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Abstract—This paper proposes a trajectory generation and
control strategy for generating stable gait subject to unknown
disturbances, based on the concept of the Foot Placement Esti-
mator (FPE). While most walking control strategies in the field
of bipedal locomotion aim to constantly maintain balance, the
Foot Placement Estimator (FPE) estimates where the foot must
be placed in order to restore balance. One of the key novelties of
the FPE approach is its natural extension to form complete gait
cycles using a state machine and simple proportional-derivative
controllers. In this paper, the FPE control strategy is extended
from 2D to 3D robots, and demonstrated in simulation on a
14-DOF lower body bipedal robot.

Index Terms—Bipedal Locomotion, Foot Placement, Gait Syn-
thesis.

I. I NTRODUCTION

Maintaining balance is one of the key challenges inherent
to the bipedal form. Most traditional approaches have been
based on the concept of constantly maintaining balance [1],
[2]. The most popular techniques to achieve walking have
been trajectory generation and control strategies based onthe
Zero-Moment Point (ZMP) criterion [3]. The ZMP defines a
point on the ground where the forces acting on a biped do not
produce a moment about the axes parallel to the ground plane.
If the ZMP is kept within the region of foot support, the biped
is stable. This stability criterion can be used to compute ZMP-
stable trajectories offline that maximize the stability margin by
maximizing the distance from the ZMP to the boundary of the
support region. In the on-line phase, the stable trajectories are
tracked online to execute walking [4]. ZMP-based trajectories
can also be generated on-line [5], [6]. One of the biggest
drawbacks of this approach is the resulting trajectory doesnot
provide any strategy to respond to disturbances due to uneven
terrain or unexpected forces. Typically, these strategies[7],
[2] are also energetically inefficient since they are constantly
trying to maintain balance by keeping the ZMP point within
the region of foot support.

An alternative approach, first proposed by McGeer [8],
introduced a unique class of legged robots known as passive
dynamic walkers [9]. This approach takes advantage of the
natural dynamics of the biped structure, and is capable of
maintaining a stable gait cycle without active control effort.
Fully passive mechanisms walk on an inclined surface so that
the mechanism is powered by gravity alone [10]. In addition
to producing highly efficient walk, the gait patterns generated

using this approach appear more human-like in comparison to
ZMP-based control. However, passive dynamic walkers lack
robustness to perturbations due to very narrow regions of
attraction.

Recently, an alternative problem formulation focusing on
restoring balance has been proposed. The Foot Placement
Estimator (FPE), introduced by Wight et al. [11] formulatesan
approach to restore balance by controlling swing foot position
during the gait cycle. By using the conservation of angular
momentum, the FPE equation determines the location on the
ground where the total energy of an unstable biped after swing
foot impact is equal to the peak potential energy. If a step
is taken before the FPE location, the post impact energy of
the system causes the biped to fall over. Conversely, stepping
beyond the FPE location on the ground causes the biped to
fall back onto the previous stance leg.

The solution to the FPE equation itself can be used as
a recovery mechanism (i.e. in the face of a destabilizing
disturbance) with existing ZMP-based strategies. Alternatively,
it can be used to increase the narrow regions of attraction
which plague minimally actuated passive dynamic walkers
[12], [13], [14]. The key concept here is that the FPE-based
integration would require minimal joint actuation only to align
a swing food appropriately to recover from a potential fall.

As shown in [11], [15], FPE can also be extended to form
complete gait cycles to achieve dynamically stable walking.
However, there are several key assumptions which are violated
when attempting to implement this approach on a physical
3D robot. Namely, the theory presented in the derivations
assumes that the legs are massless and it only deals with the
2D dynamics in the sagittal plane.

In this paper, we extend the 2D FPE theory for 3D bipedal
robots by selecting a plane of motion in 3D space along the
desired direction of movement and constraining the swing
foot motion within this plane. Once the biped is unstable, we
solve FPE equation along the selected plane to determine the
swing foot placement to ultimately regain stability. Similar to
the approach used in [11], [15], we extend this concept to
form complete gait cycles with a state machine, high gain PD
controllers and no precomputed trajectories.

