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Abstract— Change detection is important for autonomous
perception systems that operate in dynamic environments. Map-
ping and tracking components commonly handle two ends of the
dynamic spectrum: stationarity and rapid motion. This paper
presents a fast algorithm for 3D change detection from LIDAR
or equivalent optical range sensors, that can operate from
arbitrary viewpoints and can detect fast and slow dynamics.
Distinct from prior work, the method explicitly detects changes
in the world, and suppresses apparent changes in the data due
to exploration at frontiers or behind occlusions. Comprehensive
experimentation is performed to assess the performance in
several application domains. Sample data and source code are
provided.

I. INTRODUCTION

Autonomous perception systems designed for dynamic

environments require an explicit mechanism to reason about

change over time. Consider the following motivating exam-

ples from four distinct application domains: (1) an indoor

domestic or office environment in which people are tracked,

furniture and walls are mapped, but furniture is moved from

day to day; (2) an outdoor urban environment in which roads

and buildings are mapped, people and cars are tracked, but

parked cars change configuration daily and buildings yearly;

(3) an indoor or outdoor security scenario in which a threat

may be detected as a subtle but persistent change in the

environment due to the placement of a briefcase or roadside

bomb; and (4) a mining environment with the objective to

actively change the landscape over timescales spanning days

to decades.

Perception systems typically use a mapping component to

represent static spatial structure and a tracking component to

represent dynamic elements. This is a practical division due

to differing requirements. Mapping requires large volumes of

data to represent entire scenes, but does not require frequent

updates. Tracking needs only to represent moving objects,

but must do so continuously, on a short timescale relative to

their motion. The combination is effective for environments

with short timescale dynamics, however, changes that occur

over longer timescales are usually not modelled well by
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either component. The examples above are realistic applica-

tions in which mapping and tracking do not span the requisite

time scales, motivating the need for explicit change detection

strategies.

This paper focusses on 3D range data, with experimen-

tation relating to the scenarios above. An algorithm is pre-

sented that can rapidly and explicitly detect geometric scene

change from measurements taken from arbitrary overlapping

vantage points, with arbitrary temporal separation.

II. BACKGROUND

Several methods for change detection using 3D sensor data

exist in the literature. Motivated by security applications, [1]

uses a Gaussian Mixture Model (GMM) to align 3D scans,

compress them into a compact representation and detect

change. The representation is bounded in size by the envi-

ronment, not the increasing number of scans. Given a prior

GMM, change is detected by measuring the Mahalanobis

distance of new data points to the nearest Gaussian. Their

work uses colour information from a visual camera to assist

in detecting change. GMMs are also used in [3] and [9],

replacing Mahalanobis distance by a maximum clique search

between two GMMs in the former and by the Earth Mover’s

Distance [12] in the latter, though it is unclear whether either

method improves over the original.

In [15] it is argued that a GMM may not appropriately

model 3D structure, because the implicit Gaussian primi-

tives “scantly fit the data”. Though theoretically reasonable,

empirically there are many successful applications of GMM

clustering to represent point cloud data (e.g. for incremental

modelling [10], natural scene classification [7] and surface

intercepts [11]). As an alternative to clustering, [15] adopts

a Gaussian kernel to form a continuous 3D density function.

Changes in density are expressed as a boolean operation over

the representations after thresholding. Similar logical differ-

encing is performed in [13] for excavation applications, using

a discrete voxel occupancy grid instead of the continuous

functions in [15].

Motivated by disaster response scenarios, [6] provides a

Bayesian method for 3D change detection from aerial point

cloud data. After non-rigidly aligning two point clouds data

sets, an observation model for the second is derived by

predicting ranges to the first. Predictions are modelled with

Gaussian error in the distance from the sensor locations in

the second set to the nearest point neighbours in the first

data set. Bayes rule is applied to estimate the probability of

environmental change.



Several aspects of the methods above are combined in

[5] to provide a sophisticated and holistic approach to

data alignment, representation and change detection, using

a dense colour/depth camera (RGB-D sensor) in an indoor

environment. Following the intuition that changes indoors

are often due to the movement of whole objects, and that

change is simpler to segment than static object geometry

[14], change detection in [5] is motivated by its use as

part of an unsupervised approach to identifying semantically

significant objects. The method uses batch Simultaneous

Localisation and Mapping (SLAM) for alignment and surfels

for spatial modelling. The beam model from [6] is extended

to model the likelihood of range returns along beams, similar

to occupancy grids for sonar mapping [8].

