and estimating the mechanical robustness of footholds for
legged robots in unstructured terrain. In contrast to approaches
that rely on human expert knowledge or human defined criteria
to identify appropriate footholds, our method uses the robot
itself to assess whether a certain foothold is adequate or not.
To this end, one of the robot’s legs is employed to haptically
explore an unknown foothold. The robustness of the foothold
is defined by a simple metric as a function of the achievable
ground reaction forces. This haptic feedback is associated with
the foothold shape to estimate the robustness of untouched
footholds. The underlying shape clustering principles are tested
on synthetic data and in hardware experiments using a single-
leg testbed.

I. INTRODUCTION

Over the past years, legged robotics has made impressive

progress with respect to locomotion on irregular and highly

unstructured terrain. Walking systems have started to be able

to navigate in surroundings in which they can actually show

their inherent advantages in comparison to wheeled vehicles.

Such locomotion in rough terrain is extremely challenging

and poses a great number of problems in the areas of plan-

ning, perception, and control. For example, it requires sophis-

ticated balance controllers, adaptive gait patterns, as well as

reliable foothold selection methods. The latter is particularly

critical, since it determines the robustness and achievable

speed of legged locomotion in rough terrain. Groundbreaking

research results in this domain were recently achieved within

the DARPA Learning Locomotion Challenge. In this project,

the participants had to traverse a terrain sample with a small

quadrupedal robot (LittleDog from Boston Dynamics, [1]) as

fast as possible. The outcome of the competition therefore

strongly depended on the appropriate selection of footholds.

The small number of terrain samples and a priori knowledge

about the possible shape allowed to employ human expert

trained or off-line tuned foothold selection methods. One

team [2] used hard-coded, human defined criteria such as

distances between the foothold center and cliffs or holes, as

well as geometric properties that have been hand-tuned to

optimize the performance. Other methods characterized the

quality of footholds based on decisions of human experts.

In [3], for example, an approach is presented in which

a set of foothold templates and a corresponding ranking

function has been learned based on expert demonstrated
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footholds, and in [4], a number of pairs of terrain samples

have been evaluated against each other by a human expert.

Based on the preferences of the expert, the system learned

a cost function and applied the knowledge for footstep

planning. However, apart from the tedious process to train

such systems by a human expert, it is often not obvious if

the decision made by this expert is the optimal choice from

the perspective of the robot. With increasing complexity of

the robot and a growing diversity of the terrain samples,

it is getting nearly impossible for humans to predict all

possible cases such that the robot can select an optimal

foothold solely based on pre-programmed knowledge. For

this reason, legged robots should possess the ability to assess

the quality of a given foothold by themselves without using

additional human input. This will eventually allow the robots

to continuously learn from their own experience and to

adapt to unknown and unpredicted environmental challenges,

which was extensively studied for wheeled service robots

and rough-terrain vehicles ([5] - [8]). As a step towards

transferring these capabilities to legged systems, this paper

presents a method for automatic foothold characterization,

and illustrates the application of this strategy on a robotic leg.

The haptically identified foothold robustness is associated

with the geometrical properties, which is fundamental to

predict the robustness of distant footholds. This project builds

upon our previous work on classification of different surface

types [9] and ground geometries [10], and will eventually

lead to an automated vision guided process that can utilize

on-line machine learning to perpetually identify appropriate

footholds.

II. METHOD

When unsure about the mechanical robustness of a

foothold, humans tend to use their swing leg to explore the

uncertain spot. After this haptic exploration, we are able to

estimate the robustness of the foothold and decide whether

to step on this location or not. The acquired knowledge

combined with the visual interpretation additionally helps

us for future decisions. This methodology can be adapted

for robotic devices. This requires, on one hand, the estab-

lishment of the physical interaction with the terrain and

the introduction of appropriate metrics for the quality of

the footholds. On the other hand, once the quality of the

foothold is evaluated, the haptic information has to be related

to other characteristics of the foothold, such as appearance.

