
Motion Planning for Smooth Pickup of Moving Objects

Arjun Menon1, Benjamin Cohen2, and Maxim Likhachev1

Abstract— Kinematic planning for robotic arms has been
shown to be capable of planning for robust manipulation
of static objects. However, this approach falls short when
manipulating moving objects such as picking up a jar off of
a conveyor belt at a bottling plant. The challenge in carefully
picking up moving objects is that these actions require motions
that do not involve large decelerations, to avoid jerking the
object, as well as figuring out the proper time in which
the object can be picked up. We present a search-based
kinodynamic motion planning algorithm that generates a time-
parameterized trajectory for both the arm and end-effector,
capable of carefully picking up the object at the earliest feasible
point in its trajectory. To combat the high-dimensionality of
the time-parameterized kinodynamic planning problem, our
approach employs informative heuristics and adaptive dynamic
motion primitives. To validate our approach, we used a 7DOF
manipulator on Willow Garage’s PR2 robot to pickup objects
off of a conveyor belt. We also provide a detailed set of results
that demonstrate the planner’s ability to generate consistent,
low cost trajectories for manipulation.

I. INTRODUCTION

A major goal in the field of industrial automation is to

perform pick and place tasks using robotics technology when

possible. Today, manipulators are being used in factories for

many such tasks, including bin picking, box moving and the

kitting of packages. A common theme among all of these

tasks is that the robot arm is manipulating objects that are at

rest. The manipulation of static objects is well researched and

multiple approaches have been presented in the last decade

that are fast and proven to be reliable. However, autonomous

manipulation of moving objects poses new challenges to all

pieces of the system - including motion planning for the arm

and grasp planning for the end-effector.

Picking up moving objects is a challenging planning

problem because kinematic path planning approaches that

are used to manipulate static objects are no longer viable.

The naive approach in which a kinematic planner for the

arm is coupled with a grasp planner for the end-effector,

leaves many questions unanswered. These questions include

what should the timing of the trajectory be as well as at what

time should the object be grasped in its trajectory. Another

problem that arises is for a smooth and careful pickup motion

to be performed, a grasping motion that tracks the velocity

of the object until it’s complete is required. Alternatively, if

grasping the object is a jerky and abrupt motion that begins

at rest, it may not be feasible to accelerate to the proper

velocity in time for the pickup, causing a mishandling of

1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
{agmenon@andrew.cmu.edu, maxim@cs.cmu.edu}

2GRASP Laboratory, University of Pennsylvania, Philadelphia, PA
bcohen@seas.upenn.edu

Fig. 1: A possible factory task outlining the careful pickup

of moving objects for inspection.

the object. Such an action may be acceptable in a situation

in which the objects being manipulated are rigid or robust

to mishandling, however, in this paper we are presenting an

approach that is capable of dealing with durable objects as

well as fragile ones that require careful manipulation.

In this work, we show how the framework of search-

based planning can be used to deal with the challenges de-

scribed above. More specifically, we present a kinodynamic

motion planning algorithm that is capable of generating

time-parameterized trajectories for the entire pickup motion

of a moving object. To generate these trajectories, motion

planning is performed in a statespace that includes time

in addition to the joint positions and joint velocities of

the manipulator. This results in a very high dimensional

statespace when planning for a state of the art robotic arm.

In our approach, we systematically construct a graph and

search it with an anytime variant of heuristic search, known

as ARA* [1]. The algorithm uses a set of dynamically fea-

sible motion primitives to construct a graph in which, every

edge is a valid motion with respect to the torque limits of the

manipulator and acceleration constraints given by the object.

To deal with the additional complexity posed by the grasping

problem, we present an adaptive dynamic motion primitive,

a primitive that is generated on-the-fly, that is capable of

planning a dynamically feasible grasp for the object. To

guide the search, we use a fast to compute heuristic that

aids the search by providing valuable information regarding

the complexities of the velocity and acceleration limits of



the manipulator.

II. RELATED WORK

A manipulation pipeline for picking up moving objects has

been shown to consistently pickup objects successfully off of

a conveyor belt even at high speeds [2]. In this approach, a

kinematic search-based planner is used to plan to a pregrasp

pose. From there, using an open loop inverse-kinematics

based grasp-motion, starting from rest, the grasp is executed

at the calculated time. A drawback is the open loop grasping

motion may be unsafe or not synchronized properly with the

object’s motion. The approach we describe in this paper plans

a smooth motion, tracking the object’s motion as the gripper

encloses it, giving it the capability to manipulate objects too

fragile to be picked up with an abrupt scooping motion, such

as a glass of water.