The approaches above all implicitly assume that unmea-

sured space is unoccupied. As a result, none of these methods

explicitly reason about the nature of occlusions and incom-

plete sensor coverage that is commonplace with practical

sensing equipment. In this paper, an efficient approach to

change detection is presented, using ray tracing to incor-

porate the information contained along sensor ‘beams’1 and

not only the beam end-points summarised by point clouds or

representations derived from them, such as voxels, GMMs or

surfels. Therefore the interplay between the vantage point of

the sensor and the geometry of the scene is captured and

regions of environmental change are categorically detected.

This occurs despite the complex patterns of shadow caused

by occlusions and incomplete sensor coverage. Emphasis is

placed on detecting differences in the environment and not

differences in the data.

The main concepts behind the change detection approach

are presented in Section III, followed by the details of the

algorithm in Section IV. Section V describes the experiments

that were performed to verify the algorithm and quantify per-

formance in simulation and with real data from two different

sensors, in a cluttered indoor environment, an outdoor urban

setting and on an operational open pit mine. Results are given

in Section VI and Section VII concludes.

III. PRINCIPLES OF CHANGE DETECTION IN 3D

Changes are defined as differences in the 3D geometry of

an environment at two different times. Examples of change

cover all of the scenarios presented in Section I at various

timescales; a person walking through a scene, repositioned

table-top objects or furniture, demolition or construction of

a building or the excavation of a mine or building site.

A. Dependence on Representation

The nature of geometric change and its measurement de-

pends on the representation of the environment. A piecewise

surface model may represent change by the differences in the

surfaces [5], piecewise shape models such as GMMs express

change as differences in shape components represented by

1A beam refers to the free space light path inferred between a 3D data
point and the sensor origin. It relates directly to the physics of LIDAR, but
is also a reasonable approximation for other light based range sensor such
as RGBD cameras and stereo vision.

eigenvalues [3], [9], and spatial density functions operate

on changes in density [15]. Along these lines, much of

the prior work bases change detection within the chosen

representation, achieving significant data compression at the

cost of assuming unobserved regions of the environment

are the same as observed free space. Representations such

as these could in theory be adapted to explicitly model

free space and occlusion separately, however, this would

significantly affect their ability to compress the raw data,

which is one of their main benefits.

B. Change from Raw Observations

By contrast, in this work change is identified directly from

raw optical 3D sensor data, without the need to refer to

representations or models of the world. Increasing compu-

tation and storage capacity enables realistic methods such

as pose SLAM to maintain large records of raw observation

data, which then facilitates separate reasoning about free and

unmeasured space, leading to explicit detection of geometric

change. This work focusses on scanning LIDAR sensors, but

is applicable to any form of data that indicates free space

between the sensor and a surface intercept. In theory, this in-

cludes active sensors such as LIDAR, RADAR and structured

light sensors (e.g. RGB-D) and passive range sensors such as

stereo vision, however, experimentation with sensors other

than LIDAR remains future work. The remainder of this

section describes how information pertaining to geometric

change can be extracted from laser measurements.

C. Sensor and Observation Model

Figure 1 shows a simplified laser beam model. This

single datum informs about two things: 1) the location of a

boundary between free and occupied space and 2) that free

space is likely within the cone defined by the sensor origin

and the beam divergence up to the boundary. Point cloud

models or representations derived from them ignore the latter.

When multiple beams have been measured at different times,

changes can be detected wherever the information overlaps.

Figure 2 illustrates the concept for a situation where a simple

environment has changed, and a noise free sensor has been

repositioned between two scans. It is clear that for even

the simplest environments, complex patterns of information

are formed due to restricted sensor apertures and shadows

from occlusion. Noise from real sensors further complicates

the differentiation of occlusion and free space. Figure 2(c)

shows the region of overlap in which change can be explicitly

detected. A small portion of the change is missed, but larger

differences in the raw scan data (due to occlusion) are not

falsely detected as change. If the environment is sampled

more completely, all of the genuine change can be found

without being disturbed by misleading differences in the data.

