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Abstract— Advanced modern humanoid robots often have
complex manipulators with a large number of degrees of
freedom. Thus, motion planning for such manipulators is a very
computationally challenging problem. However, often robotic
manipulators allow the wrist degrees of freedom to be controlled
independently from the configuration of the rest of the arm. In
this paper we show how to split the high dimensional planning
problem into two lower-dimensional sub-problems—planning
for the main arm joints and planning for the wrist joints,
without losing guarantees on completeness. This approach is an
extension of our previously developed framework for planning
with adaptive dimensionality. Experimentally, we show that
this approach is very effective in speeding up planning for
robotic arms on Willow Garage’s PR2 platform. We compare
our algorithm with several popular alternative approaches for
performing motion planning for robotic arms. The results we
observe illustrate that our algorithm provides a good balance
between planning time, planning success rate, path consistency,
and path quality.
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I. INTRODUCTION

With the increased availability of humanoid robots, motion
planning for robotic manipulators is becoming a very com-
mon planning problem. Robots need to be able to quickly
plan trajectories for their manipulators in order to safely in-
teract with their surroundings. However, advanced humanoid
robots, such as Honda’s Asimo, Willow Garage’s PR2, and
CMU’s HERB, often have complex manipulators with a large
number of degrees of freedom. This high dimensionality of
the robotic manipulator makes the motion planning problem
computationally challenging.

Often robotic manipulators allow the wrist degrees of free-
dom to be controlled independently from the configuration
of the rest of the arm. This is true of the arms on the PR2,
Barrett arm, KUKA arm, and other popular robotic arms.
This property allows us to decouple planning for the main
arm joints from planning for the wrist joints, thus splitting the
planning problem into two lower-dimensional sub-problems.
Considering only the main arm joints gives us a state-
space of lower dimensionality, which makes this approach
well suited for our previously developed framework for
planning with adaptive dimensionality [1], [2]. The algorithm
for planning with adaptive dimensionality searches through
a lower dimensional state-space and it only considers the
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Fig. 1. The degrees of freedom of the arm of a PR2 robot: (1) shoulder
pan, (2) shoulder lift, (3) shoulder roll, (4) elbow flex, (5) forearm roll, (6)
wrist flex, (7) wrist roll.

additional degrees of freedom of the wrist in the areas of
the state-space that require reasoning about the end-effector
orientation.

In this work we develop an extension to our framework
for planning with adaptive dimensionality, which exploits the
specific properties of planning for robotic manipulators with
independent wrist joints. In particular, it exploits the fact
that the wrist can be controlled independently from the rest
of the arm to split the planning problem into two much
easier sub-problems, while maintaining strong theoretical
guarantees, such as completeness and bounds on solution
cost sub-optimality. We apply this algorithm to 7-DoF motion
planning for a robotic arm on Willow Garage’s PR2 platform.
We compare our algorithm with several popular alternative
approaches for performing motion planning for robotic arms.
The results we observe illustrate that our algorithm provides
a good balance between planning time, planning success rate,
and path quality.

II. RELATED WORK

Sampling-based motion planners [3], [4], [5] have be-
come extremely popular in recent years. They have been
shown to solve impressive high-dimensional motion planning
problems, while being simple, fast, and easy to implement.
These methods have also been extended to support motion
constraints through rejection sampling [6].

Our approach to motion planning differs from the
sampling-based methods in several important aspects. First,
sampling-based motion planners are mainly concerned with
finding any feasible path, rather than minimizing the cost of
a solution. The notable exception is the RRT* algorithm [7],
which is one of the algorithms that we compare our approach



against experimentally. These approaches sacrifice cost mini-
mization in order to gain very fast planning speeds. As such,
they may often produce solutions of unpredictable length
involving highly sub-optimal or jerky motions that may be
hard for the manipulator to follow. To compensate for the
lack of solution cost minimization, sampling-based methods
rely on various smoothing techniques to improve the quality
of the computed trajectory. While often helpful, smoothing
may fail in cluttered environments. Second, search-based
planners produce more consistent solutions between planning
episodes with similar start and goal configurations.

