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Global Optimal Data Association for Multiple People Tracking 
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Ahstract- Multiple people tracking is an important compo­
nent for different tasks such as video surveillance and human­
robot interaction. In this paper, a global optimization approach 
is proposed for long-term tracking of an a priori unknown num­
ber of targets, particularly aim to improve the robustness in case 
o�' comrle� interaction and mutual occlusion. With a state-space 
dIscretIzatIOn scheme, the multiple object tracking problem is 
formulated with a grid-based network flow model, resulting in 
a convex problem that can be casted into an Integer Linear 
Programming (lLP), then solved through relaxation. In order 
to allow recovery from misdetections, common heuristics such 
as non-maxima suppression is eschewed within observations. 
In addition, we show that how behavior cue can be integrated 
into the association affinity model, providing discriminative 
hints for resolving ambiguities between crossing trajectories. 
The validity of the proposed method is demonstrated through 
ex�eriments on multiple challenging video sequences, using a 
calIbrated multi-camera setup. 

I. INTRODUCTION 

People tracking is an important issue in various applica­
tions, such as video surveillance and cognitive human-robot 
interaction. However, it is a highly challenging problem, due 
to the uncertainty in physical target appearance, complex 
target interaction, mutual occlusion, cluttered environment. 
Tracking-by-detection approaches, with the advantage of be­
ing resistant to divergence, have demonstrated impressive re­
sults in addressing these challenges. Such approaches involve 
two separate steps, including time-independent detection and 
association of detection across frames. 

The data association component is difficult in the face 
of false positives, missing detections, similar and mutually 
occluded targets. Classic data association approaches such 
as Global Nearest Neighbor (GNN) [1] is based on the 
idea of bipartite matching, which formulates the single­
scan observation-to-track association as a two-dimensional 
assignment, choosing the one with the highest joint proba­
bility as final association for current scan among all possible 
assignments. It has low computational complexity, however, 
it suffers from severe drawbacks in dense and noisy en­
vironments. Other approaches, such as Joint Probabilistic 
Data Association Filters (JPDAFs) [2] and Multi-Hypothesis 
Tracking (MHT) [3] jointly consider the data association 
from sensor measurements to multiple overlapping tracks. 
In particular, JPDAF combines all of the potential measure­
ments into one weighted average, before associating it to 
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the track, in a single update. While MHT calculates every 
possible update hypothesis, with a track, formed by previous 
hypotheses associated to the target. Both methods are known 
to be quite complex, and require a careful implementation in 
terms of parameters. In particular, the latter can not avoid 
the drawback of an exponentially growing computational 
complexity, with the number of targets and measurements 
involved in the resolution situation. Moreover, a global 
optimal solution cannot be guaranteed in sub-exponential 
time although they attempt to model the joint trajectories 
of all objects. 

Recent works show that global optimization approaches 
of using Dynamic and Linear Programming have appeared 
to be powerful alternatives. Berclaz et al. [4] studies an 
efficient approximate dynamic progranuning scheme over 
invidual trajectories. Greedy strategies are utilized to com­
bine trajectories and handle potential conflicts. This approach 
tends to mix trajectories when targets are densely located, as 
occlusions are not explicitly modeled because of separate 
optimization. 

By contrast, Linear Prograrmning seeks to optimize all 
trajectories simultaneously over the whole sequence. Jiang 
et al. [5] tackles multiple people tracking problem with the 
use of Integer Linear Programming, in which the problem is 
formulated as mUlti-path searching by explicitly modeling 
the track interaction and objects' mutual occlusion. The 
metric for inter-object interaction term is convex while the 
intra-object term quantifying object state continuity through 
sequence. This scheme explores a large search space effi­
ciently and gives a near-global optimality, because of the 
specific structure of the formulation. However, its state­
space only consists of observations, not able to interpolate 
trajectories smoothly in case of the false alarms, moreover, it 
requires a priori knowledge of the number of targets, which 
severely limits its applicability in pratical situations. 