Another manipulation pipeline uses a combination of

optical flow and a robust control strategy to produce arm

motion that synchronizes to the motion of the object [3].

Our approach differs in that we seek to produce a feasible

plan, accounting for kinematic feasibility in the environment

and differing object geometries for manipulation, while pro-

ducing a smoother pickup.

For picking up a moving object, a purely kinematic planner

is insufficient because the solution is a time parametrized

trajectory. The problem is kinodynamic since there is a need

to account for manipulator limits on velocity and torque.

Time parametrized planning in the kinodynamic state-space

is challenging due to the large number of dimensions, as

well as an unbounded time dimension. One set of approaches

that is robust to the curse of dimensionality is sampling

based planners, such as RRT [4] or its variant RRT∗ [5].

Bidirectional RRT’s are not applicable here since the goal

state is partially defined. Even with forward search however,

the goal state is degenerate (can be at any time, and at

any arm configuration) which makes biasing the sampling

towards the goal not as clear-cut. Additionally, for RRT∗

the rewiring step requires solving a two-point boundary

value problem, which is challenging to solve in the case of

redundant manipulators. Other approaches to kinodynamic

planning include planning in a modified configuration space

that accounts for the motion of obstacles [6], a hybrid

approach that leverages graph-search and sampling-based

planners [7], or algebraically constructing the solution [8].

These algorithms however are limited to lower dimensional

problems.

Kinodynamic planning has been framed as a time-optimal

control problem, for a given kinematic path [9], [10].

Extensions to this address different path parametrizations

[11], and dealing with velocity and torque limits [12] or

dynamic singularities [13] . These papers do not address

the completeness since combining a kinematic path planner

with retiming for kinodynamic constraints are independent

steps. A possible solution is to combine the retiming step and

planning in configuration space, while including dynamic

constraints [14]. Alternatively, instead of time-optimal trajec-

tories, safety-optimal trajectories which minimize the likeli-

hood of failure, under uncertainty, were found by searching

for a kinodynamic policy [15]. Neither of these approaches

have considered search for time-parametrized trajectories

where the goal is moving.

III. KINODYNAMIC MOTION PLANNING

ALGORITHM

The kinodynamic motion planning problem presented in

this paper is to pick up a moving object such as a bottle

on a conveyor belt. Using prior knowledge of the object’s

trajectory, as well as a manually selected grasp on the object,

we generate a trajectory for the manipulator that is kino-

dynamically feasible by constructing and searching a graph

using motion primitives that are predefined or generated on-

the-fly. The trajectory generated minimizes time taken to

retrieve the object (we consider the object retrieved if it is

grasped and stationary).

We divide the motion plan into three phases which are

differentiated based on the pose of end-effector with respect

to the object:

• Reaching: end-effector is not close to the object, and

the manipulator is moving to position the end-effector

at the object.

• Grasping: end-effector is moving from near the object

to contact with the object, and tracking it to secure its

hold on the object. In this phase the manipulator needs

to keep the relative position of the end effector and the

object the same, otherwise the object would slip out of

grasp.

• Lifting: the end-effector has achieved a stable grasp of

the object which allows it to move the object as if it

were rigidly attached. Here the manipulator would be

free to move in space, or it could be constrained to the

special dynamics of the object, such as a fluid filled

container not being jerked.

Our planner performs a single search that finds a solution

for all three phases, and solves for the least-time trajectory.

The search is done in the space of joint angles, velocities,

and in time in order to find a kinodynamically feasible time-

parametrized trajectory that picks up the moving object. As

discussed in Section II, existing techniques to kinodynamic

planning are inapplicable because of the two-point boundary

value problem and the degeneracy of the goal state.

We employ a graph search for finding the time

parametrized trajectory as described below. As with any

graph search it can be split into four parts: graph con-

struction, cost function, heuristic function and the search

algorithm itself.

A. Graph Construction

We represent the planning problem by an underlying

lattice structure which is a discretization of the kinodynamic

configuration-space into a set of states S and connections

between the states E. This allows us to employ graph search

algorithms for finding a motion plan. Using the notation,

G = (S,E) to describe the graph we search over, S



represents the state-space of the search and E represents the

possible transitions between states.

