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Abstract— We discuss the problem of learning uncertainty
models of ocean processes to assist in the operation of Au-
tonomous Underwater Vehicles (AUVs) in the ocean. We focus
on the prediction of ocean currents, which have significant
effect on the navigation of AUVs. Available models provide
accurate prediction of ocean currents, but they typically do not
provide confidence estimates of these predictions. We propose
augmenting existing prediction methods with variance measures
based on Gaussian Process (GP) regression. We show that
commonly used measures of variance in GPs do not accurately
reflect errors in ocean current prediction, and we propose
an alternative uncertainty measure based on interpolation
variance. We integrate these measures of uncertainty into
a probabilistic planner running on an AUV during a field
deployment in the Southern California Bight. Our experiments
demonstrate that the proposed uncertainty measures improve
the safety and reliability of AUVs operating in the coastal ocean.

I. INTRODUCTION

Sensing and monitoring of ocean processes is becom-
ing increasingly important for science and exploration. Au-
tonomous Underwater Vehicles (AUVs) are now available
that are capable of long-term monitoring tasks over several
weeks or months [1], [2]. As the autonomy capabilities of
these vehicles improves and the length of their missions
increases, there is growing concern for the safety and re-
liability of operation. For instance, large ships provide po-
tential dangers for AUVs during surfacing, and strong ocean
currents increase the risk of running into shallow water and
aborting the mission. Improved predictions of uncertainty in
the modeling of ocean currents has the potential to reduce
these risks and increase the functionality of AUVs operating
in the ocean.

Predictions of ocean currents are publicly available and
are currently in widespread use by ocean scientists. Such
predictions utilize forward simulations of prior data, and they
incorporate large-scale measurements from satellite and HF-
radar. We focus on the Regional Ocean Monitoring System
(ROMS) predictions of ocean currents [3] (shown in Figure 1
for the Southern California Bight region). These predictions
are provided daily and give forecasts up to two days in
advance.

Available models typically do not provide estimates of
the accuracy of the prediction, which have the potential to
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Fig. 1. Ocean currents in the Southern California Bight region predicted
by the Regional Ocean Modeling System (ROMS) [3]. We propose data-
driven methods to develop confidence estimates on these predictions, and
we integrate the resulting estimates into a probabilistic planner to improve
the safety of autonomous underwater vehicle operation.

improve AUV operation. We focus on developing such confi-
dence estimates based on novel variance measures related to
Gaussian Process (GP) regression. We propose the use of the
interpolation variance as an alternative to the standard GP
variance. Interpolation variance was originally introduced in
the geostatistic community [4], [5] and was recently applied
to robotic sampling tasks [6]. We integrate this confidence
measure into the action model of a probabilistic planner, and
we test the proposed approach both in simulation and in
experimental trials in the Southern California Bight.

The key novelties of this paper are (1) the application
of interpolation variance to the prediction of ocean currents,
(2) the integration of interpolation variance into probabilistic
planning, and (3) the field implementation of these tech-
niques on an AUV. We first survey prior work (Section II).
We next discuss methods and algorithms for improving the
prediction of ocean currents, and we integrate these predic-
tions into AUV navigation (Section III). We then present
both simulated and field experiments demonstrating the
performance of our approach (Section IV). We conclude by
discussing future work and future experiments (Section V).

II. RELATED WORK

Predictions of ocean currents have previously been used by
several research groups to improve the navigation capabilities
of autonomous vehicles and improve the safety of their
operation [7], [8]. Lower bounds on navigation error have



also been derived to estimate the path following performance
of underwater vehicles [9]. While these prior works provide
a basis for navigation of AUVs in the ocean, they are miss-
ing a principled analysis of the uncertainty of predictions.
We develop the necessary tools to utilize these uncertainty
predictions and improve path planning methods.

Prior work has examined the development of confidence
measures for various ocean processes using straightforward
statistical tools [10] as well as more sophisticated Bayesian
models [11]. In [12], a rigorous computational method for
the quantification, prediction, and estimation of uncertain-
ties called Error Subspace Statistical Estimation (ESSE)
is described. ESSE has components of time-varying basis
functions, multi-scale initializations, and stochastic ensem-
ble predictions. ESSE was later combined with principled
filtering techniques to derive the GMM-DO filter, a general
data-assimilation technique [13]. Both ESSE and GMM-DO
require knowledge of the approximate governing equations
for the time-evolving error covariance bases, which is not
the case for our approach.

