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Abstract—The problem of optimal feedback planning under
prediction uncertainties among static obstacles is considered. A
discrete-time stochastic state transition model is defined over a
continuous state space. A relation to a “nearby” deterministic
model is shown for small time steps; the cost-to-go function of the
stochastic model is approximated with that of the deterministic
model, and the approximation error is found to be proportional
to the time step. This motivates using numerical methods,
which are vastly available for solving deterministic problems, to
approximate the original stochastic problem. We demonstrate this
application on a Simplicial Label Correcting Algorithm, which,
assuming a piecewise linear discretization, computes the shortest-
path plan on the simplicial complex. Additionally, a theoretical
error bound between the approximate solution and the exact
solution is derived and confirmed in numerical experiments. This
paper provides a rigorous analysis as well as algorithmic and
implementation details of the proposed model for the stochastic
shortest path problem in continuous spaces with obstacles.

I. INTRODUCTION

Recently, interest in the theory of stochastic control with ap-
plications in robotics has increased significantly. Many aspects
contribute to the success of this theory: 1) it predicts the sys-
tem performance more accurately compared to deterministic
control theory, 2) techniques and results from the deterministic
models are readily applicable to stochastic models, and 3)
unknown environments and incomplete, noisy sensing are
naturally incorporated into the stochastic framework, whereas
deterministic models always require perfect observations and
the knowledge of the environment. Thus, stochastic control
models, as a generalization of their deterministic counterparts,
are the state of the art in the field robotics community.

Stochastic control models are of four types: Type 1 –
discrete space and discrete time; Type 2 – discrete space and
continuous time; Type 3 – continuous space discrete time; and
Type 4 – continuous space and time. The general form of
Type 1, 2, and 3 models is

xi+1 = f(xi, ui, ωi) , (1)

in which xi is a state of a system, ui is a control signal,
and ωi is a random disturbance parameter, all of which are
taken at time ti. In the case of Type 1 and 3 models, {ti}
is a fixed time sequence. For models of Type 2, however,
{ti} is a Poisson process, and, hence, each ti is a random

variable. Finally, models of Type 4 is usually described using
the Stochastic Differential Equation (SDE) of the form:

dx (t) = f(x(t), u(t)) dt + dω (t) , (2)

in which ω(t) is a Wiener process.
Models of Types 1 and 2 are extensively studied in the

existing literature, including textbooks [7], [20]. Optimal feed-
back control is derived using Bellman’s dynamic programming
principle, the result of which is the Hamilton-Jacobi-Bellman
(HJB) equation for the optimal cost-to-go function [4]. The
value iteration and the policy iteration algorithms, which solve
the resulting HJB equation, were introduced in [4] and later
analyzed for the convergence and the accuracy in [22], [31].
For the Shortest Path Problem (SPP), a family of Label
Correcting Algorithms (LCA), including the special case of
Dijkstra’s algorithm, were introduced in [12] and discussed
further in [6], [13]. In the case of consistently improving
policies, these algorithms are guaranteed to terminate in finite
time. Moreover, the total running time of LCA can be tweaked
using different queuing strategies. Finally, Foster-Lyapunov
analysis is developed in [21] to bound the performance of
the stochastic systems given a stabilizing policy. Despite
significant developments in the theory and the implementation
for models of Types 1 and 2, they do not apply directly to
continuous-space systems. Hence, for the problem of optimal
navigation these models are useful after the discretization step
only [5], [11], [14], [18].

Models of Type 4, on the other hand, are continuous in
space and time and are appealing for applications in robotics.
Originally, these models were developed in the area of physics
studying non-equilibrium statistical mechanics. In that field the
Brownian motion of a microscopic particle under the influence
of a great number of other particles with comparable momenta
is of particular interest. Later, the theory of SDE was extended
to other scientific disciplines to study general systems under
influence of a significantly large amount of random uncorre-
lated force sources (noise): radio telecommunication channels
influenced by the cosmic radiation originating from hundreds
of billions of stars, electrical grids influenced by turbulent solar
winds, stock markets influenced by thousands of agents, and
many others. Applications of SDE are also found in robotics,



including the optimal navigation under diffusive models of
motion [16], [17] and the dead-reckoning problem [33].