The capture point concept, developed by Pratt et al. [16],
is conceptually similar to the FPE. While the derivation
of FPE is based on a simple compass biped model with



Fig. 1. Unified variableθ used to simplify the analysis. It is easily observed
that θA = θ + β/2 andθB = θ − β/2.

fixed parameters, the capture point theory was derived using
complex motion models which included using a flywheel body
to control/offset any disturbances through the use of rotational
inertia. Ultimately, the simplicity of the model allowed the
FPE theory to be extended to complete gait cycles, while the
work presented by Pratt et al simply solved the problem of
lateral stabilization.

Recently, a more comprehensive approach using the capture
point for foot placement as a means to develop full walking
control strategies has been proposed. De Boer [17] focused on
the ground/foot interaction to develop a robust and energeti-
cally efficient walking control strategy for a force-controlled
compliant lower-body biped. While this approach is philo-
sophically similar to the idea behind FPE, there are several
key differences. Our approach uses simple local controllers
to form complete gait cycles, and can be used on position-
controlled joints without any complex actuation systems. The
capturability framework demonstrated in [18] used separate
controllers for the swing and stance legs whereas our approach
uses a single global differential kinematic resolution forwhole
body motion control. This simplifies our approach as multiple
controllers do not need to be tuned to achieve walking.

The rest of this paper is organized as follows. Section II
briefly reviews the underlying FPE theory developed for the
2D case. Section III proposes an approach for extending the
FPE approach to 3D along with a proposed control strategy
which closely resembles the 2D case. Section IV details sim-
ulations and results from various experiments with the 2D/3D
FPE. Section V provides concluding remarks and directions
for future work.

II. FOOT PLACEMENT ESTIMATOR IN 2D

In this section, the FPE approach for 2D systems initially
developed by Wight et al. [11] is briefly reviewed. The
derivation of the underlying theory begins with the simple
biped model as shown in Figure 1. The physical parameters
are the massm, inertia about the center of massICOM , fixed
leg lengthsL and leg separation angleβ. By imposing the
geometric constraints thatβ is fixed and there is no slipping
at the contact points, a single state variableθ is used to
completely define the motion of the compass biped:
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mgL sin(θ − β/2)
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θ = 0, θ̇ < 0 (1d)

0 θ = 0, θ̇ = 0 (1e)

The impact of the contact points with the ground is modelled
using the conservation of angular momentum to determine
the regions in the state space where the biped remains stable
after ground contact, by analyzing the total system energy post
impact. The stability analysis is then used to determine where
a biped must step to remain within the stability region. This
forms the basis of the FPE, which is a point on the ground
where, if the robot were to step onto that point, the kinetic
energy of the biped system would equal the peak potential
energy. Placing the swing foot beyond the FPE point results
in the biped not having enough kinetic energy post impact to
overcome the peak potential energy. In this case, the biped
remains stable. Conversely, placing the swing foot before the
FPE point causes the kinetic energy post impact to exceed the
peak potential energy. In this situation the biped begins tofall
over.

A. Computing the FPE Angle

Here, vx and vy are thex and y components of velocity
of the centre of mass, respectively. The FPE point is obtained
by solving the non-linear FPE equation in (2) for the angle
φ. A projection from the COM to the ground surface at the
angle (φ) provides the location of where the foot needs to be
placed in order to restore stability to the unbalanced system
(as shown in Figure 2).