Similarly, Berclaz et al. [lO] formulates multi-people 
tracking problem as a constrained flow optimization, result­
ing in a convex problem that can be solved by standard 
Linear Programming techniques. Their method does not need 
a priori knowledge of target numbers, and the model is far 
simpler. Nevertheless, they haven't incorporate appearance 
features into data association process, which makes their 
approach prone to ID-switches in complicated scenarios. 
While dynamic model is also discarded in this work. 

Shitrit et al. [11] extends the work of [lO], that addresses 
the appearance limitation by exploiting the global appearance 
constraints, in which the total number of tracked person 
is partitioned into L groups, and a separate appearance is 
assigned to each group. It reduces the number of ID switches 
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Fig. 1. Sample frames of close interaction and highly occlusion. 

for overlapping tracks. However, the appearance templates 
are selected manually through bounding boxes corresponding 
to members of each group. 

Some other methods, like Quadratic Boolean Program­
ming (QBP) [12], min-cost flow [6], have also been tailored 
to simultaneously optimize all tracks in polynomial time, 
are in fact closely related to ILP. The work [12] couples 
detection and estimation of trajectory hypotheses by QBP, 
such approach can only optimize over a limited time window, 
as the hypotheses search space is combinatorial. While 
Zhang et al. [6] defines data association as a maximum-a­
posteriori (MAP) problem, and models trajectory hypotheses 
as disjoint flow paths in a cost-flow network. 

Despite of intensive studies, robust and efficient tracking 
of multiple targets with complex interactions and signifi­
cant mutual occlusions remains a problem. Meanwhile, the 
proposed different ways of handling the data association 
problem do not take advantage of any behavior cue, such as 
body orientation, which provides the direct evidence of what 
the person is going to do and where the person is facing at. In 
particular, it can provide valuable insight into the dynamics 
in case of social interaction and mutual occlusion. Although 
some works couple the dynamic model into the affinity 
model [l3], however, such dynamic models mostly suppose 
steady heading, steady velocity or steady acceleration. It is 
problematic when a person is static or in low speed, as the 
velocity becomes too noisy to provide reliable information. 

In this paper, we propose a global optimization approach 
for long-term tracking of an a priori unknown number 
of targets, with random walking in an overlapping, multi­
camera environment. The primary goal is to address the 
problem of complex interaction and mutual occlusion by 
exploiting a consistency scheme on behavior cue, as well 
as compensating measurements of location and appearance. 
Fig. 1 shows the example of such difficuties that targets 
are interacted extremely close or highly occluded by each 
other, with similar position even appearance, and remains 
almost static over a few frames, nevertheless, the behavior 
cue - body orientation provides discriminative hints with 
corresponding targets. 

More precisely, the multiple target tracking problem in 
this work is formulated in terms of finding the global 
maximum of a convex objective function, then solved ef­
ficiently through a linear programming relaxation. By taking 
the full advantage of our previous hierarchical grid-based 

//�-----------------------------------------------------------\11' ---4 Cameras on Ceiling 

�c_oo'd,"ate 
_________________________________________ • _____ � .. 

[,;. 
World Coordinate Ground Plane 

Fig. 2. Hardware setup. 

detector [8], the regular discretization scheme is further 
adapted in current work. With this particular scheme, a 
grid-based network flow model is constructed, in which the 
nodes and edges encoded correspondingly, as also inspired 
by the work of [10]. This scheme allows to effectively 
avoid intermediate hard decisions and simply model mutual 
occlusion because of the specific graph structure. To enable 
the tracker recovering from mis-detections, we carry out 
non-maxima suppression during tracking rather than during 
detection, with the contrast to previous approaches that the 
state-space only consisting of observations, which are not 
able to interpolate trajectories smoothly in case of false 
negatives. Moreover, the measurements of body orientation, 
target location and appearance are incorporated in a global 
manner. The explicit use of behavior cue can disambiguate 
the situation such as in Fig. l. This is distinctive compared 
to many state-of-the-art approaches that only depend on 
appearance or dynamic model. 

The remainder of the paper is organized as follows. 
Section II describes the general system overview with hard­
ware setup and algorithmic flow of software. The problem 
formulation and optimization framework are given in Section 
III. Section IV presents and discusses experimental results. 
At last, in Section V the paper is brought to conclusion and 
future development roads are proposed. 