This allows to predict the foothold quality without exploring

every single footstep and is especially useful for planning

future foothold locations. The process can be referred to as

near-to-far learning: High-resolution data from short-range
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Fig. 1. The upper row contains plots of the six different footholds that are
contained in the synthetic foothold data set: flat ground, inclined plane (50
deg), wedge, inverted wedge, convex and concave spherical surface. The
lower row illustrates the variations of each foothold (e.g. the wedge). The
footholds are rotated and white noise is added.

(e.g. [11]) or data of a different sensor modality (e.g. [5]) are

mapped to low-resolution data from a sensor with extended

range.

To combine the haptic information with other properties

of the footholds, appropriate features that allow to clearly

characterize the footholds are required. The first part of

the paper deals with the selection of features that permit

to distinguish the footholds according to their geometrical

properties. The features have to represent the foothold under

following invariance criteria: Since we employ a (symmetric)

spherical foot, the features have to be rotation invariant as

well as invariant to certain level of noise that could be

induced by the process of acquiring the foothold properties.

To simplify the process of evaluating the effectiveness of

those features, a simple synthetic data set of footholds is

applied. The data set consists of six different foothold shapes

with a total of eight variations such as rotations (to evaluate

the invariance to rotations) and corrupted by white noise

(Figure 1).

Based on the calculated features, a clustering algorithm is

used to group the footholds into distinct categories with sim-

ilar characteristics. The application of unsupervised learning

methods allows to deal with categories that are not a priori

defined. To examine the quality of the clustering, internal

cluster validation techniques (e.g. [12]) are applied. On the

one hand, this helps to evaluate how well the features and

clustering methods distinguish the different footholds. On the

other hand, it allows to identify the number of clusters that

are required to well separate the data.

As a last step, the mechanical robustness of the foothold

that is identified by haptic exploration is assigned to the

individual clusters respectively the groups of footholds.

This step links the geometric properties to the robustness

of the foothold and hence allows to predict the quality

of unexplored terrain samples purely based on geometric

information.

A. Features

An individual foothold shape is represented as a regularly

spaced digital elevation model (DEM) with a resolution of

1 mm and an edge length, that corresponds to the robotic

foot diameter of 4 cm. To consider different spacial scales,

the elevation maps of potential footholds are divided into

rectangular sub-regions with different edge length (for the

experiments: 1, 2, 3 and 4 cm). For every sub-region, local

features are computed based on the following approaches:

• Feature set F1: The first set of features is calculated

based on features similar to [13] and consist of the

standard deviation of the heights, the average slope in

x and y direction, and finally the minimum/maximum

height relative to the center of the foothold. This leads

to a total of 20 features per foothold.

• Feature set F2: The second set of features is based

on the computation of the central moments of the

elevation map. The central moments are defined as

µpq =
∑

x

∑

y(x−xc)
p(y−yc)

q ·h(x, y), with h(x, y)
the height at coordinates x,y, and xc, yc the components

of the center of gravity. The sum of the heights, the

distance between the center of gravity and the center

of the foothold (Euclidean norm), the minimal/maximal

eigenvalue of the inertial tensor, as well as an indicator

for the eccentricity ǫ =
(µ20−µ02)

2
−4µ2

11

(µ20+µ02)2
are used as

features. This results in a total of 20 features, that are

computed per foothold.

• Feature set F3: A further set of features is computed

based on Tamura features [14]. The Tamura features

are related to human visual perception and reflect the

coarseness, contrast, directionality, line-likeness, regu-

larity, and roughness.