In many applications of robotics the macroscopic influence
of a great number of random and uncorrelated force sources is
negligible, and, thus, the behavior of macroscopic mechanical
systems is far from diffusive. The following simple experiment
demonstrates this: We consider (2) and assume f(x, u) = u
for simplicity. Let ũ(t) = δ u, for some vector u and a
real, positive parameter δ, be an input signal applied to the
system during the time period [0, δ−1]. Starting at the origin
and executing ũ(t), the ideal noiseless system arrives at u.
Moreover, in this case, the motion is scale invariant, that is,
no matter how small δ is, the final point remains the same. If
noise is present, however, then the smaller the δ the larger the
spread of the final robot position. This is due to the additive
nature of noise, which does not scale with the velocity. At the
limit of very small velocities, the robot “diffuses” indefinitely
in space. Nevertheless, in the real world scenario, a toy car in
a backyard with an open loop control on uneven terrain under
strong wind conditions arrives near the desired destination with
a bounded spread, which is independent (within reasonable
physical limits) of its velocity. This experiment demonstrates
that the level of noise depends on the parameters of the system
and, therefore, cannot be additive. Additionally, stochastic
diffusion models suffer from another drawback: the probability
of collision with obstacles is nonzero after infinitesimally
short time regardless the control input. Thus, to formulate
the shortest path problem either the probability of success is
restricted to a given level of tolerance or “soft” obstacles are
introduced, otherwise the cost function is always infinite.

To resolve the problem of an unbounded spread, random
disturbances must be introduced into the motion model in a
parametric form. Poisson arrival process is a good candidate
to model the change of the disturbance parameters. Using
this treatment, we model rough terrains using controlled jump
process models [9]. In this paper, we simplify the Poisson
arrival process using a fixed time step process and demonstrate
that the resulting system is of Type 3, rather than Type 4. In
this setting, the spread remains bounded in finite time, and
it is possible to formulate the SPP with 100% goal arrival
probability and infinite penalty for collision. Thus, borrowed
from physics Type 4 models, although popular in robotics, are
most applicable for stochastic diffusion phenomena, and not
the motion of macroscopic mechanical systems. On the other
hand, a model of Type 3 is good candidate to describe the
motion of robots under random disturbances.

In the existing literature, only special cases of Type 3
models are studied, in which the optimal control problem can
be solved exactly. For example, the linear systems quadratic
cost model with additive Gaussian uncertainty (LQG) is solved
using the algebraic Riccati equation [2]. The LQG model
is widely used in robotics for system stabilization either at
the origin or along a precomputed trajectory provided by a
motion planning algorithm [1], [10], [25], [30]. However, this
model excludes obstacles and the precomputed path must be
optimized beforehand to minimize the probability of collisions.

Moreover, the exact solution may not exist for nonlinear
systems, nonquadratic cost functionals, or if obstacles are
present. Hence, models of Type 3 remains mostly unstudied.

In this paper, we use a Type 3 model to formulate the
stochastic SPP in a continuous state space with obstacles. A
closed-form solution may not exist for this model; neverthe-
less, Bellman’s principle is still applicable, resulting in the
HJB equation. This equation is then solved using numerical
approximation. A family of LCA is generalized to simplicial
complexes, resulting is a Simplicial Label Correcting Algo-
rithm (SLCA) for discretized equations. Our approximation
method follows closely ideas arising in disjoint scientific areas:
level-set methods [3], [15], [23] and the discretization of the
continuous Markov Decision Process derived from the discrete
Partially Observable Markov Decision Process [19], [27], [28].
Nevertheless, being seemingly unrelated, these methods are
solving similar problems and are applicable for optimal robot
navigation.