Several motion planning algorithms have been developed
that also try to minimize the cost of solutions through
optimization techniques [8], [9]. The Covariant Hamiltonian
Optimization and Motion Planning (CHOMP) algorithm [8]
works by creating a naive initial trajectory from start to goal,
and then uses a method similar to gradient descent to try
to minimize the cost function. The use of gradient descent,
however, makes the approach vulnerable to local minima in
the cost function. The Stochastic Trajectory Optimization for
Motion Planning (STOMP) algorithm [9], on the other hand,
relies on generating noisy trajectories to explore the space
around a naive initial trajectory. It then iteratively combines
these trajectories to produce an updated trajectory with lower
cost. A cost function based on a combination of obstacle and
smoothness cost is optimized in each iteration. The stochastic
nature of the approach makes it less vulnerable to local
minima in the cost function.

A variety of techniques have been developed in order
to improve planning times in high-dimensional configura-
tion spaces. Many approaches involve a two layer planning
scheme with a low-dimensional global planner that provides
input to a high-dimensional local planner. The local planners
operate on a much smaller subset of the environment, and
thus, they can afford to incorporate more dimensions into the
planning process while meeting planning time constraints
[10], [11], [12]. However, these approaches can result in
highly sub-optimal trajectories and even trajectories that
are infeasible due to mismatches in the assumptions made
by the global and local planners. Another way to reduce
the dimensionality of planning problems is through the use
of hierarchical planners and state abstraction, such as the
approaches taken in [13], [14]. Computing very accurate
heuristics is another way of improving the performance of
searches through high-dimensional state-spaces [15]. The
heuristics are often derived by solving a relaxed lower-
dimensional representation of the original planning problem.
Planning with adaptive dimensionality differs from the ap-
proaches above in several aspects. It does not explicitly split
the planning in two levels, but rather mixes low-dimensional
and high-dimensional states within a single planning process.
Planning with adaptive dimensionality can also make effec-
tive use of a very accurate heuristic, but it does not rely on
the heuristic alone to improve performance. Thus, it is more
robust to handling local minima in the heuristic function.

III. MOTION PLANNING FOR MANIPULATORS WITH
INDEPENDENT WRIST JOINTS

A. Problem Definition

Following the approach taken in [16], we are assum-
ing that the planning problem is represented by a dis-
cretized finite state-space S and a set of transitions 7' =
{(X;, X;)|X;, X; € S}. Every state X is defined by a state-
vector of discretized joint angle values for all the joints
of the manipulator. Each transition, or motion primitive,
(Xi,X;) € T represents to a feasible transition between
the corresponding joint angle values of the two states, and is
associated with a positive cost ¢(X;, X;). Thus, we have an
edge-weighted graph G with a vertex set .S and edge set 7.
We will use the notation mg(X;, X;) to denote a path from
state X; to state X; in G, and its cost will be denoted by
c(me(Xs, X;)). We will use 7 (X;, X;) to denote a least-
cost path. The goal of the planner is to find a least-cost
path in G from a given start state Xg to a goal state Xg.
Alternatively, given a desired sub-optimality bound ¢ > 1,
the goal of the planner is to find a path 7§, (Xg, X¢), such
that ¢(75,(Xg, Xa)) < e-c(n(Xs, Xa)).

B. Algorithm

In this work we consider the motion planning problem for
robotic manipulators whose joints can be controlled inde-
pendently from the configuration of the rest of the arm. Our
approach subdivides the original high-dimensional planning
problem into two lower-dimensional problems—planning for
the main arm joints, and planning for the wrist joints.
Our high-dimensional state-space S"? is defined by the full
arm configuration and a set of high-dimensional transitions
Th, giving us a high-dimensional edge-weighted graph G"**
encoding the original search problem. We consider a lower-
dimensional state-space S'?, which only includes the main
arm joints, disregarding the degrees of freedom of the wrist,
and a lower-dimensional transition set 7'¢. S'¢ and T
give us a low-dimensional edge-weighted graph G'¢. We
use our previously developed framework for planning with
adaptive dimensionality to iteratively construct and search
a hybrid graph G%¢, which contains both high-dimensional
and low-dimensional states. Initially G%¢ is identical to G'?
(Alg. 1 Line 1). As the search progresses, regions of high-
dimensional states and transitions are added to G only
in areas where high-dimensional planning is necessary to
maintain guarantees on completeness and bounds on solution
cost sub-optimality. High-dimensional regions are always
introduced in G°? around the start and goal states, Xg
and X (Alg. 1 Lines 2,3). Just like the original algorithm
for planning with adaptive dimensionality, each iteration of
our algorithm consists of two phases: planning phase and
tracking phase.