For our specific task, the state-space S consists of the

robot joint configurations, joint velocities, time. A candidate

state s = (θ1, θ2, ..., θn, θ̇1, θ̇2, ..., θ̇n, t) is then a tuple of

discretized joint positions, velocities, and time. A dynamic

environment naturally pirecludes the inclusion of time as a

search dimension.

The transitions between states, E, consist of two sets of

motion primitives which are Edelta and Egrasp.

Edelta is a fixed set of motion primitives of the form

(θ̈1, θ̈2, ..., θ̈n,∆T ), which are used for reaching the moving

object and intercepting it. A successor state is generated by

numerically integrating under these acceleration profiles for

a fixed time-step from the current state. We integrate using

the Runge-Kutta-Fehlberg and the second-order differential

dynamics model of the manipulator of n degrees of freedom:

M(θ)θ̈ + θ̇TC(θ)θ̇ +G(θ) = τ (1)

where θ is the n×1 vector of joint positions, θ̇ is the vector

of joint velocities, θ̈ is the vector of joint accelerations, M is

the n×n inertia matrix of the manipulator, C is the n×n×n
Coriolis tensor, and G is the n× 1 vector of gravity forces,

and τ is the n× 1 vector of joint torques.

Egrasp is a set of adaptive motion primitives [16] that

uses Jacobian pseudoinverse control to generate a collision-

free, dynamically feasible trajectory of the arm that brings

the hand in close contact with the object and maneuvers

the hand from cradling the object to securely holding the

object. This achieves the sub-task of grasping the object.

The motion primitive is designed to produce a grasp on the

object that is manually determined to work on the object

being manipulated, i.e. we hand-pick the grasp and pregrasp

pose for the object. As an side note, we bundle lifting sub-

task into Egrasp in the planner by appending a waypoint

that lifts the object, and it can generated either by motions

produced through Edelta or Jacobian pseudoinverse control.

In our experiments, we use one of the PR2’s end-effectors,

a two fingered pincher, to pickup cylindrical objects. In

this case, the set of candidate grasps are the poses radially

arranged around the main axis of the cylindrical object.

The motion primitives of Egrasp is agnostic to the grasp

desired, and the set of motion primitives that are included

in Egrasp can be expanded to include ranked grasps from

grasp-tables, provided appropriate grasp trajectories can be

generated using a jacobian motion from the pregrasp pose.

Algorithm 1

graspPrimitive(s, o, tpregrasp)

1: P o
pregrasp ← pregrasp pose for object o at tpregrasp

2: θpregrasp ← inverse kinematics to reach P o
pregrasp

3: traj ← JacobianMotion(θpregrasp, tpregrasp)
4: if traj is collision-free and dynamically-feasible then

5: return traj

6: end if

Fig. 2: Example gripper trajectories as generated by the

adaptive motion primitives in Egrasp, showing pregrasp,

grasp, and lifting. The black arrow denotes the forward-in-

time direction of motion of the object.

As seen in Algorithm 1, a grasp trajectory is generated

from the configuration state s, for object o at time tpregrasp.

A configuration of the arm, θpregrasp, is solved for using

standard inverse kinematics, at a given pose P o
pregrasp, which

is determined for the object at time tpregrasp. For our specific

problem, we require the end-effector is facing the radial

axis of the object, as visualized in Figure 3a. However

there are many poses around the object varying orientation

around the object, and we test a handful of such poses. Then

using inverse velocity relation from Equation 2, the Jacobian

motion trajectory is generated using the control law,

θ̇ = J†Ẋ + (I − J†J)θ̇0 (2)

where J† is the Moore-Penrose pseudoinverse of the

manipulator jacobian J , Ẋ is the workspace twist velocity

desired, and θ̇0 is a velocity that makes use of the redundancy

in the manipulator to perform auxiliary actions in the tra-

jectory such as maximizing manipulability or avoiding joint

limits [17], [18], [19]. In our experimental work, we opted

for joint limit avoidance given by

θ̇0,i =











−θ̇J, θi ≥ θU
i − θD (3a)

θ̇J, θi ≤ θL
i + θD (3b)

0, θi > θL
i, + θD, θi < θU

i − θD (3c)

where θL
i and θU

i are the lower and upper joint limits

of a joint i, θD defines a band near upper and lower joint

limits, and θ̇J is a constant velocity to get the joint out of

the deadband.