We propose utilizing Gaussian Process (GP) regression
to provide confidence measures on the prediction of ocean
processes. GPs have been used successfully to improve the
accuracy of such tasks as large-scale terrain modeling [14],
underwater habitat mapping [15], scientific planetary survey-
ing [16], and navigation under uncertainty [17]. We demon-
strate that standard GP variance predictions do not capture
the uncertainty inherent in prediction of ocean processes.
Interpolation variance provides an alternative measure of
uncertainty that also incorporates variability of the predic-
tion into the variance. Interpolation variance was originally
introduced for the estimation of geostatistical data [4], [5]
and was recently applied as a method for guiding adaptive
sampling by mobile robots [6]. To our knowledge, we are
the first to apply interpolation variance to the prediction of
ocean currents and the first to integrate it into the action
model of a probabilistic planner. The preliminary modeling
algorithms in this paper were presented in our prior workshop
paper [18].

III. METHODS AND ALGORITHMS

The goal is to provide a principled estimate of uncertainty
for predictions of large-scale ocean processes. We propose
augmenting available predictions through the use of Gaussian
Process learning methods. We focus on the prediction of
ocean surface currents due to the availability of accurate HF-
Radar measurements for these values.

The ocean currents at a given latitude lat, longitude lon,
and time t are represented by a vector c(lat, lon, t) = (u, v),
where u and v are the components of the currents along
the latitude and longitude axes respectively. The positions
are discretized based on the latitude and longitude, and time
is discretized into hours. At a given time T , we are given
historical data for times t = {T −1, T −2, . . .} back several
months or years. We are also given predictions from the
ROMS data for t = {T + 1, T + 2, . . . , T + 48} (two days
in the future). Given this data, we want to provide better

predictions for the points of time in the future as well as
confidence bounds for these predictions.

A. Gaussian Process regression

We propose modeling ocean currents using non-parametric
Bayesian regression in the form of Gaussian Processes
(GPs) [19]. A GP models a noisy process zi = f(xi) + ε,
where zi ∈ R, xi ∈ Rd, and ε is Gaussian noise.

We are given some data of the form D =
[(x1, z1), (x2, z2), . . . , (xn, zn)], where xi represents a vec-
tor of latitude, longitude, and time values for a data point
i, and zi represents either the u or v component of the
currents at that point and time. We note that this formulation
decouples the prediction of u and v, an assumption that could
be relaxed in future work (e.g., using the techniques in [20]).
We refer to the d×n matrix of xi vectors as X and the vector
of zi values as z.

To fully define a GP, we must choose a covariance function
that relates the points in X to each other. We expect that data
points that are close to each other in time and space will have
high correlations, which provides a smoothing effect on the
data. In addition, there is a periodic effect that arises due to
tidal processes, which creates a correlation between points
that are separated by 12 hours, 24 hours, etc. To capture
both the spatial correlations and the periodic correlations, we
apply the following kernel based on the squared exponential:
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The hyperparameter σ2
f represents the process noise, and

the hyperparameters wlat, wlon, wt, and wp represent weight-
ing for the latitude, longitude, time, and periodic correlations.
Having defined the kernel, combining the covariance values
for all points into an n×n matrix K and adding a Gaussian
observation noise hyperparameter σ2

n yields Kz = K+σ2
nI.

The following equation predicts the mean function value
(u or v value) µ(x∗) and variance Vgp(x∗) at a selected
point x∗ given the historical and prediction training data:

µ(x∗) = kT
∗ (K+ σ2

nI)
−1z, (2)

Vgp(x∗) = k(x∗,x∗)− kT
∗ (K+ σ2

nI)
−1k∗, (3)

where k∗ is the covariance vector between the selected point
x∗ and the training inputs X. This model gives a mean and
variance for a particular latitude, longitude, and future time.
An important aspect of this model is the derivation of a
variance, which provides a measure of confidence of each
prediction based on the correlations of the points used to
predict it.

The Gaussian Process variance described above gives an
estimate of the uncertainty of a prediction based on the data
sparsity around that point and the estimated hyperparameters.
However, this estimate does not take into account variability



of the ocean currents around that point, which is an important
predictor of measurement confidence. To improve on the GP
variance uncertainty predictions, we propose using a method
based on the interpolation variance [4], [5], [6]. Given that a
GP has already been learned, the interpolation variance can
be estimated as:

Viv(x∗) = kT
∗ (K+ σ2

nI)
−1(z− µ(x∗))T (z− µ(x∗)). (4)

The interpolation variance incorporates correlations be-
tween the data learned using the GP framework as well
as variability of correlated data to determine the predicted
variance. This estimate of variance provides a richer rep-
resentation that accounts for both data sparsity and data
variability.