The rest of the paper is organized as follows. In Section II
we formulate the stochastic SPP in the environment with
obstacles and present the HJB equation associated with this
problem. In Section III we derive a “nearby” deterministic
control problem, which approximates the stochastic SPP. We
also prove the bound on the difference between a solution to
the stochastic problem and that of the nearby deterministic
problem, which is found to be proportional to the time step of
the arrival process. A piecewise linear numerical discretization
for the deterministic problem is introduced in Section IV,
along with proofs of the approximation error bounds. The
Simplicial Label Correcting Algorithm (SLCA) is presented
in Section V. In Section VI, we discuss experimental results
obtained by Monte Carlo simulation. Finally, we conclude our
findings and summarize future work in Section VII.

II. PROBLEM FORMULATION

A. Controlled Markov Chains

Consider X ⊂ Rd to be either a configuration space of
a robot or a workspace for a point robot. Typically, if X is
the workspace, then d ≤ 3; however, higher values of d are
expected if X is a configuration space. Let the obstacle region,
Xobs ⊂ X , be an open set, such that for all x ∈ Xobs the
corresponding configuration is in collision with an obstacle.
The free space consists of all collision free configurations and
is denoted as Xfree = X\Xobs and is compact. Assume robot’s
initial position, xinit ∈ Xfree, is given, and let the goal region,
Xgoal ⊂ Xfree, be a closed set with a nonempty interior.

To motivate a discrete time continuous space state transition
model, we firstly consider an ordinary differential equation
driven by a bounded, Lipschitz continuous, controllable vector
field g with parametric noise:

ẋ = g(x, u, ω) , with x(0) = xinit , (3)

in which x is a state of the system in X , u is a control
signal taken from a compact, convex, and symmetric around
the origin input set U ⊂ Rd, and ω is a noise parameter.



We assume a fixed time step arrival process as the model
for ω. Let ∆t > 0, ti = i∆t, and ωi be mutually indepen-
dent identically distributed random samples from a compact
probability space (Ω,F , P ). The disturbance parameter ω as
a function of time is given as ω̃(t) = ωi for t ∈ [ti ,ti+1) and
i = 0, . . . , N . Note that ω̃(t) is a random process, which is not
Markov. Nevertheless, assuming that control sample rate is at
most that of the arrival process, we recover Markov property
by transition to discrete-time system.

Integrating (3) over time step ∆t, we derive a stochastic
discrete-time state transition model over X:

xi+1 = xi + ∆t f∆t(xi, ui, ωi) , with x0 = xinit . (4)

In the above, f∆t(xi, ui, ωi) = ∆t−1
ti+1∫
ti

g(x(t), ui, ωi) dt ,

xi is robot’s state at time ti, and ui is a constant input signal
during the time interval [ti ,ti+1).

Using (4), we relate a given control history, ũ = {ui}Ni=0, a
history of the disturbance process, ω̃ = {ωi}Ni=0, and the initial
condition, xinit, with a unique trajectory, x̃(xinit, ũ, ω̃). Nodes
of x̃(xinit, ũ, ω̃) are at points {xi}N+1

i=0 , which, in turn, satisfy
(4) for all i = 0, . . . , N . If ω̃ is unknown, then we say that
each control history, ũ, and initial condition, xinit, produce a
random trajectory x̃(xinit, ũ) from the set of all trajectories,{
x̃(xinit, ũ, ω̃) | ω̃ ∈ ΩN

}
, with the statistics induced by P .

Considering control law given by a feedback function π :
Xfree → U , that is, ui = π(xi), the state transition equation
becomes

xi+1 = xi + ∆tf∆t(xi, π(xi), ωi) , with x0 = xinit , (5)

and the system is a Markov Chain (MC) over X . Similarly,
we define a discrete-time trajectory, x̃(xinit, π, ω̃), using nodes
{xi}N+1

i=0 , which satisfy (5) for all i = 0, . . . , N . In the case of
unknown disturbance, x̃(xinit, π) is considered to be a random
trajectory from

{
x̃(xinit, π, ω̃) | ω̃ ∈ ΩN

}
. Since a feedback

control is necessary to stabilize the system, we consider only
feedback control laws for the rest of this paper.