II. SYSTEM OVERVIEW 

The system for the global optimal multiple people tracking 
is described, starting from the hardware setup to an overview 
of the proposed approach, followed by details on the specific 
components that are involved. 

Our system hardware setup is depicted in Fig. 2. Four 
uEye usb cameras, with a resolution of 752 x 480, are 
mounted overhead on the corners of the ceiling, each of them 
observing the same 3D scene synchronously from different 
viewpoints, providing a more informative measurement set. 
Furthermore, all the four cameras are connected to one 
multi-core Pc. A necessary step before being able to get 
accurate 3D information, is calibration of the intrinsic and 
extrinsic camera parameters, that we perform with the Matlab 
Calibration Toolbox, with respect to a world coordinate 
system placed on the floor. 

The flow chart of our proposed approach is outlined in 
Fig. 3. After acquisition of original frames from the four 
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Fig. 3. Overview of the proposed approach. 

cameras, a hierarchical grid-based detection [8] is followed, 
to obtain the potential observations. Note that we eschew 
common heuristics such as non-maxima suppression during 
detection, in order to allow following tracker to recover the 
most probable locations in accordance with all evidences. 
With the output from detector, each observation is charac­
terized by a descriptor that records the features including 
location and appearance. However, it is not sufficient for 
a people tracking approach to determine data association 
only according to the location reference and appearance 
model, e.g. tracking may fail if two targets get very close 
or wear similar clothing. To overcome this limitation, we 
incorporate a discriminative cue on body orientation, which 
is estimated by utilizing the technique proposed in the work 
[9]. As proposed in our previous work [8], the state space is 
partitioned into integral grids with a coarse-to-fine strategy. 
We follow the discretization structure in current work, with 
the per-frame measurements sampled on regular grids. A 
grid-based network model can be constructed afterwards as 
concisely illustrated in model construction part, while the 
corresponding detailed model will be shown in Subsection 
III-A. A consistency scheme on behavior cue, as well as 
measurements of location and appearance, is modeled as 
transitional cost between nodes at two consecutive time steps. 
As illustrated in model construction part, the affinity measure 
can achieve highest only if the nodes have simultaneous 
similarity on all cues of location, appearance and orientation. 
Next follows the global optimization part, consists of for­
mulating the data association problem as finding the global 
maximum of a convex objective function, which in our work 
is solved by a linear programming relaxation, and at last 
leading to track output with identity associated to each target. 

III. GLOBAL OPTIMAL DATA ASSOCIATION 

In this section, more details are provided about the pro­
posed approach on finding global optimal solution for multi­
target tracking. We start with the formulation of a grid-based 
network flow model, with the nodes and edges encoded. Then 
transform the maximum a-posteriori trajectory estimation 
into an Integer Linear Programming (ILP) problem, solved 
through relaxation. Followed by the association affinity 
model, in which a consistency scheme is exploited on be­
havior cue, as well as the compensation with measurements 
of location and appearance. 

A. Grid-based Network Model 
The state space is partitioned into discrete regions with 

a coarse-to-fine stratew during detection phase [8]. Each 

discrete region {R"/} 
i
�l is sampled at its center, where 

1 � I � L, L is total levels of state space hierarchy, NI is 
the number of grids at level I. With the refinement through 
detection, a set of observations with world-space position 
then would be on the leaf level L. Assume there are N� 
observations at time instant t, 1 � t � T, the observation 

set then be R(t) = { (R{l,L,R;,L, ... ,R�'o,L }, while the full set 

of observations is 9\ = {R(t)}. As we avoid non-maxima 
suppression during detection phase, these observations may 
contains many false positives, therefore, we wish to find 
a track for each target by eliminating the false positives 
and recovering from false negatives, as an ordered set of 

b t· T. - { (Rnl,L Rn2,L RnbL} h Rnj,L ro 
o serva IOns n - l '  2 , .. " T , w ere { E .:Il, 
and the set of all single trajectories is, f!7 = {T,,}, 