In Equation 2, Ẋ is chosen such that the hand approaches

the object from the normal direction while keeping up with

the object. The workspace velocity found moves the hand

radially towards the object while keeping pace, as shown in

Figure 3b, after which it tracks the object’s position while



object motion

DSNAP
DPREGRASP

(a)

(b)

(c)

Fig. 3: Trajectory produced by Egrasp consisting of (a)

pregrasp motion, (b) grasp motion, and (c) tracking motion.

the gripper closes around the object, in Figure 3c. A sample

generated gripper trajectory with respect to the object is

shown in Figure 2.

After the trajectory is generated, a spline is fitted to the

trajectory to get a time parameterization that we can validate

easily for infeasible joint torques, velocities, and collisions

with the moving goal. Collisions with static obstacles, and

joint limits are handled during the rollout of the trajectory. If

the trajectory is invalidated for any of the reasons provided,

we discard it and move on to testing other pregrasp poses

and times for feasible grasp motions.

If a feasible trajectory traj is found, this constitutes a

valid edge and the successor state is labeled as one of the goal

states. The cost of this edge is set to the cost of the trajectory

for the motion primitive, i.e. duration of the jacobian motion

and pregrasp motion.

If the set of candidate pregrasp states is exhausted, no

successors are generated by Egrasp.

B. Cost Function

The goal of the cost function is to minimize the execution

time to complete the entire pickup task. Therefore the cost

of each motion primitive in Edelta is the time computed by

the forward-integration of the dynamics of the arm. The cost

of a motion primitive in Egrasp is the time taken to perform

all three components - pregrasping, grasping, and tracking.

Additionally the time for lifting is accounted for in this.

C. Heuristic

The purpose of a heuristic function is to improve the

efficiency of the search by guiding it in promising directions.

Heuristic-based search algorithms require that the heuristic

function is admissible (underestimating the cost to goal) and

consistent [20]. A typical method for formulating a heuristic

is to use the results from a simplified problem, such as from a

lower-dimensional version of a similar search problem. This

is usually achieved by relaxing some of the constraints of

the original problem. The heuristic needs to capture the key

complexities of the problem at hand to efficiently guide the

search in the most informative way. In our problem, we found

that it is important for the heuristic to account for the velocity

and the acceleration constraints on the arm.

The heuristic estimates the cost (time) to the goal,

theuristic, by summing the individual time estimates for the

phases of the task, ∆treach and ∆tgrasp (see Algorithm 2

and Figure 4a).

Algorithm 2

heuristicLeastTime(s, o)

1: tcurrent ← time of state s
2: P e ← pose of end-effector at state s
3: Ẋe ← velocity of end-effector at state s
4: tsample ← tcurrent
5: while tsample < tcurrent +∆Tmax do

6: P o ← object o’s pose at tsample

7: Ẋo ← object o’s velocity at tsample

8: ∆treach = timeOfF light(P e, Ẋe, P o, Ẋo)
9: ∆tgrasp = timeOfGrasp()

10: ∆testimate = ∆treach +∆tgrasp
11: if ∆testimate < tsample − tcurrent then

12: return ∆testimate

13: end if

14: tsample = tsample +∆tsample

15: end while

Algorithm 3

timeOfFlight(P e, Ẋe, P o, Ẋo)

1: dist = euclidean distance between P e and P o

2: axis = line from P e to P o

3: vstart ← project instantaneous velocity of Ẋe onto axis
4: vend ← project instantaneous velocity of Ẋo onto axis

5: v(t)← triangular velocity profile subject to
∫ T

0
v(t) dt =

dist, v(0) = vstart, v(T ) = vend
6: if maxt v(t) > vemax then

7: v(t) ← trapezoidal velocity profile subject to same

constraints, and maxt v(t) = vemax

8: end if

9: return T from v(t)

Assume we are computing the heuristic value of a state

s. In order to estimate ∆treach, we use the sub-routine

described by Algorithm 3 and visualized in Figure 4b. We



(a)

(b)

Fig. 4: Heuristic function outline showing (a) sampling of

multiple points along the object trajectory and then, (b) one

dimensional projection to the straight line connecting object

and hand.

start by sampling a position P o and velocity Ẋo (Line 6 and

7) of the object at tsample.

To estimate ∆treach we use Algorithm 3, and this sample

pose and velocity. We connect the end-effector at tcurrent
and the object at tsample by a straight line path. By projecting

the object and end-effector cartesian velocities, Ẋo and Ẋe,

to this one dimensional path, we solve for a velocity profile

v(t), trapezoidal or triangular, using bounded linear velocity

vemax and linear acceleration aemax. This velocity profile

directly gives us ∆treach.