B. Cost Functional

The performance of a control history is measured using a
cost functional defined on the space of trajectories. Given a
trajectory x̃, we introduce the total length cost functional

L(x̃) =

∫ tf

0

‖ ˙̃x(t)‖ dt , (6)

if tf = inf {t > 0 | x̃(t) ∈ Xgoal} < ∞ and the trajectory is
in Xfree, and L(x̃) =∞, otherwise.

Since the value of L is a random variable if x̃ is a random
trajectory, the shortest path problem is formulated with respect
to average cost optimality criterion.

Problem 1 (The Shortest Path Problem). Given xinit ∈ Xfree,
find optimal feedback control π∗ such that for all π

E
[
L(x̃(xinit, π

∗))
]
≤ E

[
L(x̃(xinit, π))

]
, (7)

in which E[·] is the expectation of a random variable.

C. Optimality Principle and Dynamic Programming

The solution for the optimal feedback control is computed
using Bellman’s Dynamic Programming algorithm [4]. To this
end, we introduce the optimal cost-to-go function for a system
starting at x and executing optimal plan

V (x) = min
π

E
[
L(x̃(x, π))

]
. (8)

The function V : Xfree → [0,∞] denotes the minimal
expected trajectory length to reach the goal from point x.

Using (6) and (8) and the expectation smoothing property,
we derive the HJB equation for the cost-to-go function

V (x) = min
u∈U

E
[ ∫ ∆t

0

‖g(x̃(t), u, ω)‖ dt+

V (x+ ∆tf∆t(x, u, ω)
]
. (9)

Solving (9) with boundary conditions V (x) = 0 if x ∈
Xgoal, and V (x) =∞ if x ∈ Xobs, we find the optimal cost-
to-go function for all x ∈ Xfree. Once V is computed, the
feedback control is given as the minimizing argument in (9):

π(x) = arg min
u∈U

E
ω0

[ ∫ ∆t

0

‖g(x̃(t), u, ω)‖dt+

V (x+ ∆tf∆t(x, u, ω))
]
. (10)

III. RELATION TO DETERMINISTIC CONTROL PROBLEM

It is common to approximate an optimal control problem
with a discrete state CMC [29], for which value iteration and
policy iteration algorithms [8] are known. On the other hand,
our approach is reciprocal: we approximate the continuous
state CMC with an optimal control problem, for which the
fast marching method [15], ordered upwind method [26], or
other numerical techniques [29], [32] can be applied.

Before we present any further derivations, we assume that
∇V is Lipschitz continuous with constant M on Xfree. In
general, the gradient of V may not be Lipschitz continuous in
a small neighborhood of a critical point, in which the optimal
trajectory changes its direction, for example, a corner of an
obstacle. Nevertheless, the set of all critical points has measure
zero.

Using the mean value theorem, we derive from (9)∣∣∣min
u∈U

E
ω

[
c∆t(x, u, ω) +∇V (x) · f∆t(x, u, ω)

]∣∣∣ ≤ ε, (11)

in which c∆t(x, u, ω) = ∆t−1
∆t∫
0

‖g(x̃(t), u, ω)‖ dt and ε =

∆tM(max
x,u,ω

‖f∆t(x, u, ω)‖)2 <∞ (g is bounded).

We define expectations c∆t(x, u) , E
[
c∆t(x, u, ω)

]
and

F∆t(x, u) , E
[
f∆t(x, u, ω)

]
, and a deterministic system

ẋ = F∆t(x, u) , (12)

with cost functional

L′(x̃) =

∫ tf

0

c∆t(x̃(t), ũ(t)) dt , (13)



in which tf = inf {t > 0 | x̃(t) ∈ Xgoal}. The optimality
equation for this deterministic system is

min
u∈U

{
c∆t(x, u) +∇V (x) · F∆t(x, u)

}
= 0 , (14)

which is an approximation of (11)
The derivations above show the relation between a contin-

uous state CMC and a deterministic optimal control problem,
which we call a nearby deterministic problem. In the next
theorem, we prove the bound on the error between a solution
of CMC and that of the nearby problem.