Due to the similar discretization strategy, an idea to 
construct a grid-based flow model is inspired by the work 
[10], with extension of a new consistency scheme within 
time intervals. For NL discrete grids and T consecutive time 
steps, a directed acyclic graph (DAG) with NLT nodes is 
introduced as shown in Fig. 4, in which every node represents 
a discrete grid at a given time step. For a simpler flow-based 
analysis, the nodes are represented in the form of pairs within 
our model, allowing to explicitly model object dynamics 
through transition costs by considering the relationship of 
observations between two consecutive time steps. Whereas 
the transition cost in the model of [10], is assigned only 
with the occupancy probability of corresponding grid. For 
any location Ri,L, that an object located at Ri,L (which will 
be encoded as node i in following text) at time t can reach 
its neighbors JV (i) including itself at time t + l. Therefore, 
a path for the object starting from node i to node j is 
represented as p;,j, valued p;,j E {O, I}, encoding that if the 
path is within part of some trajectory, that is, p;,j = 1 means 
that the path is on the trajectory, and p;,j = ° means not. 
The cost c ( i, j) of each p;,j between node i and node j is 
assigned in the light of an association affinity model, which 
will be further described in Subsection III-C. 

By taking advantage of the grid-based network flow 
model, we define a list of constraints to guarantee that each 
edge(path) through the DAG is practically possible: 

Continuity Potential As illustrated in Fig. 5, in order to 
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Fig. 4. The grid-based network flow model for multiple object tracking. 

enforce continuous trajectories for tracks, that for any node 
j, paths arriving at j at time t should be equal to the sum 
of paths leaving from j at time t + 1, 

\..It' � i,j � j,k 
v ,j, i... PI = i... PI+!' 

i:jEJV(i) kEJV(j) 
(1) 

Occlusion Term With the sampled grid resolution is 
sufficiently fine, no two objects should occupy the same grid 
at one time, thus, for any node j, the sum of paths from j 
should be no more than 1, 

\..It' � j,k < 1 v ,j, i... PI - . (2) 
kEJV(j) 

Initialization and Termination Scheme For automati­
cally initialize and terminate a track, a source and a sink 
nodes - Vsource and Vsinb are introduced into the proposed 
network flow model, as shown in Fig. 5. At the first frame 
each node is connected to the source node, while at the last 
frame each one is connected to the sink. The source and 
sink nodes are subject to a contraint that all paths should 
start from Vsource and end at Vsinb 

L pv.wurce,j 
= L pk,Vsink . 

jEJV(vsource) k:VsinkEJV(k) 

B. Linear Programming Formulation 

(3) 

The objective of global optimal tracking is to link all the 
detections together over the whole sequence, choosing links 
so that the total probability is maximized, that is, maximizing 
the posteriori probability of :7 with given observation set 9\, 

:7* = argmaxP(:7 I9\) 
:Y 

= argmaxP(9\ I :7)P(:7) . 
:Y 

(4) 

To convert it to an Integer Linear Programming(ILP) 
problem, its objective function is linearized with respect to 
a set of flows p;,j E {O, 1}, which indicate if a path is within 
part of some trajectory or not, as mentioned earlier. Then the 
proposed grid-based network flow model can be expressed as 
an ILP with the following objective function, by minimizing 
the total cost, 

Frame 1-1 .1 . 1-1 

Fig. 5. Illustration of constraints. 

x* = argminCT p 
X 

= argmin L c( V.50urce, i) pVsource,i + L c( i, j)p;,j 
X i i,j,1 

+ LC(i, Vsink)pi,vsink , 

(5) 

in which the cost function C will be described in more details 
in Subsection III-C. 

Minimizing the criterion of (5) under the constraints of 
( 1) to (3) can be rewrote as follows, 

minimize CT p 

subject to 
. . . k \..It j' � p,,} _ � p}, v " i... I - i... 1+1 

i:jEJV(i) kEJV(j) 

'Vt,j, L p{,k:::; 1 
kEJV(j) 

L pVsource,j 
= L pk,V'ink 

jEJV(vsource) k:VsinkEJV(k) 

'Vt,i,j, p;,j E {O, I} . 