While the stability analysis presented in [11] considered a
simple compass biped, the results of the FPE equation can be
extended to any arbitrary planar biped (i.e. with bent knees) by
controlling the joint angles of the leg to achieve an equivalent
distanceL between the COM and the foot contact. If a biped
is unstable and begins to pivot forward on a fixed contact
point, tracking the angleφ with the swing foot as the robot
falls forward converges to the FPE location when the swing
foot hits the ground. Upon impact, the distance between the
contact point and the COM would have the the same fixed
lengthL between the contact points and the angleφ converges
to β/2. The results from the compass biped also extend to the
arbitrary biped configuration (i.e. stepping directly on the FPE
point results in the kinetic energy being equivalent to the peak
potential energy).

B. Forming Complete Gait Cycles

Wight et al. [11] use the FPE concept to develop full
gait cycles using simple linear control techniques and a state
machine. Gait is initiated by destabilizing the robot in the



[

mh(vx cosφ+ vy sinφ) cosφ+ ICOM θ̇1cos
2φ

]2

mh2 + ICOMcos2φ
+ 2mgh cosφ(cosφ− 1) = 0

(2)

desired direction of movement (forward or backward). Once
destabilized, the FPE equation is solved numerically to obtain
the FPE angleφ, which is used to provide the desired trajectory
for the swing foot. If continued forward progress is desired, the
foot is commanded to precede the FPE. If no further forward
progress is needed, the foot is commanded to the FPE. The
desired trajectory is resolved to joint angles using inverse
kinematics and implemented via joint level PD controllers.
The complete state machine is shown in Figure 3.

Due to symmetry, the states in Figure 3 can be reduced
to STAND, PUSH, LIFT , SWING and DROP. For the
remainder of this paper, we refer to the sequence of state
transitions fromPUSH to DROP as a step cycle.

III. E XTENSION TO 3D

In order to extend the FPE approach to the 3D case, we
revisit the concept of generating complete gait cycles described
in Section II-B. The primary goal of the first three states in
each step cycle (PUSH, LIFT and SWING) is to force the
biped into an unstable configuration so that the FPE algorithm
can be used to regain stability in the terminal state (DROP).

To extend the 2D algorithm to the general 3D case, we
begin by selecting a suitable plane in 3D space as the plane of
motion. The non-motion plane is perpendicular to the plane of
motion and the ground. In the proposed approach, the goal of
each step cycle is to control the motion of a 3D bipedal robot
to generate a forward moving momentumalong the selected
plane of motion. Upon entering the terminal state, we solve (2)
on the selected plane to determine the swing foot placement
and ultimately regain stability. Unlike the 2D case, we consider
a 3D bipedal robot with finite foot length and width rather
than a biped with point feet as demonstrated in [11]. The
larger size of the region of support increases robustness to
these approximation errors.

The remainder of this paper assumes a 3D bipedal robot
with n actuated degrees of freedom (DOF) andn+6 general-
ized coordinates defined by the following equation of motion:

FPE

Contact Point

Projection of Φ

from COM

o

Fig. 2. Graphical representation of the solution to the FPE equation for
arbitrary robot configurations.

A(q)q̈ + C(q, q̇)q̇+ g(q) = τ (3)

whereA(q) is the(n+6)× (n+6) inertia matrix,C(q, q̇)
are the centripetal/Coriolis terms andg(q) is the gravity vector.
The (n + 6) × 1 generalized force vectorτ is segmented as
follows:

τ =
[

τact τbase
]T

(4)

Where τact represents then actuated DOF andτbase =
06×1 are the remaining non-actuated DOF at the floating base.

A. Plane of Motion

To select an appropriate plane of motion for a 3D bipedal
robot, we choose a vertical plane which lies between the
current position of the stance foot and the desired direction
of motion. For a 3D biped walking in a forward motion, this
plane is chosen as the the vertical plane passing through the
midpoint between the hips and parallel to the direction of
forward progress. For side-stepping motion, the coronal plane
through the stance foot in the direction of the side step is
chosen as the plane of motion.

The motion of the biped is controlled based on the selected
plane for the duration of the step cycle. During gait initiation,
the lines from the COM to the contact points are of lengthL,
and the leg separation angle isβ (similar to the planar case).
If the motion of the biped is constrained along this plane,
the FPE angleφ can be used to determine foot placement to
regain stability. The parameters required to compute the 2D
FPE along the plane are computed accordingly. That is, the
inertia tensor of each link is rotated to obtain the appropriate
ICOM along the selected plane of motion.