An important step in Algorithm 2, is the check whether

∆treach is greater than tsample − tcurrent for which it was

generated. If it is greater, then it takes longer for the free-

flying end-effector to reach the pose at tsample than it does

for the object. If this is the case tsample is incremented. Once

∆treach is less than tsample−tcurrent then the object can be

reached and the heuristic is returned. ∆Tmax can be chosen

as the time till the object leaves the robot workspace. At

which point the heuristic can only return infinite costs to the

goal.

To compute ∆tgrasp, we account for the time taken to

grasp and lift the object. Since we use a control policy to

generate the motion primitive, we set a nominal time which

approximates least time it would take to grab the object, i.e.

the time to close the gripper. The time to lift the object is

also a constant time, which is added to the gripper closing

time to give ∆tgrasp.

The summation of ∆treach and ∆tgrasp gives us our

heuristic estimate for the current state in the search,

theuristic.

In order to select the bounded end-effector velocity vemax,

we choose a vemax that is the the fastest we can move the

end effector in the workspace, while respecting the joint

velocity limits. To do this, we maximize ẊT Ẋ , subject to

the constraints

Ẋ = J(θ)θ̇ (4)

θ̇min,i < θ̇i < θ̇max,i (5)

where vemax is given by ẊT Ẋ . Equation (5) describes

a bounding box in the space of joint velocities. Since the

Jacobian of the arm J is affine, we can check the same

corners projected into workspace velocity space through

Equation (4) and select the highest norm for our estimate

of vemax. Using Equation (5) by permuting each θ̇i whether

it is a maximum or a minimum for the index i, we compute

the corresponding workspace velocity and find the max speed

of the end-effector in the workspace as vemax.

Since this maximum vemax is dependent on the configura-

tion θ as seen in (4), as a preprocessing step, we test a large

number of arm configurations to get an estimate for the top

speed of the end-effector in the workspace. The approach to

finding the bound on the linear acceleration, aemax, of the end

effector is similarly done to [21]. However for our purposes

the acceleration bound is calculated on a stationary arm.

D. Search

We use the anytime variant of A∗, ARA∗, to search

a graph G for the solution. ARA∗ tries to find the best

solution it can within the given time period. Beginning with

an initial suboptimal solution, the algorithm improves the

solution while deliberation time remains. ARA∗ is complete

for the given graph G and has theoretical bounds on on sub-

optimality of solutions. Using an inflated heuristic, by ǫ ≥ 1,

the graph-search reduces with time the ǫ to 1, at which point

the return solution is the least cost path.

IV. EXPERIMENTAL RESULTS

Our experimental analysis includes two components. First,

we present a battery of tests in simulation to measure the

computational performance of the planner. Then we present

experiments on an actual robot in which it picks up moving

objects. The purpose of the two stage analysis is that it

is difficult to assess whether the robot successfully grasped

the object or not in our simulated environment. In addition,

without object detection and perception in the test setup on

the actual robot, the process of performing a large battery

of tests becomes tedious and time consuming. Instead, we

performed a large set of planning requests in simulation to

benchmark the performance and robustness of the planner

and a small subset of those were repeated on the actual robot

to verify the success of the grasping motions and included

in the attached video. We performed all of our experiments

on Willow Garage’s PR2 robot.



Fig. 5: The dots represent the initial poses of the moving

object in the experiments.

A. Simulation

Our performance tests were run in simulation on a com-

puter running Ubuntu 11.10 with an Intel Core2 Quad Q9550

CPU (2.83Ghz) with 6GB of RAM. We generated a set of

112 tests, each with initial object poses varying in their

position in xy on the conveyor belt. In all of these tests,

the belt speed is set to 0.1m/s, we are planning for the right

arm, and the object that is being grasped is a soda can. The

initial poses of the object are each separated by 2cm in a

14cm by 26cm rectangle. In Figure 5, the initial poses are

displayed as blue and red dots and the belt moves along the

direction of the arrow. The initial joint configuration of the

right arm is the same for all experiments and can be partially

seen in the figure.