Theorem 2 (Modeling error bound). Let V ∗ and V ∗∗ be solu-
tions of (9) and (14) respectively. Also, let ∇V ∗ be Lipschitz
with constant M on Xfree, and g satisfy the conditions above.
For sufficiently small ∆t there exists C1 independent of ∆t,
such that

|V ∗(x)− V ∗∗(x)| ≤ C1∆t for all x ∈ Xfree . (15)

Proof: Assume x̃∗ : [0, tf
∗] → Xfree and ũ∗ : [0, tf

∗] →
U are optimal trajectory and control, respectively, of the
stochastic system on the time interval [0, tf

∗], such that
x̃∗(0) = x for a given x ∈ Xfree. Consider V ∗(x̃∗) as a
function of t. On one hand, we establish

−
∫ tf

∗

0

d

dt
V ∗(x̃∗(t)) dt = V ∗(x) . (16)

On the other hand, from (11) follows∫ tf
∗

0

(
−∇V ∗(x̃∗(t)) · F∆t(x̃

∗(t), ũ∗(t), ω)
)

dt ≥∫ tf
∗

0

c∆t(x̃
∗(t), ũ∗(t)) dt − tf∗ε. (17)

Thus,

V ∗(x) ≥
∫ tf

∗

0

c∆t(x̃
∗(t), ũ∗(t)) dt − tf∗ε . (18)

Similarly, considering V ∗∗(x̃∗) as a function of t, we conclude
from (14)

V ∗∗(x) ≤
∫ tf

∗

0

c∆t(x̃
∗(t), ũ∗(t)) dt . (19)

Hence, from (18) and (19), it follows

V ∗∗(x)− V ∗(x) ≤ tf∗ε . (20)

Further, assume x̃∗∗ : [0, tf
∗∗]→ Xfree and ũ∗∗ : [0, tf

∗∗]→
U are optimal trajectory and control, respectively, for the
deterministic system on the time interval [0, tf

∗∗], such that
x̃∗∗(0) = x for the same x ∈ Xfree. Considering V ∗(x̃∗∗) and
V ∗∗(x̃∗∗) as functions of t, we derive from (11) and (14)

V ∗(x)− V ∗∗(x) ≤ tf∗∗ε . (21)

Thus, it follows from inequalities (20) and (21) that

|V ∗(x)− V ∗∗(x)| ≤ max{tf∗, tf∗∗}ε . (22)

The upper bound on tf
∗ and tf

∗∗ is given as fol-
lows: max {tf∗, tf∗∗} ≤ max {V ∗(x), V ∗∗(x)}/cmin <

∞, in which cmin = min
x,u

c∆t(x, u) > 0. Hence,

we conclude the result of the theorem for C1 =
max{V ∗(x), V ∗∗(x)}2Mf2

max/cmin.

IV. NUMERICAL DISCRETIZATION

A closed-form solution is rarely available for (14); thus,
we must resort to numerical methods to find an approximate
solution. To build a numerical discretization of (14), we follow
closely the level-set method technique [15] and other related
numerical schemes [23], [29], [32].