B. Clustering algorithm

Clustering techniques separate data sets into groups with

certain similarity. Clustering is an unsupervised method and

does therefore not require any prior class identification. To

this end, we employ three different algorithms: two hard

partitioning methods, namely K-means and K-medoid, and

one fuzzy partitioning method, namely Fuzzy C-means. The

hard partitioning methods separate a data set into subsets

that are disjoint, not empty, and do not contain the complete

data set. Each data point is associated to a cluster in order

to minimize the “within-cluster distance” with respect to

a cluster center. The difference between the K-medoid

clustering method and the K-means is the selection of the

center that is defined by the nearest data point to the mean

of the cluster data in case of the K-medoid algorithm. In

fuzzy clustering such as Fuzzy C-means, a so-called C-

means functional is minimized [15]. This objective function

describes the total variance of the difference between the

data object and a potential cluster center.

C. Internal cluster validation

Since the structure of the data is not known in advance,

internal cluster validation methods (e.g. [16]) are applied to

examine how well the data set is separable with respect to

its geometrical properties. These are quantitative validation

methods that, compared to external validation methods, do

not require external information, such as class labels. The

evaluation helps to decide on the optimal cluster number
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as well as on other parameters such as on the distance

norms or the feature sets. Jain et al. [17] describe the overall

process of clustering as a feedback loop, where clustering

validation methods are applied to influence the clustering

(e.g. by determining an optimal cluster number). To this end,

the results of the clustering step are fed back to improve

the feature selection as well as the method for clustering

validation.

Since objects within the same cluster are required to be

similar and objects in different clusters distinct, the vali-

dation measures can be outlined by the compactness and

the separation of the clusters. Compactness is a measure

to express how close the objects of the same group are.

The variance as an example, is a common measure for

compactness. The separation metric expressed how widely

separated the clusters are. Typically, the distances between

the cluster centers, the distances between the most distant

or closest objects are considered in the computation of a

separation metric.

To evaluate the performance of the hard clustering methods,

such as K-means and K-medoid, the following validation

metrics were applied:

• the Calinski-Harabasz index (CH) [18] that character-

izes the separation and compactness based on the aver-

age of the sum of squares within-cluster and between-

cluster distances,

• the Dunn’s index (DI) [15] that uses the minimum

pairwise distance between objects in different clusters

for separation evaluation and the maximum distance

among all clusters for compactness,

• the Silhouette index (S) [19] that validates the cluster-

ing based on the pairwise difference of within-cluster

distances and between-cluster distances, and

• the Xie-Beni index (XB) [20] that defines the inter-

cluster separation as the minimum square distance be-

tween cluster centers and the compactness as the mean

square distance between the data points and their cluster

center.

To evaluate the performance of the fuzzy clustering methods,

we additionally applied:

• the Partition Coefficient (PC) [21] that reflects the

amount of overlap between clusters and

• the Classification Entropy (CE) that indicates the fuzzi-

ness of the clusters.

D. Haptic exploration

To determine the robustness of a foothold, a robotic foot

is brought into contact with the terrain, and the magnitude

and direction of the contact force is altered up to a certain

predefined level or until slippage is detected by means of

kinematic measurements. Interpreting the contact forces as

well as the foot position then allows to assign a robustness

measure to the foothold. Ideally, the applied contact forces

during haptic exploration should be comparable with the

forces that are actually generated during walking. Figure 2

illustrates the exploration process. During the first phase of a

Fig. 2. Upper plot: Example plot of the three phases of the foothold
evaluation principle: a) making contact, b) haptic exploration phase, and
c) retraction phase. As soon as ground contact is detected, the leg starts
the haptic exploration process. Lower plot: The introduced metric µF to
characterize the quality of the sample foothold.

measurement cycle, the foot approaches a selected foothold

(a). Once in contact, the ground contact force in gravitational

direction (force component Fz in our setup) of the robot is

increased (b1). After reaching the magnitude Fzmax = 25N,

a tangential force FT =

(

Fx

Fy

)

is introduced and its mag-

nitude is raised over time, while the tangential orientation

of the force vector is altered (b2). The measurement process

is aborted as soon as substantial foot slippage is detected or

if the selected foothold could withstand its examination. To

characterize the quality of the terrain samples, we introduce

the simple metric µF =
+
√

F 2
x+F 2

y

Fz
∀ Fz > 0. This

value is similar to the coefficient of friction or even equal

to the coefficient on flat ground, and a high value indicates

a mechanically robust foothold. Together with the known

Fzmax, this metric gives a conservative guess about the

maximal allowed magnitudes of normal and tangential forces

(with respect to a global horizontal plane) that can be applied

at the examined foothold.