In each of these trials, the planner is given an allocated

planning time of 30 seconds and if a solution is not found it

is considered a planning failure. Of the 112 tests performed,

the planner successfully computed plans for 110 of them,

yielding a success rate of 98.2%. In Table I we present a

summary of the successful planning requests. In each test,

the initial ǫ = 100 and the reported results are computed

using the first solution found.

plan. time(s) expans. sol. cost execution time (s)

average 2.25 10.6 3,296 5.04
st. dev 2.84 10.2 290 0.29

TABLE I: Summary of performance results.

In these experiments, we use a basic set of motion

primitives for Edelta in which each joint is accelerated one

at a time. We chose this set because they provide a dense

coverage of the workspace. However, more complicated

acceleration profiles can be used in Edelta. We state the

values of the joint velocities in radians per second squared

and ∆t in seconds. The actual motion primitives in Edelta

that were used in these experiments are listed in Table II.

We manually select the grasp points of the object during

our experiments performed on the PR2 that would result in

the most consistent pickups. The Egrasp motion primitives

are considered at any state whose end effector was within a

θ̈0 θ̈1 θ̈2 θ̈3 θ̈4 θ̈5 θ̈6 ∆t

± 1.0 0 0 0 0 0 0 0.2
0 ± 1.0 0 0 0 0 0 0.2
0 0 ± 1.0 0 0 0 0 0.2
0 0 0 ± 1.0 0 0 0 0.2
0 0 0 0 ± 1.0 0 0 0.2
0 0 0 0 0 ± 1.0 0 0.2
0 0 0 0 0 0 ± 1.0 0.2

TABLE II: List of motion primitives in Edelta

Fig. 6: The objects used in our experiments on the PR2.

threshold of 0.10m. Additionally we estimated the time to

close the gripper was 2.0s.

B. PR2 Experiments

In experiments on the PR2 we use its left arm to place an

object on the conveyor and right arm for the delicate pickup

of the object. This imitated a scenario where the motion of

the object is detected perfectly using external sensors such as

laser range finders arrayed along the conveyor. The velocity

of the object is known to the PR2 (and planner). During the

experiment the object is initially held slightly above the belt

in the left hand at its set initial pose. The left gripper then

opens, placing the object on the moving belt, and triggers

the execution of the planned path.

For our experiments, we chose objects that would help

demonstrate the smoothness of the planned motion. The

objects we used include a soda can, martini glass and a

toy bird balancing on a pointed stand mounted to the top

of another soda can. Screenshots of the objects in the video

can be seen in Figure 6. Note that the martini glass is double-

walled with clear liquid inside that is free to move around.

The placidity of the liquid during the pickup gives a sense

of how smooth the planned trajectory is. The same is true

with the balancing bird. In the accompanying video, the toy

bird’s weighted beak makes it adept at balancing on its tip

however it fails to maintain its balance given jerky or abrupt

motions.

V. DISCUSSION

Currently in our implementation Egrasp is only one kind

of motion, that uses Jacobian pseudoinverse control. This is

not exhaustive in the space of possible pregrasp motions,

for manipulators with more complicated hands, and for

redundant manipulators. Egrasp uses a controller whose

gains are not automatically determined by the planner, and

hence requires some manual configuration to produce a set

of feasible grasping motions. The grasp poses are limited to

cylindrical objects due to their simplicity.



Fig. 7: Snapshots of the robot picking up a soda can and a martini glass off of a conveyor belt.

Additionally Edelta is lacking sleep motion primitives, i.e.

motion primitives that bring the arm to rest. These primitives

would enable the planner to deal with objects that do not

enter the manipulator workspace for a long time.

The planner may not compute a trajectory in real time if

the object is too close to the robot, from our experimental

results. A feasible use-case is precomputing a library of such

plans, which can be indexed based on the object position and

trajectory for a variety of scenarios. Planner optimizations are

the next step for us to improve its applicability to real time

scenarios.

Possible extensions to the planner to improve its applica-

bility also include closed loop planning. Formulating it as

an incremental search problem (dynamic replanning) may

enable the use of object trajectory feedback.

VI. CONCLUSIONS

In this paper we have presented a search-based kinody-

namic motion planning algorithm that is capable of generat-

ing time-parameterized trajectories to pickup moving objects.

Our approach generates a smooth trajectory, capable of

matching the velocity of the object throughout the grasping

motion while being feasible with respect to joint torques

and velocity limits. To efficiently deal with the high dimen-

sionality of the planning problem, we introduced adaptive

dynamic motion primitives, which are motions generated on

the fly that use jacobian pseudoinverse control to simplify

the planning of the grasping motion. The algorithm relies

on an anytime graph search to generate solutions quickly,

as well as to provide consistency and theoretical guarantees

on the completeness, consistency and provides a bounds on

the suboptimality of the solution cost. The search is guided

efficiently by an informative heuristic that aids in coping

with the velocity and acceleration limits of the arm. Our

video and experimental results demonstrate the success of

the approach, however, for it to be used in real time, further

optimization is needed.