B. Local approximation

The modeling technique proposed above can be used for
small datasets. However, the ROMS datasets correspond to
vast periods of time and a large portion of space. The
computation time required by the GP scales O(n3) in the
number of data points, which makes it infeasible for any
large dataset more than approximately 2000 points. As an
alternative, we propose estimating the predictions using a
subset of the data corresponding to the points we expect
to be most correlated. To choose these points, we store the
data in a KD-tree, where the relative weighting of space and
time are adjusted to fit the values in the kernel (e.g., the
periodic correlations are preserved). Such techniques have
been applied successfully for terrain modeling [14], though
we believe their application to time-series data is novel.

The estimation of the kernel hyperparameters θ =
(σf , σn, wlat, wlon, wt, wp) in large-scale Gaussian Pro-
cesses is also a challenging task. The standard method is
maximizing the likelihood of the measurements given the
data and the hyperparameters [19]:

log p(z|X, θ) = −1

2
zTK−1z z− 1

2
log |Kz| −

n

2
log 2π, (5)

where Kz = K + σ2
nI. This likelihood can be maximized

using conjugate gradient optimization for small and moder-
ately sized datasets. For the large ROMS dataset, we learn
separate hyperparameters for each day. This approach keeps
down the size of the dataset and also models variations that
occur between days.

C. Probabilistic Planning

The methods described above can be incorporated into
path planners for AUVs to improve the safety and reliability
of operation. Path planners that incorporate data from ocean
currents clearly stand to benefit from improvements in the
accuracy of ocean current predictions. In addition, confidence
estimates are useful both for planners that reason probabilis-
tically as well as for planners that reason about worst-case
instances. In particular, we are interested in improving the
operation of AUVs by avoiding areas with high probability
of encountering a dangerous ship. Figure 2 shows a risk

Fig. 2. Risk map built for the Southern California coastal ocean that shows
areas of high collision risk in red, high shipping activity in light blue, and
low shipping activity in dark blue. The bright red areas are Catalina island
and the California coast. Our goal is to plan risk-aware paths for AUVs that
avoid the shipping lanes. To accomplish this goal, we utilize predictions of
the ocean currents and the uncertainty of those predictions.

map built from historical data showing areas of the Southern
California coast with high level of shipping activity. We now
examine how the proposed GP prediction methods could be
useful for improving the paths generated by such planners.

ROMs provides forecasts up to two days in advance,
which allows us to develop action models for vehicles
that utilize these ocean predictions. We evaluate two risk-
averse path planners for AUVs, which utilize probabilistic
action models based upon ocean predictions - (1) a Markov
Decision Process (MDP) planner where we assume that the
stochasticity in the ROMS predictions is uniform throughout
the map and (2) a Markov Decision Process which uses
the spatio-temporal interpolation variance estimates from the
Gaussian Process (referred to as IV-MDP).

The transition model we use relies upon a discrete grid of
states for the AUV in the ocean, with possible actions being
the choice of moving from one state to any of its 8-connected
neighbors. The grid is built by performing a number of
simulations (> 30) for the AUV traversing each pair of grid
locations under the influence of ocean currents with different
starting times for each simulation (to generalize for temporal
variations) and an additive Gaussian noise proportional to the
predicted noise. For the naive MDP, this noise distribution
is constant through the entire map, while for the IV-MDP
the noise variance is based upon the interpolation variance
measures. The distribution of surfacing locations for each set
of trials gives us an estimate of the transition function for that
action. This transition function T (s′′|s, a(s, s′)) describes the
probability of ending up in state s′′, given we choose to take
action a (state s to state s′).