In the planning phase, the current instance of G%? is
searched for a path 7gaa(Xg, Xg), which is of cost no
greater than €4, times the optimal path cost from start to
goal in G, Any graph search algorithm that provides a
bound on path cost sub-optimality can be used to compute



Tgaa. In this work we use an incremental weighted A*
algorithm as in [17], which re-uses search efforts between
algorithm iterations to speed up the planning. The planning
phase, in effect, solves the first sub-problem of our high-
dimensional planning problem, by providing a trajectory for
the main arm angles only.

The tracking phase then needs to solve the second sub-
problem—planning for the wrist—and provide a feasible,
collision-free fully high-dimensional trajectory for the ma-
nipulator from start to goal. In this work we propose two
approaches for extending and speeding up the tracking phase
of the algorithm, which are based on the fact that the wrist
degrees of freedom can be controlled independently of the
rest of the arm.

C. Extended Tracking Phase

Building on the properties of motion planning for manip-
ulators with independent wrist joints, we can dramatically
speed up the tracking phase. In particular, we introduce
two very fast ways to try to convert the path generated
by the adaptive planning phase into a feasible fully high-
dimensional trajectory that satisfies the desired cost sub-
optimality bound. The feasibility and correctness of these
approaches rely on the property that the wrist joint can be
controlled independently from the rest of the arm. Thus, the
tracking phase now consists of 3 steps.

1) Interpolation: Consider an adaptive path 7,y =
51,52, ...5, computed by the adaptive planning phase of the
current iteration of the algorithm. As G is a hybrid graph
consisting of both low- and high-dimensional states, 7,4 is
a path that also consists of both low- and high-dimensional
states. Also S7 and S, are the start Xg and goal X states,
respectively, and are always high-dimensional states. Without
loss of generality, let mq = S;, Sit1, ..., Si4kr be a segment
of m,q containing only low-dimensional states, such that
the state S;_; preceding the segment, and the state S; 1
following the segment are high-dimensional states. Thus, we
know the desired wrist joint coordinates at the beginning
and at the end of my, but we do not have information
about the wrist joint coordinates throughout m;4. We can
interpolate between the two desired wrist joint coordinates
to compute wrist joint coordinates for each of the low-
D states on the segment 7;4. If we use such interpolation
for every low-D segment along the adaptive path .4, we
can convert the adaptive path to a fully high-dimensional
path 7ipterp (Alg. 1, Line 12). The use of interpolation is
feasible only if the degrees of freedom of the wrist can be
controlled independently from the other joint angles in the
arm, otherwise the wrist trajectory generated by interpolation
might not be feasible for execution by the manipulator. If
Tinterp 15 collision-free and satisfies the joint limit con-
straints, and moreover, its cost satisfies the sub-optimality
bound criteria ¢(Tinterp) < €track - ¢(Tad), then Tiierp is
a valid high-dimensional path that satisfies the desired sub-
optimality bound ¢(Tinterp) < €ptan * €track - Tgna- Thus, we
can stop planning and return 7;y,¢crp as a valid plan. If the
interpolation step fails to produce a feasible collision-free

Algorithm 1 Planning with adaptive dimensionality for
independent wrist joints

1 G =G

2: Add-HD-Region(G*?, X )

3: Add-HD-Region(G*?, X¢)

5: > Adaptive Planning Phase
6: search G®? for a path mad(Xs, Xa)

7: if maqa(Xs, Xq) is not found then

8: return no path from Xgs to Xq exists
9: end if

10: > Tracking Phase
11: > 1. Interpolation
12: Tinterp = ComputelnterpolatedPath(7qq)

13: if interp. success and ¢(Tinterp) < €k - ¢(Taq) then

14: return Tinterp

15: end if

16: > 2. Planning for the wrist joints
17: Tha = PlanForWristJoints(7aq)

18: if wrist plan success and ¢(7hq) < € ek - €(aq) then

19: return mpq

20: end if

21: > 3. High-dimensional tracking
22: construct a tunnel 7 around 7oq(Xs, Xa)

23: search 7 for a path 7 (Xs, X@)
24: if 7, (Xs, X¢) is not found then

25: find state(s) X, where to insert new HD region(s)
26: Add-or-Grow-HD-Region(G%¢, X.)

27: else if ¢(m-(Xs, X@)) > €wa - ¢(Taa(Xs, X)) then
28: find state(s) X, where to insert new HD region(s)
29: Add-or-Grow-HD-Region(G*¢, X.)