A. Piecewise Linear Approximation on Simplicial Complexes

First, define a simplicial complex (Xd, T ), in which Xd =
{xi ∈ Xfree | 1 ≤ i ≤ N} is a set of vertices, and T is
an abstract simplicial complex over a set {1, . . . , N}. For a
simplex T ∈ T the geometrical representation of T is set
XT = {

∑
i∈T

αixi | αi ≥ 0 ,
∑
i∈T

αi = 1}. We call (Xd, T )

a simplicial discretization of Xfree, or a mesh on Xfree, if⋃
T∈T XT = Xfree and for all T, T ′ ∈ T their geometrical

representations satisfy XT ∩XT ′ = XT∩T ′ .
Second, define barycentric coordinates {αi}i∈T of point

x ∈ XT , such that x =
∑
i∈T

αixi,
∑
i∈T

αi = 1, and αi ≥ 0

for all i ∈ T . Use a mesh on Xfree to approximate V with a
piecewise linear function V̂ defined as Vi at each node xi ∈
Xd as follows: for some T ∈ T and all x =

∑
i∈T

αixi

V̂ (x) ,
∑
i∈T

αiVi . (23)

Note that, since V̂ (x) is a linear function on XT , the gradient
of V̂ , denoted as ∇T V̂ , is a constant vector on XT .

Third, we approximate c∆t and F∆t as functions of x
with constant functions on each XT , denoted ĉT and F̂T ,
respectively.

Finally, for all T ∈ T we would like ∇T V̂ to satisfy (14):

0 = min
u∈U

{
ĉT (u) +∇T V̂ · F̂T (u)

}
. (24)

In addition to (24), we impose boundary conditions

Vi = 0 , for all i such that xi ∈ Xgoal . (25)

Thus, equations (24) and (25) define a system of algebraic
equations with respect to unknowns {Vi}Ni=1. It follows from
(24), the approximate feedback control π̂ is a constant function
on XT , which we denote as

π̂T (x) = arg min
u∈U

{
ĉT (u) +∇T V̂ · F̂T (u)

}
. (26)

B. Error Bounds

The interpolation error is defined as the difference between
V , a solution of (14), and V̂ , a solution of (24). Before
we prove the bound on the interpolation error, we need two
supplemental lemmas1.

1The proof of these lemmas is technical and tedious. Moreover, it does not
provide any additional insight on the problem; thus, we avoid it.



Lemma 3 (Linear Interpolation on d-dimensional Simplex).
Let XT be a d-dimensional simplex with vertices {xi}di=0.
Assume V is continuously differentiable on XT , and ∇V is
Lipschitz on XT with constant M . Consider linear function
V̂ such that V̂ (xi) = V (xi) for all i = 1, . . . , d.

Under this assumptions

|V (x)− V̂ (x)| ≤Mdh2
T /4 , for all x ∈ XT , (27)

in which hT = sup
x,x′∈XT

‖x− x′‖.

Lemma 4 (Local Interpolation Error). Let the optimal trajec-
tories of (14) and (24) pass through xi and follow through the
interior of XT (i ∈ T )2. Let Ti = T \ {i}. These assumptions
imply

|V (x)− V̂ (x)| ≤Mdh2
T /4 + max

j∈Ti

|V (xj)− V̂ (xj)| . (28)

Using the result of Lemma 4, we prove the next theorem
that determines the bound on the approximate solution error
for a piecewise linear discretization.

Theorem 5 (Global Interpolation Error). Assume the condi-
tions of Lemma 4, then the global error bound is

|V (x)− V̂ (x)| ≤ C2h , (29)

in which h = max
T∈T

hT and C2 is constant independent of the
mesh.

Proof: From Lemma 4 it follows that the local error is
bounded by M(d− 1)h2

T /4. Assuming that error accumulates
at each iteration of the algorithm, conclude that global error is
bounded by IM(d− 1)h2

T /4 (here I is the maximal iteration
number). Finally, the iteration number is proportional to the
diameter of Xfree, with respect to geodesic distance, divided
by h = min

T∈T
hT . Thus,

|V (x)− V̂ (x)| ≤ diam(Xfree)M(d− 1)

4

h

h
h . (30)

By letting C2 = diam(Xfree)M(d−1)h/4h and assuming that
smallest to largest cell size ratio is kept constant, we prove the
theorem.