Upon impact, the angleφ converges toβ/2 and a new plane
of motion can be selected for the subsequent step cycle, at

Fig. 3. A simple state machine used in conjunction with the FPE algorithm
to form complete gait cycles .



any point before theDROP state. Once selected, the stance
foot is rotated for alignment and swing leg trajectories canbe
generated along the plane. By selecting a plane between the
current and desired directions of motion, our approach can
achieve turning with each step.

B. Trajectory Generation

Once the plane of motion has been identified at the be-
ginning of each step cycle, appropriate task space trajectories
must be generated for the COM (xCOM ) and the swing foot
(xSWING).

In the 2D case, the main goal of the initial statesPUSH,
LIFT and SWING was to achieve enough forward motion
to destabilize the biped. In the 3D case, the robot must also
remain stable in the non-motion plane while achieving the
desired movement in the plane of motion. If the ZMP leaves
the region of support formed by the stance foot as the swing
foot is lifted, the biped begins to fall in the non-motion plane
and the solution to the 2D FPE equation is insufficient to
maintain stable gait. To ensure both forward progress and
non-motion plane stability, the trajectories for thexCOM are
generated as follows:

PUSH xCOM is moved above the leading stance foot to
maintain stability in the non-motion and motion planes.

LIFT xCOM is held at its current location (above stance foot)
while the swing foot is lifted from the ground to achieve
sufficient clearance

SWING xCOM is held in place until the swing foot is aligned
with the stance foot in the non-motion plane. At this point
the xCOM is deliberately pushed outside the region of
support in the plane of motion direction.

A similar approach is used to generate trajectories for
xSWING to achieve the desired behaviour of generating
enough momentum to destabilize the biped in the plane of
motion while maintaining stability in the non-motion plane.
Trajectories forxSWING are always computed to align with
the plane of motion formed by the stance foot at the start of
the step cycle. This ensures that the solution to the 2D FPE
equation remains valid as theDROP state is entered.

PUSH xSWING is held in place as thexCOM trajectory is
tracked.

LIFT xSWING follows a ramped trajectory to simultaneously
raise the foot off the ground and move it forward in the
plane of motion

SWING xSWING follows a straight line trajectory at a spe-
cific ground clearance until it reaches the FPE angleφ

The ramp trajectory used to raise the swing foot during
LIFT should be parameterized in terms of the velocity of
the FPE point so that this state transitions faster in the
event of larger disturbances (since the biped would have a
shorter amount of time to swing the foot over and catch itself).

Depending on the supervisory control mode (i.e.WALK
or STAND), the swing leg trajectory can be adjusted to
implicitly achieve a desired goal. DuringWALK mode, the

swing foot trajectory tracks a point on the ground slightly
behind the FPE point. This under stepping behaviour results
in the biped having enough forward moving momentum when
the swing foot comes in contact with the ground such that the
biped is unstable. As a result, the FPE point is continuously
moving forward causing the state machine to transition into
the opposing foot’sLIFT state upon contact. In theSTAND
mode, the swing foot trajectory is adjusted to overstep the FPE
point so that the biped comes to a stop following this step.

C. Control Strategy

A hybrid control strategy is used to simultaneously maintain
stability in the non-motion plane, achieve sufficient forward
momentum along a selected plane of motion and ultimately
track the FPE location to regain stability by taking a step.
Similar to the approach presented in [11], our approach uses
a state machine to transition through the step sequence with
each state having a local controller.