When performing simulations for generating the transition
model of the Fixed-noise MDP, we choose a representative
noise for the currents with a standard-deviation between
0.1 m/s to 0.001 m/s. The same noise model was used
for both the easting and northing current components. The
following equations describe how the simulated currents are
obtained, where simulated noise is drawn from Gaussian



distributions Nu ∼ N (0, σ2
u) and Nv ∼ N (0, σ2

v):

usim(x, y, t) = upred(x, y, t) +Nu (6)

vsim(x, y, t) = vpred(x, y, t) +Nv (7)

In the IV-MDP we use the maximum interpolation vari-
ance among the states s and s′ of each transition edge,
e(s, s′), over every time interval t ∈ [t1, t2] to generate the
transition model for the MDP. To compute the maximum
variance for the generation of the transition model for a
particular transition edge, we use Equations 8 and 9. Each
transition model is then computed by conducting (> 30)
simulations of transitions between each pair of states where
the currents used for the simulation are drawn from a
Gaussian N (0, σ2), where the variance standard deviation σ
is σu and σv for the easting and northing current components
using Equations 6 and 7 respectively:

σ2
u = max

t∈[t1,t2]

{
σ2
u(s, t), σ

2
u(s
′, t)
}
, (8)

σ2
v = max

t∈[t1,t2]

{
σ2
v(s, t), σ

2
v(s
′, t)
}
. (9)

Both the MDP planners use their respective transition
functions to perform Bellman updates in a planning graph,
where the rewards R(s) are given by negative risk of
collision with land or ships (obtained from the risk map).
The Bellman updates to compute the utility values U , if value
iteration is used to find the optimal policy, are described by:

Ui+1(s)← −R(s) + argmax
a

∑
s′′

T (s′′|s, a(s, s′))Ui(s
′).

(10)
With improved confidence measures describing the

amount of noise in the ocean current predictions, the transi-
tion models used by the IV-MDP are more representative of
the true errors than the models using a constant prediction
noise value over the entire planning graph. Thus, we would
expect the IV-MDP to provide improvements in the execution
speed, reliability, and safety of the resulting plan. The
experiments in the following section will confirm this trend.

IV. SIMULATIONS AND EXPERIMENTS

We now provide an experimental validation of our ap-
proach. The validation is two-fold: (1) We first examine the
performance of the interpolation variance for prediction of
errors in the ocean current estimates, and (2) we then validate
the approach both in simulation and experimentally on an
AUV operating in the Southern California Bight.

A. Comparison of uncertainty predictions

The data processing was performed on a single desktop
with a 3.2 GHz Intel i7 processor with 9 GB of RAM. The
kernel hyperparameters were learned independently for each
day using conjugate gradient optimization. Using the KD-
tree inference approximation, the GP took approximately 6
minutes to compute all predictions for a single day. These
results use 100 points in the space/time KD-tree for the local

GP prediction at each point. There are a total of 2560 loca-
tions that are estimated over a 24 hours period for predictions
up to two days ahead (total of 123,880 point predictions per
day). The proposed method is highly parallelizable, since the
prediction for each point can be performed independently
once the hyperparameters are learned and the KD-tree is
built.

Our methods provide confidence measures based on the
underlying variance. In the formulation above, the Gaussian
Process variance prediction provides an estimate of error due
to data sparsity and measurement noise. Since the ROMS
data are available at high resolution across time and space,
this value provides a limited measure of confidence that
is fairly homogeneous. The alternative method based on
the interpolation variance incorporates variability in the sur-
rounding currents as a component of the uncertainty. Figure 3
shows example variance maps for a day in August, 2012
as well as the true prediction error (compared to the next
day’s nowcast, which would not have been available during
planning). The results demonstrate that the interpolation
variance provides a much richer measure of uncertainty that
qualitatively matches with the true prediction error.

We also compare the correlation coefficients (R-values)
between the interpolation variance and the Gaussian Process
variance correlated with the true prediction error. If the vari-
ance is an accurate representation of uncertainty, we would
expect to see a positive correlation between the variance and
the true error. Table I shows the R-values for three months in
2012. The interpolation variance shows a positive correlation
with the true prediction error, while the Gaussian Process
variance shows essentially no correlation.1

TABLE I
CORRELATION COEFFICIENTS (R-VALUES) FOR GAUSSIAN PROCESS

VARIANCE AND INTERPOLATION VARIANCE RELATIVE TO TRUE

PREDICTION ERROR (SHOWN SEPARATELY FOR N/S COMPONENT AND

E/W COMPONENTS OF THE OCEAN CURRENT VECTORS)

Month (2012) June July August
GP variance R-value (E/W) -0.0519 -0.0178 -0.0277

Interp. variance R-value (E/W) 0.1383 0.1260 0.1655
GP variance R-value (N/S) -0.0652 -0.0245 -0.0271

Interp. variance R-value (N/S) 0.1745 0.1400 0.1323

B. Risk-aware AUV planning

We now report results using the two Minimum Risk
planners which attempt to minimize the risk of collision with
ships and land along the AUV’s path. To facilitate testing,
we constructed a virtual archipelago by adding additional
islands and shipping lanes around St. Catalina island in
Southern California (shown in Figure 4). The benefit of this
approach is that we are able to test more complex behaviors
in planners, such as allowing them to be more goal-directed
(and consequently more risk-taking), without increasing the

1The slight negative correlation for the GP variance is likely due to the
high predicted variances in the bordering edges of the dataset, which do not
correspond to increased errors in the prediction.