Finally, we formulate a corollary from Theorems 2 and 5.
The next theorem proves the total error bound using both:
the approximation of CMC with the deterministic control
problem, and using a piecewise linear interpolation to solve
the deterministic control problem.

Theorem 6 (Total Error). Assume system (4) is given along
with a cost functional (6). Let V be the cost-to-go function,
defined in (8). Also, let the discretization procedure, outlined
in Section IV-A, be used to find the approximate cost-to-go
function V̂ . Under these conditions, the total error is bounded
by

|V (x)− V̂ (x)| ≤ C1∆t+ C2h , (31)

2In the case the optimal trajectories do not follow in the same simplex, a
more general result can be established by considering a union of simplices.

in which C1 and C2 are given in Theorems 2 and 5, respec-
tively, and independent of ∆t and h.

V. SIMPLICIAL LABEL CORRECTING ALGORITHM

If considered for all T ∈ T , (24) defines a system of
algebraic equations. Generic numerical algorithms exist to
solve this type of systems, for example, fixed-point iteration,
Newton’s method, and the secant updating method. In fact,
two of these methods are successfully applied in the case
of finite state CMCs: The value iteration algorithm is an
instance of the fixed-point iteration and the policy iteration
is an implementation of Newton’s method.

On the other hand, generic methods usually do not effi-
ciently exploit the structure of the problem. Particularly, for
finite state CMCs, if the policy is consistently improving [24],
[29], then the nodes can be computed in increasing order of
cost-to-go function values. Dijkstra’s algorithm is an efficient
implementation of this idea, which computes the cost-to-go
function in O(n log(n)) time, where n is the vertex number.

Moreover, a generalization of Dijkstra’s algorithm, the fam-
ily of Label Correcting Algorithms, was first introduced in [12]
for the SPP on graphs. In the generic LCA, the order in which
nodes are computed is not specified, and various heuristics can
be used to further reduce the total running time [6]. Moreover,
the family of LCA generalizes many other algorithms, such as
the A* algorithm, Bellman-Ford algorithm, and so on.

Another generalization of Dijkstra’s algorithm was proposed
in [29] to find the continuous shortest path among obsta-
cles and in [15] to find geodesics on triangulated surfaces.
In [32] the authors formulated the Simplicial Dijkstra’s and
A* algorithms, which compute the shortest path on simplicial
complexes of arbitrary dimension. Thus, by discretizing Xfree

with a simplicial complex, an approximation of the shortest
path in Xfree (of any dimension) can be found.

In this paper, we propose a generic Simplicial La-
bel Correcting Algorithm (SLCA) as a generalization
of the previously introduced the Simplicial Dijkstra and
the Simplicial A* algorithms, as well as LCA on
graphs:
Input: Simplicial complex (Xd, T ), goal set Xgoal

Output: Approximations V̂i of V (xi) and π̂T of π(x)
1: Initialize set Q of “open” nodes i for which xi ∈ Xgoal

2: Initialize set of labels V̂ for all vertices, such that V̂i ← 0
for i ∈ Q, and V̂i ←∞ otherwise

3: while Q is not empty do
4: Pop j from Q
5: for all T such that j ∈ T do
6: i← arg maxk∈T {Vk}
7: if i 6= j then
8: (V ∗, π∗)← update(i, T )
9: if V̂ ∗ < V̂i then

10: V̂i ← V ∗ ; πT ← π∗

11: Push i into Q if i /∈ Q
We apply this algorithm to solve the approximate stochastic
shortest path problem among obstacles using simplicial de-
composition of Xfree.



Note that the vertex selection strategy (see line 4 above)
is not specified in the generic SLCA, and it is left up to the
specific implementation. For example, the Simplicial Bellman-
Ford Algorithm uses a FIFO queue; the Simplicial Dijkstra
algorithm is implemented using a priority queue over the
values of the cost-to-go function; adding the heuristic of the
cost-to-come function generates the Simplicial A* algorithm.
More advanced vertex selection strategies, which significantly
reduce the running time for LCA, are analyzed in [6]. Incorpo-
ration of these strategies into SLCA is the topic of the ongoing
investigation.