(6) 

Since Integer Linear Programming is NP-complete, we 
relax the condition p;,j E {O, 1} to 0 :::; p;,j :::; 1, resulting in a 
significant complexity reduction, and the relaxed formulation 
can be sufficiently solved with the simplex or interior-point 
method. The LP results then, are no longer guaranteed to be 
integer. However, we find in the experiments that the results 
are in most cases round integral, therefore gives the globally 
optimized solution. 

C. Association Affinity Model 
The details on the association affinity model are provided, 

which incorporate the measurements on behavior cue, as well 
as location and appearance in a global manner. With the set 
of observations 9\, we extract the features respect to location, 
color appearance, human body orientation, as illustrated in 
feature extraction module in Fig. 4. Location feature of each 
observation is represented as a grey node, its corresponding 
color measurement is represented as a colored one, while the 
arrow indicates the orientation cue. 

Therefore, the transition probability term for each path pi,j 

leaving from node i to node j, is according to, 
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{ AI ·Apos(i,j) +A2 ·Aappr(i,j) +A3 ·Aori(i,j), 
A(i,j) = if ti -ti = l,j E JV(i) 

0, otherwise 
(7) 

which is a weighted sum of these three affinities Apos(i, j), 
Aappr(i, j), Aori(i, j), respectively are location, appearance, 
orientation affinity between nodes i and j. AI, A2 and A3 
are constant coefficients, with Al + A2 + A3 = 1, to control 
the weight for compensating with each other if any of the 
three features becomes ambiguous. To minimize the total 
cost according to (6), -log(A(i,j)) is defined as the cost 
c ( i, j) of path pi,j. 

In particular, the location affinity term Apos(i,j) concerns 
the spatial distances between two detection responses within 
two consecutive time steps, 

. . I lli -ljll Apos(l,j) = exp( - 2 ) . (8) 
(J/ 

Note that the detection responses are on the 3D ground 
plane, not in 2D image plane. And the absolute spatial 
location difference is a LI norm. 

For the appearance term, eIE Lab color space is employed 
for better characterizing the color content, which has the 
advantage of being perceptually uniform. 64 x 64 x 64 color 
histograms are extracted from foreground images according 
to the detection responses. It is worth noting that the fore­
ground images are obtained through utilizing a GPU based 
foreground/background segmentation approach proposed by 
Griesser et al. [14]. 

To compare the color feature similarity, Bhattacharyya 
distance measure is utilized because of its good classification 
property, allowing the combination of different features in a 
straightforward way. The similarity is multiplied through all 
views and assigned to corresponding path between nodes i 
and j. 

.. IT dB(a;,aj) Aappr(l,j) = exp( - 2 ) , 
Ilv (Ja 

(9) 

where dB is the Bhattacharyya distance between color feature 
a; and aj. 

Follows the crucial body orientation term, which is sel­
dom considered in most state-of-the-art approaches. As al­
ready emphasized before, the body orientation cue provides 
hints for resolving ambiguities between crossing trajectories, 
which is discriminative enough even if crossed targets have 
similar appearance or move very slow. 

This cue can be estimated with location reference from 
detection responses. Therefore, the affinity is defined by the 
difference between two consecutive orientation estimates, 

.( .. ) _ ( 
0.5 * (1- cos(le; -ejl) ) Aorz I,j -exp - 2 . 

(Je 
(10) 

Note that the orientation ei and ej are computed in 3D 
space, being defined as the rotation with the axis perpendic­
ular to the ground plane. The form of 0.5 * (l-cos(lei -ejl)) 
makes the orientation difference lie in the interval of [0, 1]. 

The significant advantage of adding the orientation affinity 
term, is that more accurate trajectories can be estimated in 
case of close interaction or mutual occlusion, which will be 
demonstrated in our experiments in Section IV. 

IV. EXPERIMENTAL RESULTS 

This section aims to show the demonstrative results of 
our proposed approach. We evaluate the algorithm through 
pre-recorded video sequences, with multiple people entering 
and leaving the scene, as well as closely interacting with 
each other for long time, or be seriously occluded by others. 
The sequences have been simultaneously recorded from four 
cameras, as described in Section II, with a resolution of 
(752 x 480), and a frame rate of 25 fps. 