E. Test setup

To collect foothold quality estimates and geometric in-

formation of the terrain samples, the test-setup depicted in

Figure 3 has been used. It is composed of a single robotic leg

([22]) with 3 degrees of freedom that is mounted to a fixed

frame (a). To reduce the position error mainly determined by

the backlash in the gears of the leg, a further camera was used

to track the foot position. To reliably measure the ground

contact forces, the leg was equipped with a force/torque

sensor (ATI Mini45) that is integrated in the shank segment.

The leg is controlled in two different modes: During swing

phase, the leg is kinematically controlled. In ground contact,

3280



Fig. 3. Left side: A picture of the complete test-setup with the part a)
to haptically explore the terrain samples and part b) to record the elevation
map of the terrain samples. Right side: Close up of the robotic leg and the
attached markers for the external position tracking.

Fig. 4. Pictures of the three different terrain sample types for the
experiments ( (a) adjustable incline for preliminary testing, (b) terrain
sample with simple geometry and (c) naturally inspired sample with a
complex shape.

force control is applied by adjusting the motor current as

a function of the force sensor feedback. The foot element

itself is a spherical rubber ball with a diameter of 4 cm

and relatively high coefficient of friction. The testbench is

further equipped with and Microsoft Kinect RGB-D-Camera

to collect depth information of the terrain samples (b).

III. EXPERIMENTS

Experiments were conducted on three different types

of terrain samples (Figure 4). First, to characterize

the repeatability of the measurements under simplified

conditions, an adjustable incline was used (a). The second

sample type consisted of terrains with very simple geometry

made of wooden blocks with different slope angles (b). The

complex samples (c) were produced from NASA elevation

data (Elevation data from the Shuttle Radar Topography

Mission 30-arcsecond data (SRTM30)) and scaled so that

the maximal difference in height was about double the

foot diameter. In contrast to the other two sample types,

the terrain were rapid prototyped with high precision. This

allowed to compare the reconstructed terrain with the model

data used for the production.

IV. RESULTS

A. Geometric clustering

The synthetic terrain data with a known cluster number

(e.g. six in our case) was used to evaluate the three different

clustering methods, K-means, K-medoid and Fuzzy c-means

clustering. The data set was based on the features computed

through the moments of the height map, feature set F2 .

N XB CH DI S

3 7.4299 119.8584 0.70909 0.22104

4 7.4444 146.7819 0.4715 0.1536

5 852.6972 14.1122 0.4715 0.19894

6 857.1201 9622.8888 9.3502 0.16104

7 NaN 2490.4064 0.043059 0.1421

8 NaN 13105.8625 0.099595 0.12383

9 NaN 94266.0248 0.04565 0.074619

max max max max

TABLE I

K-MEANS CLUSTERING

N PC CE XB DI S

3 0.85152 0.28503 2.3459 0.70909 0.23575

4 0.8126 0.35437 1.9359 0.71818 0.24816

5 0.89401 0.20238 3.4004 1.0188 0.12288

6 0.99928 0.0031533 3.5327 9.3502 0.16489

7 0.97237 0.04893 3.2895 0.12438 0.085801

8 0.98047 0.033434 3.9603 0.35471 0.12387

9 0.9642 0.065387 3.6655 0.19966 0.089678

max min max max max

TABLE II

FUZZY C-MEANS CLUSTERING

Table I contains the results for K-means clustering where

seven different cluster sizes (from three to nine clusters)

were proposed to the clustering method. While the Calinski-

Harabasz (CH) index as well as the Silhouette (S) index

indicated an incorrect number of clusters for the given data

set, the other validation methods, Xie-Bin (XB) and Dunn’s

index (DI), came up with the actual cluster number as

optimal solution. The last row of the table indicates whether

the maximum or minimum identifies the optimal number of

clusters for the specified validation metric.