(a) GP Standard Dev. (E/W component) (b) Interpolation Standard Dev. (E/W component) (c) True Prediction Error (E/W component)

(d) GP Standard Dev. (N/S component) (e) Interpolation Standard Dev. (N/S component) (f) True Prediction Error (N/S component)

Fig. 3. Comparison of the Gaussian Process variance and the interpolation variance measures of uncertainty for the prediction of ocean currents in the
Southern California Bight on August 7, 2012. The interpolation variance accounts for variability in the ocean currents when making its prediction of
uncertainty, and it shows a stronger correlation with the true prediction error.

real risk of collision with land or ships. The drawback is
that the virtual islands allow for strong currents that run
through (and consequently into) islands, which, along with
tight corridors, makes this a particularly challenging scenario
for risk-aware AUV planning.

We now present results for risk-aware planners that utilize
the predictions of ocean currents described in the previous
section. We performed simulations on a regular grid (2.5 km
spacing between adjacent nodes) overlaid on the risk map
shown in Figure 4. We compared the performance of two
planners that seek to minimize the risk of collision between
the AUV and obstacles in the region: i) MDP - Markov
Decision Process, ii) IV-MDP - Markov Decision Process
using the interpolation variance for transition models (both
ROMS-aware planners described in section III-C). The AUV
is modeled as a Slocum glider (see next section for more
detail), a slow-moving (approximately 0.3 m/s) buoyancy-
controlled vehicle subject to changes in the ocean currents.

Stochastic planners (eg., MDPs) are especially useful in
high variability situations where a reasonable probabilistic
model can describe the expected behavior of the system. The
transition model for the naive MDP was created using an
empirically determined prediction noise of σ = 0.01 m/s,
and the transition model for the IV-MDP uses the interpo-
lation variances described in Section III. The ocean current
predictions during the experimental trial period were gener-
ally flowing from southeast toward the northwest, usually at
speeds comparable to those of the AUV.

We ran simulations between two locations at the eastern
and western ends of the planning graph, and we present
results from a set of trials both against and along with the
current flow. The ROMS two-day forecasts were used to
generate transition models, which are used by the two MDP
planners, while we use the assimilated forecast for each
day (which gives us the nearest current values to ground-
truth for each day) for simulations. A simulated mission is
aborted when the AUV moved too close to a virtual island
for safe operation. Successful trials are those that reach the
goal without violating this safety condition. Table II and
Table III show the results from the simulations. The IV-
MDP method outperforms the MDP in terms of successes,
time, and average risk along the path. In the case of moving
against the currents, the IV-MDP achieves more than a 40%
reduction in average risk along the path. In the case of
moving with the currents, there is not as much reduction
in risk, but the success rate jumps from 50% to 80% by
using the IV-MDP.

C. Experimental Trials

We performed several trials involving two Slocum gliders
(see [21]) in the same planning region used for the simu-
lated trials. Slocum gliders are slow-moving AUVs without
propellers that use buoyancy control to adjust their depth.
Horizontal static wings and pitch-control to an angle of
26 degrees while alternating between diving and climbing
allows the glider to generate horizontal movement. This
efficient use of energy gives gliders significant range and



Fig. 4. Location of the planning graph used for the MDP planners relative
to the real shipping lanes and Southern California coastline (to the north
and east) and St. Catalina island to the south. Magenta triangles indicate
nodes in the planning graph. Red denotes land which has the highest risk of
collision, while dark blue regions denote low collision risk. Warmer colored
regions such as yellow or cyan indicate locations with intermediate risk such
as shipping lanes or high-traffic areas near shore.

TABLE II
RESULTS FROM SIMULATIONS OF A GLIDER AUV FLYING AGAINST

CURRENTS, WITH DIFFERENT START TIMES (BETWEEN AUG 17 AND

AUG 24, 2012)

Planner Fixed-noise MDP IV-MDP
Success 5/10 5/10

Avg. Time 132.9 hrs 81.72 hrs
Avg. Surfacings 49.5 28.4

Avg. Risk 15.546 8.737

longevity at sea at the expense of speed (maximum speed of
operation is typically less than 1 km/hr or 0.3 m/s). The
flip-side of having lower velocities means the vehicle has to
contend with ocean currents, which are often of the same
order of magnitude of the glider’s nominal horizontal speed.