Function update in line 8 is defined to solve (24) locally.
It takes simplex T and vertex i ∈ T as arguments, and returns
Vi such that (24) holds. Note that an alternative numerical
discretization requires a different implementation of update.
However, the SLCA framework remains unchanged for various
numerical procedures.

VI. RESULTS AND DISCUSSION

Two stochastic systems are considered in the numerical
experiments. In both cases d = 2, Ω = [−α, α] is equipped
with a uniform probability measure, and U = {u ∈ R2 |
‖u‖ = 1}. System 1 and System 2 are defined using (4) and
the corresponding functions g1(x, u, ω) = u+ωR(π/2)u, and
g2(x, u, ω) = R(ω)u, in which R is a rotation matrix

R(φ) =

[
cos(φ) sin(φ)

− sin(φ) cos(φ)

]
. (32)

First, we investigate the convergence of the proposed nu-
merical method in a simple domain, for which the optimal
feedback control law is known. In this setting, we approx-
imate the true average cost with VMC(x), derived from a
Monte Carlo simulation of a hundred sampled trajectories.
We compare computed cost-to-go function, V̂ , with VMC

using L∞ and L2 error estimates, given as EL∞(V̂ , VMC) =

sup
x∈Xfree

∣∣∣V̂ (x)−VMC(x)
∣∣∣ and EL2

(V̂ , VMC) =
( ∫
Xfree

∣∣∣V̂ (x)−

VMC(x)
∣∣∣2 dx

)1/2

, respectively. Figure 1 depicts the log-log

plot of error with respect to h for the considered systems. Lines
with slope 1 are drawn to facilitate linear relation between the
error and the mesh size and to illustrate the agreement with
Theorem 6.

Second, the application of SLCA to a real world problem
is demonstrated on a general domain with obstacles. The
heat map of the cost-to-go function and a set of trajectories
computed using Monte Carlo simulations are illustrated in
Figure 2. From the simulation, it is evident that open-loop
controls are incapable of safely steering the system towards
the goal. The optimal feedback control law, however, succeeds
in this task and guarantees the average path length optimality.

VII. CONCLUSIONS

In conclusion, we considered a discrete-time stochastic
system with parametric disturbances over a continuous state
space with obstacles. The average shortest path problem is
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Fig. 1. The error vs. mesh quality parameter h.

Fig. 2. Experimental domain with Xgoal represented by the black circle in
the upper-right corner, and a Monte Carlo simulation of the optimal open-loop
control (yellow) and the optimal feedback control (red).

formulated for this system. The finite difference HJB equation
was derived for this stochastic SPP. The closed form solution
is not available for this type of equations, in general. Thus,
we must resort to numerical computations.

We demonstrated the relation between the HJB equation
for the system with disturbances and the HJB equation for
the nearby deterministic system. In Theorem 2, we proved
the bound on the error between cost-to-go functions for the
stochastic and deterministic problems. This result allowed us
to compute the optimal cost-to-go function of the stochastic
problem using numerical methods originally developed for
deterministic control problems.

Additionally, we proposed the generalization of the family
of LCA over simplicial complexes. The family of SLCA
is capable of solving continuous optimal control problems
directly, while avoiding artificial discretizations by reachability
graphs or trees. The result of the proposed algorithm is the
optimal cost-to-go function and the feedback control defined
on the simplicial complex. Also, SLCA includes the Simpli-
cial Dijkstra and the Simplicial A* Algorithms, previously
introduced by the authors. Moreover, various node selection
strategies can be implemented to improve the running time.

Finally, we analyzed the error between the numerical solu-
tion, obtained by the SLCA, and that computed using a Monte
Carlo simulation. We demonstrated that the error decreases
linearly with respect to the mesh size, h, as the computational
mesh is refined, which confirms the prediction of Theorem 6.
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