ACKNOWLEDGMENT

This research was sponsored by ONR grant N00014-

09-1-1052, DARPA CSSG program D11AP00275 and the

Army Research Laboratory Cooperative Agreement Number

W911NF-10-2-0016.

REFERENCES

[1] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Advances in Neural Informa-

tion Processing Systems (NIPS) 16. Cambridge, MA: MIT Press,
2003.

[2] A. Cowley, B. Cohen, W. Marshall, C. J. Taylor, and M. Likhachev,
“Perception and motion planning for pick-and-place of dynamic ob-
jects,” IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2013.

[3] P. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “Automated
tracking and grasping of a moving object with a robotic hand-eye
system,” Robotics and Automation, IEEE Transactions on, vol. 9,
no. 2, pp. 152–165, 1993.

[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic
planning,” The International Journal of Robotics Research,
vol. 20, no. 5, pp. 378–400, 2001. [Online]. Available:
http://ijr.sagepub.com/content/20/5/378.abstract

[5] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in Decision and Control

(CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp. 7681–7687.

[6] E. Owen and L. Montano, “Motion planning in dynamic environ-
ments using the velocity space,” in Intelligent Robots and Systems,

2005.(IROS 2005). 2005 IEEE/RSJ International Conference on.
IEEE, 2005, pp. 2833–2838.

[7] E. Plaku, L. Kavraki, and M. Vardi, “Discrete search leading continu-
ous exploration for kinodynamic motion planning,” in Proceedings of

Robotics: Science and Systems, Atlanta, GA, USA, June 2007.

[8] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066,
1993.

[9] J. E. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control of
robotic manipulators along specified paths,” The International Journal

of Robotics Research, vol. 4, no. 3, pp. 3–17, 1985.

[10] K. Shin and N. McKay, “Minimum-time control of robotic manip-
ulators with geometric path constraints,” Automatic Control, IEEE

Transactions on, vol. 30, no. 6, pp. 531–541, 1985.

[11] T. Kunz and M. Stilman, “Time-optimal trajectory generation for
path following with bounded acceleration and velocity,” in Robotics:

Science and Systems, July 2012, pp. 09–13.

[12] L. Zlajpah, “On time optimal path control of manipulators with
bounded joint velocities and torques,” in Robotics and Automation,

1996. Proceedings., 1996 IEEE International Conference on, vol. 2,
1996, pp. 1572–1577 vol.2.



[13] Z. Shiller and H. Lu., “Computation of path constrained time optimal
motions with dynamic singularities,” Journal of dynamic systems,

measurement, and control, vol. 114, no. 34, 1992.
[14] Q.-C. Pham, S. Caron, and Y. Nakamura, “Kinodynamic planning in

the configuration space via velocity interval propagation,” in Proceed-

ings of Robotics: Science and Systems, Berlin, Germany, June 2013.
[15] K. Byl, “Optimal kinodynamic planning for compliant mobile manip-

ulators,” in Proceedings of the International Conference on Robotics

and Automation (ICRA), 2010.
[16] B. J. Cohen, G. Subramanian, S. Chitta, and M. Likhachev, “Planning

for Manipulation with Adaptive Motion Primitives,” in Proceedings

of the IEEE International Conference on Robotics and Automation

(ICRA), 2011.
[17] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-

elling, Planning and Control, 1st ed. Springer Publishing Company,
Incorporated, 2008.

[18] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped
least-squares inverse kinematics with experiments on an industrial
robot manipulator,” Control Systems Technology, IEEE Transactions

on, vol. 2, no. 2, pp. 123–134, 1994.
[19] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with sin-

gularity robustness for robot manipulator control,” Journal of Dynamic

Systems, Measurement and Control, vol. 108, pp. 163–171, September
1986.

[20] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Prob-

lem Solving. Addison-Wesley, 1984.
[21] A. Bowling and O. Khatib, “The motion isotropy hypersurface: a

characterization of acceleration capability,” in Intelligent Robots and

Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference

on, vol. 2, 1998, pp. 965–971 vol.2.