A. Implementation Details 

Before carrying out the global optimization for data asso­
ciation, the Hierarchical Grid-based Detection algorithm [8] 
and 3D Appearance Model based Body Orientation Estima­
tion [9] are performed, to obtain the required observations 
and features. For completeness of the paper, we briefly 
summarize the steps below. 

Hierarchical Grid-based Detection It first performs an 
edge-based background subtraction with images from all 
views. Afterwards, an oriented distance transform is com­
puted on foreground edge image, in order to match with 
each template, through both location and orientation of its 
contours' each pixel. The state-space is partitioned into 
discrete regions with a coarse-to-fine strategy, the templates 
are then generated by rendering a 3D model composed of 3 
cylinders at each state, under respective camera projection. 
The likelihoods are then computed by matching projected 
templates and oriented DT for each camera view on coarse 
grid firstly, then refined on the next resolution only the lo­
cations where its likelihood is higher than a given threshold, 
the joint likelihoods can simply be multiplied over all views. 
Therefore, at each time t and each discrete region (x,y), the 
likelihood p:,Y is produced as the probability of presence of 
a target. 

In our experiments, the state grids are set up respectively 
as lO x 10, 20 x 20 and 40 x 40 from the coarsest to the 
finest, resulting in a total of 2100 grid cells. Since the area 
of interest is (6m x 4.2m), the corresponding grid on the 
finest level has a resolution of (150mm x 105mm). 

Body Orientation Estimation With the ground plane 
location observations from above grid-based detector, the 
body orientation e can be estimated through the method 
proposed in [9] with the location reference (x,y). In a 
nutshell, it generates a 3D appearance model for each new 
target, by back-projecting the pixels from foreground images 
onto the surface of 3D geometry body model, rendered 
as a 3D colored point cloud, then combining with a 2D 
template-based matching approach due to 3D12D projection 
and visibility test. 

Orientation e is defined as the rotation of the minor axis of 
cross section of 3D body model with the axis perpendicular 
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to the ground plane, while in our experiments, it is discretized 
into 12 discrete orientations by covering 3600• 

Global Optimal Data Association As described above, 
the space is discretized into 40 x 40 grids on the finest 
level, with each node of the grid at time t connecting to 
its 9-neighborhood (8 neighbors and the central location 
itself) at time t + 1, resulting in 14,400 flows between two 
consecutive frames. We define the transition cost c( i, j) to 
be 0 if there is no observation on node i, that reduces the 
size of graph, which efficiently decreases the computational 
cost. The three parameters at, aa and ae within association 
affinity model are the standard deviation, all set to 0.5 
empirically, governing the relative influence of the similarity 
corresponding to location, color and orientation. Moreover, 
in order to make the optimization process tractable for long 
sequences, we utilize the common strategy of separating the 
sequence into several batches of frames, with an overlapping 
time window. The number of frames in each batch and the 
overlap length are respectively set to 50 and 10. And the LP 
problem is solved by IBM ll.,OG CPLEX Optimizer [15]. 

B. Tracking Performance 
Two sets of experiments are conducted, by testing on 

two sequences both with four targets involved, while the 
observing area is 6m x 4.2m. 

The first experiment tests with a sequence consists of 
3160 frames, in which the objects have interaction for long 
time. This scenario is aiming at evaluating the ability of our 
approach for dealing with long-term interaction, especially to 
verify the validity of the affinity term on behavior cue. Fig. 
6(a) illustrates some sample frames of the tracking result, 
particularly between frame 2435 and frame 2498, target 1 
and target 2 get extremely close and interact with each 
other across several frames, even with their clothing quite 
similar. Nevertheless, as they have obvious opposite body 
orientation, which can provide a powerful compensation in 
this ambiguous case, target 1 and 2 successfully maintain 
their own identity throughout the interaction. 