Environmental changes may be further categorised as ad-

ditions, meaning a region that was free and is now occupied

as seen on the left side of Figure 2(c), subtractions meaning

a region that was occupied and is now free (right side of

Figure 2(c)) or discrepancies, meaning an apparent change

caused by sensor noise or other sources of error.





grazing angles, which result in varying range gradients in

spherical coordinates. This was overcome explicitly in [5] by

calculating surface normals, which is not required here. The

approach is similar to the maximum likelihood smoothing

proposed by [4].

Using the minimum range models the reference scan as

a piece-wise constant range surface. The model is less so-

phisticated than alternative approaches [6], [5] but is several

orders of magnitude cheaper computationally, and the results

in Section VI show good performance.

2) Condition 2: The second condition is required to

handle shadows caused either by incomplete scan coverage

or missing ‘holes’ due to non-returns. In both cases there is

no corresponding foreground surface in the data to explain

the shadow, so the first condition may incorrectly return true.

The second condition prevents false positives in this case.

D. Temporal Context

Algorithm 1 detects end points in one scan that violate

the free space regions defined by another. From the timing

of the scans the following external reasoning is applied:

tA = tB → change = discrepancy

tA < tB → change = addition

tA > tB → change = subtraction

The inequalities may be loosely interpreted depending

on the context. For example, in a mine environment, scans

taken 1 hour apart may be considered contemporary, where

only daily differences are considered to imply meaningful

change. Given a pair of scans, Algorithm 1 is called twice,

swapping the order of data to find additions and subtractions

by symmetry.

V. EXPERIMENTAL DESIGN

This section describes the experiments that were con-

ducted to quantify the performance of the algorithm. Four

sets of data were used (Table I), with simulated data and real

data from two different LIDAR sensors, in indoor laboratory

and outdoor urban and open pit mine environments.

A. Simulated

The simulated data were produced from a model of a room

with a box. Virtual LIDAR scans were generated with 1

degree resolution in θ and φ with full spherical coverage.

Eight scans were synthesised from four sensor and two box

positions, as illustrated in Fig 3. Points were automatically

labelled as box or background for ground truth. No noise

was added, in order to test the validity of the algorithm in

perfect conditions.

B. Laboratory

Velodyne LIDAR measurements were taken in the ACFR

Field Laboratory in controlled conditions. A box of size

14× 17× 40 cm was placed in four different locations, after

hours with no other background movement. No modifications

were made to the cluttered lab, which contains chairs and

tables, a kitchen space, packing crates, robots and assorted

Fig. 3. Simulated change detection. Scans are synthesised from four poses
(white), before and after the inner box is moved from left to right. The result
of the change detection algorithm is shown for optimal Ta = 1.4◦, Tr =

0.15m (TableII, line 1). Blue=raw data, Green=added, Red=removed.

electronic and mechanical fabrication equipment. The four

box positions included two below the sensor height (similar

to the ‘table top’ viewpoints used in [5]), one at approxi-

mately equal height and one above the sensor. For each box

configuration, two scans were acquired from each of three

different sensor poses, yielding 24 individual scans, which

were aligned using iterative closest point (ICP). The box

points were labelled manually for ground truth. The data are

illustrated in Fig. 4.

All measurements from glass windows were labelled sep-

arately and specifically discounted, because these are not

viewpoint invariant with LIDAR and therefore difficult to

experimentally control. Glass reflections accounted for only

0.45% of the data, but are worth removing as the small box

accounted for only 0.19%.

Fig. 4. Laboratory change detection, with scans of all permutations of
three poses and four box configurations. Perspective (top) & plan view
(bottom). Results of the change detection algorithm are shown for optimal
Ta = 1.2◦, Tr = 0.10m, using multiple pairings and clustering (Table II,
line 11). Blue=raw data, Red=changed. Note that changes are summarised
in one colour because all boxes are added and removed from each location
in succession. Only the box base is seen at c4 due to sensor aperture.



TABLE I

DATA SETS FOR EVALUATION.