Table II shows the results of the validation metrics for the

Fuzzy C-means clustering method. The Silhouette index

once more indicated the wrong number of clusters, as well

as the Xie-Bin method. All other methods identified the

correct number of clusters. Assuming a similar structure of

the underlying data, those results indicate which internal

validation method perform best to determine the required

cluster number to separate the data set.

To evaluate the effect of the different feature sets to

represent the footholds, the clustering result (of the fuzzy

clustering) are visualized by a Silhouette plot (Figure 5),

where each data point is represented by a bar that ranges

from -1 to +1. Values close to +1 indicate that the data point

is similar to others within the own cluster and distinct to

points belonging to other clusters. It is obvious that data

based on image statistic features is clearly separable, while

the other two feature sets lead to data that is poorly separated.

B. Validation of the repeatability of the quality measurement

The experiments on the adjustable incline allowed to

validate the proposed haptic exploration under very simple

conditions. For each of the selected slope angles of the
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Fig. 5. Silhouette plots to visualize the results of the clustering process of
the artificial foothold set (Left: Results for the feature set F1 that is based
on the average slope angle, the relative height and the variance of the height.
Middle: Results for the clustering on features based on the central moments
(feature set F2). Left plot: Results for the Tamura features (feature set F3).

Fig. 6. Plot illustrating the distribution of the approximated µF for different
angles of the adjustable incline. The dashed line represents the computed
coefficient of friction µ of the foot/incline.

adjustable inclination (0,10,20,30, and 40 degrees), 100

measurement cycles were performed.

The box plot in Figure 6 illustrates the distribution of the

measurements. Each box represents the data within the first

and the third quartile, and the line the median of the ap-

proximated µF . The whiskers of the plot point out the range

of measurements that are still within ± 1.5 times the inter-

quartile range (difference of the third and the first quartile).

Samples plotted as crosses mark the outliers. At 40 degrees,

the leg started to slip before the tangential force could be

applied for all the 100 measurements. As an indicator of the

correctness of the measurements, the coefficient of friction

µ of the adjustable incline with angle α was calculated:

F
′ = RF̃, so that µ = sin(α)+cos(α)·µF

cos(α)−sin(α)·µF
, where the vector

F
′ denotes the force components normal/perpendicular to

the slope, R the 2D rotation matrix and F̃ the measured

force components in robot body coordinates. Ideally, when

slipping in the direction of the slope, the computed µ should

be identical for all the inclination angles. The dashed line in

Figure 6 shows a plot of the computed friction coefficient

for the slope angles smaller than 40 degrees.

C. Real terrain samples

Figure 7 illustrates the haptically measured foothold qual-

ity at the different locations of the simple (left) and the

complex (right) ground geometry sample. We will refer to

this as haptic ground truth data. As expected, flat ground

and concave structures show the best quality. Furthermore,

also hilltop areas represent good quality as the relatively

Fig. 7. Plot of the terrain samples and the quality metric for the footholds
based on the haptic exploration (used as ground truth) (Left: Terrain with
simple geometry, right: naturally inspired terrain).

Fig. 8. Plot of the terrain for testing with the predicted quality measure
(Top left plot: 4 clusters, bottom left: 19 clusters, top right: 25 cluster,
bottom right: 46 clusters).

compliant ball foot deforms such that high tangential forces

can be applied.

We further use the k-means algorithm to cluster the

footholds according the terrain geometry and assign a single

haptic quality measure to each cluster. This quality ’label’

is determined by computing the mean quality measure of

all the explored footholds of the corresponding cluster (one

half of the ground truth footholds were used for this quality

labeling process). The determination of the cluster number

(19 for the simpler terrain and 46 for the naturally inspired

terrain) is based on the interpretation of the Dunn’s index as

internal cluster validation method.