The second set of experiments is conducted on a sequence 
with 1800 frames. Within this sequence, most of the targets 
are wearing very dark clothing, with ambiguous appearance 
compared to each other. The objective of this case is to 
evaluate the capability of how the three affinity terms com­
pensate with each other if any of the three features becomes 
ambiguous. As shown in Fig. 6(b), we can see the challenges 
due to targets that are occluded by each other from one 
or two views. Between frame 948 and frame 970, target 
3 is trying to pass through between target 0 and 1, their 
spatial locations are very close, however the distinguishing 
appearance of target 3 helps itself maintain its identity, 
as well as owing to its different orientation compared to 
other two targets. Conversely at frame 1040, target 0 and 
target 1 have close interaction while wearing extreme similar 
dark clothing, however their distinctive orientation provides 
efficient hint despite of the similar appearance. 

Note that there are approximately 100 observations in 
each frame by eschewing non-maxima suppression during 

Frame 
2435 

Frame 
2467 

Frame 
2498 

Frame 
2629 

Frame 
848 

Frame 
948 

Frame 
970 

Frame 
1040 

ViewO View1 View2 View3 

(a) Sequence 1 

(b) Sequence 2 

Fig. 6. Tracking results of our proposed approach on four camera views. 

detection phase. The adequate observations also greatly help 
for preserving the tracks during heavy occlusion and long­
term interaction. 

During conducting the experiments, we also pay special 
attention on the result values of the variables in linear 
programming relaxation. By processing each batch of 50 
frames, which results in 720,000 variables, we notice that 
719,800 of which are in the range [0,0.01], while 200 in the 
range [0.99,1]. That means the relaxed linear programming 
is able to give a global optimal solution in real problems. 

C. Quantitative Evaluation 
To better evaluate the performance of our proposed ap­

proach, we manually label ground truth data for each frame 
of the sequences, by rendering 3D cylinder model to coincide 
with the target area within image. Fig. 7 gives a quantitative 
evaluation of our experimental results, with the terms of iden­
tity maintainance and position accuracy. We select the most 
challenging clip including 500 frames for each sequence. 
(X, Y) position errors are illustrated in red and blue lines 
respectively, while the green boxes indicate sub-tracks. As 
expected, our global optimal data association based on multi­
featured affinity model greatly improves the tracking per­
formance with significant sub-track reduction, nicely filters 
the grid-based detection results, smoothly linking detections 
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Fig. 7. Performance evaluation with ground truth data. 

TABLE I 

MEAN SQUARED POSITIONING ERROR 

together in case of mis-detections and false posItIves. In 
sequence 1, target 0 and 2 smoothly switches id for one time 
around frame 2635, due to aforementioned occlusions and 
interactions, target 1 and 3 successfully maintains its identity 
throughout 500 frames. Similarly in sequence 2, target 1 and 
3 switches their id around frame 838, while target 0 and 2 
keeps well its identity. 

The position accuracy from Fig. 7 indicates that, despite 
the cluttered situation, the position errors are considerably 
low for each target, being most of the time under 100-
150mm. To be more quantitative, we also give out the mean 
squared positioning error for each target within correspond­
ing sequence in Table I. As mentioned above, the resolution 
on the finest grid is (150mm x 105mm), therefore the error 
corresponds to approximately one grid. 

For the running time, the optimization process for each 
batch of 50 frames takes 6.3s while executed on a desktop 
PC with Intel Core 2 Duo CPU (1.86GHz) and 3GB memory. 

V. CONCLUSIONS 

In this paper, we have proposed a global optimization 
framework for tracking a varying number of targets on 
discrete grids. Multiple target tracking problem is casted 
into Integer Linear Programming and then solved through 
relaxation, achieving a global-optimality in most cases. 
Experimental results on two challenging video sequences, 
demonstrate that our proposed approach deals fairly well 
with mutual occlusions and long-term interactions. The 
ground truth data is annotated for better performance eval­
uation. The proposed methodology can easily be applied 
to different camera setup and different environment, while 
also additional features can be included. Future work may 

involve investigating the optimization scheme further, with 
improving speed, robustness and versatility. In addition, 
we would like to extend our framework with non-stable 
illumination conditions, and also apply the system to high­
level scenarios, such as analysis of the trajectories, as well 
as human robot interaction applications. 
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