In the experiments, one glider ran the Fixed-noise MDP
planner while the other glider ran the Interpolation-variance
MDP. Both gliders were started from approximately the same
start location. At each surfacing, we use transition models
which have been pre-computed for the latest ROMS data,
solve the MDP with the latest position measurement from the
glider, and then transfer the resulting policy back to the glider
in the form of a new mission file with a single next waypoint
to go to. This process was repeated for each waypoint until
the gliders either reached the goal or the mission was aborted
due to safety concerns.

An example experimental trial is shown in Figure 5. We
observe that the MDP planner was not goal-directed initially
and kept the glider in a holding pattern in the relatively safe
location near the start for nearly 20 hours. The IV-MDP
was less conservative and kept making progress toward the

TABLE III
RESULTS FROM SIMULATIONS OF A GLIDER AUV FLYING WITH

CURRENTS, WITH DIFFERENT START TIMES (BETWEEN AUG 17 AND

AUG 24, 2012)

Planner Fixed-noise MDP IV-MDP
Success 5/10 8/10

Avg. Time 34.24 hrs 32.73 hrs
Avg. Surfacings 13.5 12.1

Avg. Risk 4.278 3.875

goal, which it reached 51 hours later. The Fixed-noise MDP
reached the goal more than a day later due to the time it
spent oscillating back and forth initially. These observations
are consistent with our simulation results where the IV-MDP
was able to act less conservatively than the Fixed-noise MDP
due to its additional knowledge of the predicted variances.

The simulations in the previous section showed that the
additional knowledge of the errors in the ocean current
estimates enable the IV-MDP to produce less conservative
policies than those based on an MDP planner with a fixed
prediction noise, generally helping it to produce more direct
paths to the goal. This goal-directed behavior makes the IV-
MDP have lower cumulative risk at surface, fewer hops to
get to the goal, and lower average time to the goal. Our
experimental trials with two gliders at sea (simultaneously
executing each planner) confirm the results in simulation
and further demonstrate that the benefit of uncertainty-aware
MDP planners for generating feasible and low-risk paths.

V. CONCLUSIONS AND FUTURE WORK

This paper has shown that it is possible to generate error
estimates for ocean current predictions using data-driven
machine learning methods. We have proposed the application
of time-series Gaussian Process regression combined with
a measure of interpolation variance, and we have shown
that this technique provides improvements over commonly
used measures of uncertainty. In addition, we have integrated
our estimates into risk-aware MDP planning methods for
AUVs, and we have shown that we can improve the safety
of autonomous operation in the coastal ocean by utilizing
models of ocean currents.

We believe these results show significant promise for the
use of probabilistic planning and statistical machine learning
methods to generate confidence bounds and improve the
reliability of operation for robotic vehicles. Planning for
autonomous aerial vehicles operating in urban environments
and wooded areas would also benefit from similar risk-aware
planning with uncertainty. In these scenarios, additional
uncertainty would arise from the vehicle’s dynamics as well
as from disturbances in the environment. However, many
of the planning methods and uncertainty measures we have
proposed will likely be applicable in these domains as well.

There are a number of improvements that are avenues for
future work. In the short term, we plan to examine more
sophisticated methods for automatically learning the hyper-
parameters based on large amounts of historical data as well



(a) Fixed variance MDP (b) Interpolation variance MDP

Fig. 5. A representative experimental trial of the planner operating with a fixed variance (left) and with the interpolation variance (right). The gliders
started on Aug 17, 2012 at 00:20 am PST. Despite facing strong currents, the interpolation variance confidence measures produce a less conservative policy,
which moves the glider more quickly toward the goal. The glider using the interpolation variance reached the goal at 3:21 am PST on Aug 19, well over
a day earlier than the other glider running the fixed-variance MDP, which reached the goal on Aug 20, 2012 at 8:25am PST.

as alternative methods for generating confidence measures
of the predictions. Longer-term future work includes appli-
cations of such techniques to other environmental processes,
as well as exploring the life-long learning capabilities when
presented with increasing amounts of historical data. The
investigation of alternative uncertainty representations opens
a rich area for future research that will allow for more
informed planning and scheduling of autonomous vehicles.
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