Name Sensor Res(θ, φ)◦ Environment Size (m) Movement Configs1 Poses1

Sim Simulated (1.00,1.00) Regular Empty room with box 100×100×100 Moved box 2 4

Lab Velodyne HDL64ES2 (0.32,0.38) Irregular2 Cluttered indoor lab 107×79×7 Moved box 4 3

Carpark Velodyne HDL64ES2 (0.32,0.38) Irregular2 Open outdoor carpark 115×86×14 Moved car & opened garage door 2 3

Mine Riegl LMSZ420 (0.03,0.03) Regular Open pit iron ore mine 2361×1255×225 Detonated ore bench 2 2
1 Configs indicates the number of different geometric configurations of the scene, poses indicates distinct sensor locations.
2 Irregular Velodyne scan pattern contains 64 discrete elevations and is continuous in azimuth. Resolutions are averaged per scan.

C. Carpark

The Carpark data set was produced similarly to the Lab

data. The scene is bound by the Lab and another building,

both with windows. It contained four cars, a shipping con-

tainer and two trees. Between the two configurations of the

scene, one car was moved and the garage door of the lab

was opened (revealing part of the inside wall), see Fig. 5.

The data were manually labelled and found to contain 0.17%
glass and 1.87% of changed data. Compared to the Lab data,

the ten fold increase in the ratio of changed/unchanged points

is due to the larger size of objects that were moved.

In keeping with the intention of the algorithm, only the

car and garage door were manually labelled as a change,

and not the section of the lab that was revealed by opening

the door. Unlike the Lab data, it was impossible to acquire all

permutations of configuration and pose, because neither the

car nor robot could be repositioned precisely. The following

‘Gray Code’ progression of pose and configuration was used

to avoid repositioning: (p1, c1), (p1, c2), (p2, c2), (p3, c2).

D. Mine

The mine data were acquired over a scale of several square

kilometres, using a tripod mounted Riegl scanning LIDAR

at the West Angelas open pit mine in Western Australia. A

scan of an active bench was acquired prior to a controlled

explosion and a second scan was taken afterwards to detect

the change to the terrain. It was logistically impossible to

manually label data on this scale, however, areas of cavitation

(subtraction) and expansion (addition) are expected given the

controlled nature of the explosion. Only visual results are

analysed.

E. Test Procedure

Algorithm 1 was run on every non-equal pair of scans in

each data set. The output was compared to the ground truth

to provide a performance measure under various conditions.

All tests were run on a discrete set of parameter values

(Ta, Tr) as an exhaustive search for optimality. For the Lab

and Carpark data, two additional variations were tested:

1) Clustering: Change points are clustered by proximity

as in [2] and filtered by size, for inexpensive noise rejection.

This is a heuristic approach to the regularisation method in

[5]. Randomly distributed sensor noise is initially identified

as change (reasonably so), hence the purpose of this test is

to confirm that higher accuracy can be obtained for changed

object detection by post-filtering. The benefit is application

dependent. For example, mapping applications may opti-

mally remove all change and noise together without filtering,

Fig. 5. Carpark change detection. For configuration (c1), the garage door is
open and the cars positioned as shown (red). In (c2) the door is closed and
the car has moved (green). The result of the change detection algorithm is
shown for Ta = 0.9◦, Tr = 0.20m, using single pairings and no clustering
(Table II, line 12). Blue=raw data, Green=Added, Red=Removed.

whereas object identification or tracking will benefit from

clustering. For all tests, points are clustered by adjacency

< 10 cm and filtered by cluster sizes > 40 points.

2) Grouping: Combinations of scans larger than pairs are

used to identify change. A scan at one pose and configuration

is compared to all scans of the same configuration from dif-

ferent poses. Change is identified as the union of the output

of each pair-wise call to Algorithm 1. This is equivalent to

the comparing a new scan to a set of prior scan data.

VI. RESULTS

Algorithm 1 has a binary output (change / no change)

for each point. Subsequent temporal reasoning subdivides

change into addition and subtraction, resulting in three

classes. Due to the symmetry of Algorithm 1, only the



binary performance needs to be quantified, and f-score is

used as an appropriately weighted combination of precision

and recall values. All experimental results are presented

in Table II. Note the accuracy is always high due to the

dominant quantity of unchanged points, whereas the f-score

is more discerning.