During the initial states of the step cycle, whole body motion
control is used to track thexCOM andxSWING trajectories
described in Section III-B. To generate the corresponding joint
level trajectories, the Jacobian matrix is used to map between
the task space and the joint space velocities:

J =
[

∂qact ∂xbase

]

m×(n+6)
(5)

We utilize a prioritized task space control scheme to gen-
erate joint level trajectories which simultaneously achieve
state goals while satisfying the highest priority constraint (i.e.
holding thexCOM position). The state-dependent joint level
trajectories can be computed by projecting the lower priority
task space goals onto the null space of higher priorities:

q̇ref = S(J#
H ẋH +NHJ#

L ẋL) (6)

Where,S =
[

In×n 0n×6

]

is the actuator selection matrix
for (4), J# is the pseudoinverse of the JacobianJ , q̇ref is
the reference joint velocity, anḋxH and ẋL are the high
and low priority task space velocities, respectively.JH are
JL are the corresponding high and low priority Jacobians,
and NH = I − J#

HJH is the null space projection matrix.
The reference joint velocities are integrated to obtain the
reference command signal to be tracked by high gain local PD
controllers. The specific prioritization of each state is discussed
in Section III-D.

When the biped enters the terminal state, our hybrid control
strategy switches to directly computing the joint level com-
mands using inverse kinematics. The PD controller gains of
the stance foot ankle are set toKP = KD = 0 to allow the
biped to pivot and fall forward. Simultaneously, the inverse
kinematics for the swing leg is solved directly to track the
FPE point along the selected plane of motion.

D. State Dependent Controllers

This section presents the specific controller formulation
used during each state of the gait cycle.



1) STAND: The goal during this state is to maintain the
COM position at the geometric centroid of both feet. In order
to remain stable under small disturbances, the Jacobian under
double support phase is used to compensate for the error
∆xCOM in the X and Y directions.

JH =





JStand

JSwing

JCOM



ẋH =





0
0

ẋCOM





JL =
[

0
]

ẋL =
[

0
]

(7)

2) PUSH: The goal during this state is to track the
trajectory generated forxCOM to move to the stance foot
support region while remaining in the double support phase.
An augmented Jacobian matrix is used to track the trajectory
while simultaneously maintaining the foothold constraints.

JH =





JStand

JSwing

JCOM



ẋH =





0
0

ẋCOM





JL =
[

0
]

ẋL =
[

0
]

(8)

The joint level reference velocities are calculated from (6)
and integrated to obtain the position command.

3) LIFT: In the lift stage, the highest priority task is
maintaining the foothold of the stance foot, holding thexCOM

directly above it and simultaneously raising the swing foot
from the ground. The key challenge in this state is that
lifting the swing foot can potentially cause the centre of
pressure to leave the support region formed by the contact
points of the stance foot. The prioritized task space control
scheme is used to generate joint level commands to track the
xSWING trajectory while satisfying the higher priority goal
of maintaining the foothold and balance.

JH =

[

JStance

JCOM

]

ẋH =

[

0
ẋCOM

]

JL =
[

JSwing

]

ẋL =
[

ẋSwing

]

(9)

The joint level reference velocities are calculated from (6)
and integrated to obtain the position command.

4) SWING: At this point, the goal of our control approach
is to generate a forward moving momentum along the selected
plane of motion. This deliberately destabilizes the biped by
pushingxCOM outside the region of support in the chosen
direction of motion. The task space prioritization in this state
remains consistent with the previous state until the biped is
unstable, at which point the control strategy enters the terminal
DROP state.

JH =

[

JStance

JSwing

]

ẋH =

[

0
ẋSwing

]

JL =
[

JCOM

]

ẋL =
[

ẋCOM

]

(10)

The joint level reference velocities are calculated from (6)
and integrated to obtain the position command.

5) DROP: In this terminal state, we use the Jacobian to
track the fixed stance foot position and the generated swing
foot trajectory to track the FPE point on the ground. Since
the ZMP is outside of the region of foot support during this
state, we treat the torso as a fixed base link and compute the
Jacobian matrix of each foot.