The top left plot of Figure 8 shows the testing results for

a cluster number of four. The mean absolute error of the

foothold quality estimate and ground truth is about 0.2592,

and is reduced to 0.1042 for 19 clusters. The right side of

the Figure 8 shows the same for the terrain with naturally

inspired geometry. Here, if 25 clusters are used, the mean

error of µF is about 0.0996. Figure 9 visualizes the results

of a robustness prediction for a haptically unexplored shape.

The blue regions are unknown - no haptic label could be as-

sociated to the shape of the region (the ground truth footholds

were used for this quality labeling process). Intuitively, the

results of the prediction seem to make sence - flat regions

are more robust, the robustness decreases with increasing

slope angle at the boarders and the unknown footholds are

not represented in the ground truth data.
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Fig. 9. Visualisation of the robustness prediction for a ’haptically unknown’
terrain (1 m

2).

V. CONCLUSION

In this paper, an unsupervised method to estimate the

foothold quality by only knowing the foothold geometry

has been presented. First, possible footholds are clustered

according to features that are based on geometrical properties

of the terrain. Second, haptic information that is recorded

during ground contact of a robotic leg is assigned to the

clusters (sets of footholds). In the study, three different

sets of features, three different clustering algorithms and

various cluster validation methods were examined based

on synthetic and real terrain data. The synthetic data has

been used to evaluate the usefulness of the feature sets

as well as the cluster validation methods. This helped to

identify feature sets that are invariant to rotation and to a

certain level of noise. Features based on the central moments

(feature set F2) of the elevation map proved to describe

the applied data set most accurate. Further, a method has

been presented to evaluate the quality of footholds without

human intervention or expert knowledge. Instead, the quality

of a potential foothold is determined by the experience

from foot/ground interaction of the robot. The method has

been validated repeatedly on a adjustable incline with low

variance. Geometric foothold clustering and haptic quality

identification was finally successfully applied to different

simple and complex geometries. Even if experiments with

real terrains and real robotic legs have been performed, so far,

the effect of different mechanical terrain material parameters

(such as shear strength, coefficient of friction or ductility) are

neglected. Further investigation will be required to address

this subject.

In comparison to existing work, the presented method is

not based on human intuition but generates foothold labels

that directly correlate to the maximal forces that can be

applied without slipping. This renders the method especially

useful for unknown terrain, where the mechanical robustness

can not be determined by human experts anymore. This

illustrates that a robot-centric perspective on foothold quality

can be highly advantageous and emphasizes the usefulness

of the approach.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the team of the Raplab

of D-ARCH, Alessandro Tellini, Reto Klingenfuss, and

Daniel Bachmann for the great work in manufacturing of

the terrain samples and Markus Buehler as well as Dario

Fenner for the support on the mechanical construction.

REFERENCES

[1] M. P. Murphy, A. Saunders, C. Moreira, A. A. Rizzi, and M. Raibert,
“The LittleDog robot”, in International Journal of Robotics Research,
30(2), pp. 145-149, 2010.

[2] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, J. E.
Pratt, “A Controller for the LittleDog Quadruped Walking on Rough
Terrain”, in IEEE International Conference on Intelligent Robots and
Systems, 2007.

[3] M.Kalakrishnan, J. Buchli, P. Pastor, S. Schaal, “Learning Locomotion
over Rough Terrain using Terrain Templates”, in IEEE International

Conference on Intelligent Robots and Systems, 2009.
[4] M. Zucker, J. A. Bagnell, C. G. Atkeson, and J. Kuffner, “An Optimiza-

tion Approach to Rough Terrain Locomotion”, in IEEE International

Conference on Robotics and Automation, 2010.
[5] A. Krebs, C. Pradalier, R. Siegwart, “Adaptive Rover Behavior Based

on Online Empirical Evaluation: Rover-Terrain Interaction and Near-
to-Far Learning”, in Journal of Field Robotics, Vol. 27, No. 2, pp.
158-180, 2010.
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