Subsets of data are evaluated to expose the effect of scene

and algorithm configuration on performance.

A. Performance in Different Environments

The performance in simulation is nearly perfect, with an

f-score of 0.99. As there is no simulated noise, imperfections

are mainly due to false negatives at the object’s base, due

to ambiguity at the ground intersection. Disambiguation is a

function of sensor resolution compared to object size.

The lab environment is a challenging test because a noisy

sensor is used in a cluttered environment, to detect an

intentionally small object. Given a percentage per scan of

change due to noise, performance increases with object size.

E.g. if the box were doubled in size, the true positives would

approximately double, but the false positives would only

increase slightly. This environment has the lowest f-score

of 0.71.

The carpark environment has a higher performance than

the lab, and is similar to the sim (f = 0.91). This is in

part due to the larger object size and the reduced clutter and

geometric complexity.

B. Stationary or Movable Sensor

Comparing equal, non-equal and all pose subsets reveals

significantly better performance with a stationary sensor.

Focusing on tests without clustering clearly shows that false

positives and negatives are both increased when the sensor

is moved. A stationary sensor can better handle biased errors

due to imperfect calibration, alignment, and LIDAR artifacts

at object boundaries. The optimal parameters (Ta, Tr in

Table II) show that a stationary sensor affords a lower angular

threshold in particular.

This reveals the effectiveness for security / surveillance

applications with a fixed sensor, even in highly cluttered

conditions.

C. Vantage Point

Objects in natural scenes are stacked vertically due to

gravity. The foreground acts as a filter on the region of

detectable change, thus the contrast and scope for detection is

greatest when objects are viewed from above. For detection

of whole objects [5] showed results from high vantage points.

In the lab data, box configurations c1 and c3 from poses

p1 and p3 have a high viewing angle, and isolated tests

show significantly increased performance for this subset,

suggesting a sampling strategy for whole object detection

applications in particular.

D. Clustering for Noise Rejection

Genuine geometric scene changes yield spatially clustered

change points, whereas changes due to noise are scattered

randomly. Therefore, clustering and filtering reassigns false

positives as true negatives, without significantly affecting the

other statistics. This is evident in Table II for the lab and

carpark, and the rejection of noise results in significantly

higher performance. Clustering is appropriate wherever ob-

ject level reasoning is required. This may be improved further

by adopting the more sophisticated regularisation from [5],

which is outside the scope of this work. The clustering

algorithm [2] adds negligible time (see Table II), whereas

regularisation increases the computational complexity signif-

icantly.

E. Pairs and Larger Combinations

It has been established that the vantage point is an

important consideration for change detection. One strategy

is to adopt an explicit sampling policy for active change

detection, however, this requires higher level knowledge and

reasoning about where change is expected. Another approach

is to detect change in one scan by comparison with all other

available scans from different vantage points. For this case,

Table II (lines 4/10 and 14/18) shows only a small increase

in performance for the lab (0.64 to 0.69) and carpark (0.90 to

0.92), because the additional vantage points cause more true

and false positives (due to noise). When we add clustering

to filter the noise, the performance is the highest of all tests.

F. Mine Data

The changes detected in the mine are shown in Fig. 6,

for manually specified parameters Ta = 0.05◦, Tr = 0.10m
chosen to match the sensor characteristics (see Table I).

Point-wise ground truth labels are not available, but the

scans were intentionally taken before and after an intentional

change to the mine geometry. The ground has sunk at the

location of the explosion and a wave of crushed rock has

washed over the face. Dust has stirred and vehicles have

arrived. All of these features are correctly highlighted as

additions and subtractions by the algorithm, with sparse

background noise.

As a proof of concept, the algorithm is appropriate for

long range terrain change detection in a mining or excavation

context.

Fig. 6. Mine change detection. Two long range LIDAR scans measure the
West Angelas mine before after a controlled explosion. Detected change
is shown for Ta = 0.05◦, Tr = 0.10m: Blue=raw data, Green=added,
Red=removed.