JH =

[

JStance

JSwing

]

ẋH =

[

ẋStand

ẋSwing

]

JL =
[

0
]

ẋL =
[

0
]

(11)

By the assumption of an arbitrary 3D biped with finite
sized feet, it is possible for the biped to land on the edge
of the foot instead of landing perfectly above the FPE point
on teh ground. To handle this behaviour, we switch to a
stabilization substate where the joint level control is computed
directly. At this point, we generate trajectories for the ankles
to align the surface of the foot with the ground and switch
to high gain PD control for tracking. This ensures that both
feet are in full contact with the ground prior to executing the
opposite legs gait sequence.

IV. SIMULATIONS AND RESULTS

A. 2D Simulations

The compass biped model with the single state variable is
simulated to illustrate the effects of overstepping and under
stepping. The leg separation angleβ is held constant and no
energy is lost upon impact.

When the biped under steps, the kinetic energy exceeds the
potential energy and the biped remains in forward motion (as
shown in Figure 4). Note that a biped using the state machine
controller described above would now calculate and track a
new FPE angle to restore stability. When the compass biped
over steps, the system energy is not high enough to continue
forward motion. Instead, the biped rocks back on its previous
stance leg (as shown in Figure 5).

B. 3D Simulations

A fully actuated 14 DOF lower body humanoid robot
(700mm tall, 30kg) was designed as an experimental platform
for bipedal locomotion research at the University of Waterloo.
The proposed control strategy to extend the FPE theory to 3D
was implemented in dynamic simulations on a model of the 14
DOF robot. To demonstrate the dynamic stability of a 3D biped



Fig. 6. Frames from the sequence of motions while side stepping. The gray plane in the frame captures above represents the2D FPE plane which moves
along the Y-direction (biped’s frontal plane). The intersection of the gray 2D FPE plane and the ground plane indicate the FPE point tracked duringDROP.
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Fig. 4. Time evolution and state trajectories for under stepping (i.e. foot
lands behind FPE point)

under this approach, the frontal plane was selected as the plane
of motion. Forward motion along this plane results in a side-
to-side stepping sequence for the biped (as shown in Figure
6). Each state of our control strategy was implemented in the
Matlab/Simulink environment with the dynamics simulated in
SimMechanics. Accurate kinematic and dynamic properties of
the physical robot were taken directly from the CAD model
[19].

The resultingxCOM trajectories from simulating the side-
to-side stepping motion (shown in Figure 7) demonstrate the
stability of the biped through a complete gait sequence. Our
prioritized motion control framework handles the dynamic
switching of constraints (from double support to single sup-
port) while generating the appropriate joint level commands
for swinging the COM over. In the terminal DROP state,
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Fig. 5. Time evolution and state trajectories for over stepping (i.e. foot lands
in front of FPE point)

the swing foot trajectory tracks the FPE point on the ground
(shown in Figure 8) with an added offset to ensure that the
biped oversteps to guarantee stability (as per the 2D FPE
theory). This causes the biped to rock back and forth (similar
to the 2D case) until stability is reached.

V. CONCLUSIONS

In this paper we present a method for gait generation
by extending the 2D FPE algorithm for the 3D case. After
selecting a plane of motion in which to generate forward
momentum, we solve the 2D FPE equation to obtain the
appropriate swing foot placement to maintain stability. The
approach is used to form complete gait cycles using a state
machine and differential kinematics. To generate the appropri-
ate joint level trajectories to realize each state goal, we utilize



a prioritized task space control scheme which automatically
handles switching of constraints.

The simple 2D compass biped model was simulated to
illustrate the effects of understepping and overstepping the
FPE point. The dynamic stability of the 3D case was illus-
trated in simulation by completing a side-to-side steppinggait
sequence. It was shown that the 3D biped remains stable by
using the proposed gait generation and control strategy and
overstepping the FPE point.

In future work we plan to simulate and test on a physical
humanoid a variety of 3D movements including forward
walking motion and responses to disturbances such as pushing
by generating the plane of motion on-line.
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