TABLE II

STATISTICAL RESULTS, OPTIMAL PARAMETERS AND PROCESSING TIMES

Test Data set Variant Scan subset true+ true− false+ false− precis. recall accur. f-score T◦

a
Tr(m) t(s)

1 Fig. 3 Sim c, pairs all 10579 958702 12 302 0.9989 0.9722 0.9997 0.9854 1.4 0.150 0.40

2 Lab c, pairs all 5776 4359741 1928 2795 0.7497 0.6739 0.9989 0.7098 1.2 0.250 0.39

3 p1=p2 3447 2180935 425 791 0.8902 0.8134 0.9994 0.8501 0.7 0.200 0.43

4 p1 6=p2 2751 2178858 1521 1582 0.6440 0.6349 0.9986 0.6394 1.3 0.250 0.38

5 p={2,3}, c={1,3} 466 121345 96 37 0.8292 0.9264 0.9989 0.8751 1.3 0.200 0.41

6 Lab c, pairs all 5961 4361816 148 2610 0.9758 0.6955 0.9994 0.8121 0.8 0.100 0.44

7 p1=p2 3244 2181350 22 994 0.9933 0.7655 0.9995 0.8646 0.7 0.025 0.46

8 p1 6=p2 2850 2180544 48 1483 0.9834 0.6577 0.9993 0.7883 1.0 0.100 0.44

9 p={2,3}, c={1,3} 487 121439 4 16 0.9919 0.9682 0.9998 0.9799 1.2 0.150 0.39

10 Lab c, multi p1 6=pi 2906 2170702 1322 1327 0.6873 0.6865 0.9988 0.6869 1.5 0.200 0.77

11 Fig. 4 Lab c, multi p1 6=pi 3199 2171978 46 1034 0.9858 0.7557 0.9995 0.8556 1.2 0.100 0.86

12 Fig. 5 Carpark c, pairs all 4998 364103 110 890 0.9785 0.8488 0.9973 0.9091 0.9 0.200 0.41

13 p1=p2 2023 121560 13 177 0.9936 0.9195 0.9985 0.9551 0.5 0.200 0.50

14 p1 6=p2 3130 242533 106 558 0.9672 0.8487 0.9973 0.9041 0.9 0.200 0.41

15 Carpark c, pairs all 4993 364220 4 895 0.9992 0.8480 0.9976 0.9174 0.7 0.100 0.44

16 p1=p2 2028 121570 4 172 0.9980 0.9218 0.9986 0.9584 0.5 0.025 0.50

17 p1 6=p2 3107 242650 0 581 1.0000 0.8425 0.9976 0.9145 1.0 0.100 0.41

18 Carpark c, multi p1 6=pi 581 61279 37 71 0.9401 0.8911 0.9983 0.9150 1.0 0.300 0.82

19 Carpark c, multi p1 6=pi 621 61316 0 31 1.0000 0.9525 0.9995 0.9756 1.2 0.025 0.93

20 Mine c, single all 121029 5430092 - - - - - - 0.05 0.1 19.09

1 Variants 1&2 from Section V-E: (1) c/c denotes clustering is used / not used. (2) Single pairs are used, or multiple pairs are combined.
2 Scan subsets: p1=p2 or p1 6=p2 denotes pose constancy, p={2,3}, c={1,3} selects subsets where the sensor looks down on objects from above.
3 Statistical measures: (true+,true−,false+,false−,precis.,recall,accur.,f-score): True/false positives and negatives, precision, recall, accuracy, f-score.
4 Optimal parameters: Angle and range thresholds (Ta, Tr).
5 Processing time per scan. Laptop with an Intel Core i7-2640M CPU at 2.79GHz, Windows 7 Enterprise, Matlab R2011b / Visual Studio 2010. This is the sum of two calls

to Algorithm 1 for pairs and 1 call per pose for multi, plus clustering time if used.

VII. CONCLUSION

This work presents an efficient and effective algorithm

for change detection that is appropriate to a class of range

sensing commonly used in robotics and more generally in

mapping, surveillance and perception systems. The algorithm

is versatile, with a wide range of applications and environ-

ments. A set of experiments was conducted to support these

claims and expose the algorithm’s performance in different

conditions.
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