30: else

31: return 7 (Xs, X¢)

32: end if

33: end loop

path, the tracking phase proceeds to step 2 (planning for the
wrist joint, described below). If 7perp is invalid, the loca-
tions where it violates system constraints, such as collisions
with the environment or joint limits, are used as potential
locations for introducing new high-dimensional regions into
G4, Since interpolation is very fast, this additional step does
not add any significant computational burden per iteration.
Moreover, in open environments with few obstacles, this
approach is very effective in quickly producing a valid high-
dimensional path.

2) Planning for the wrist joint: The fact that the degrees
of freedom controlling the wrist are independent from the
configuration of the rest of the arm allows us to treat the
wrist separately. Thus, the second step of the tracking phase
is effectively a search through the wrist configurations over
the adaptive path m,q = S51,959,...5, computed by the
planning phase of the current iteration (Fig. 2, Alg. 1 Line
17). This step gets executed only if the interpolation in step
1, described above, fails to produce a valid path. Each state
in this state-space S is defined by a state vector (wrist, i),
where wrist is a vector of the wrist joint coordinates, and
i = 1l..n is a path index. In addition, each such state
X = (wrist, k) corresponds to a high-dimensional state
X' = (5S¢, wrist), where S is the state vector of the
main arm joint coordinates of the k-th state in 7,4 (S), and



Fig. 2. Trajectory computed for the 4 main arm angles during the adaptive
planning phase (left) and the resulting 7-DoF trajectory after successful
planning for the wrist in the tracking phase (right).

wrist is the vector of wrist joint coordinates of the state
X. Thus, the state X augments the adaptive state .S, with
information about the wrist joint coordinates to produce a
fully-defined high-dimensional state X’ for the entire arm.
Let us denote this mapping by Q.,, : S¥ — S We
will omit the subscript 744 if it is understood. Note that
Q. , disregards any wrist orientation information for the
high-dimensional states in 7,4 computed during the adaptive
planning phase.

The start state of this search is then Wg = (S¥ist 1),
where S{'"? is the vector of wrist joint coordinates of Si,
and the goal state is Wg = (S¥"*' n), where S*"s! is the
vector of wrist joint coordinates of S,,. Note that S; and S,
are the start state Xg and the goal state X, respectively,
and thus are always high-dimensional, so S¥7%! and S®"ist
are defined. Also, Q(Ws) = Xg and Q(W¢) = X¢.

We allow the following transitions 7™ within this state-
space:

o We allow the path index to increase by 1, while the
wrist joint coordinates remain the same: (wrist,i) =
(wrist,i+1) (if i+1 < n). This corresponds to moving
the arm along the computed path without changing the
wrist angles.

o We allow the path index to remain the same, but the
wrist joint coordinates to change by using a set of fea-
sible transitions for the wrist: (wristy, i) = (wrista, ).
This corresponds to changing the wrist angles only,
without changing the configuration of the main arm
joints.

o We allow the path index to increase by 1 and also
the wrist joint coordinates to change by using a set
of feasible transitions for the wrist: (wrist,i) =
(wrista,i + 1) (f (¢ + 1 < n). This corresponds
to changing the wrist angles while moving along the
computed path.

Such transitions are only feasible if the degrees of freedom
of the wrist can be controlled independently from the other
joint angles in the arm. The cost of each transition

X = (wristy, i) =Y = (wristy, j)

is equal to the cost between the two corresponding high-
dimensional states X’ = Q(X) = (S#™, wrist,) and Y’ =

Q(Y) = (S§™™, wrist,). We also perform high-dimensional
collision-checking on the transition X’ = Y’ and invalid
transitions are discarded by the search.

If we find a path mgw from start to goal through this graph
Gv = (S“,T"), we can convert it to a complete high-
dimensional path 7,4 by using the mapping €2 (Alg. 1, Line
17). Then 74 is a valid path from the start arm configuration
X to the goal arm configuration X . If its cost satisfies the
sub-optimality bound criteria ¢(7hq) < €track * ¢(Tad), then
74 1s a valid high-dimensional path that satisfies the desired
sub-optimality bound ¢(mhq) < €plan - €track - Tigna- Thus,
we can stop planning and return 7,4 as a valid path. If mgw
does not exist or ¢(mrq) > €track * ¢(Tad), We proceed to
step 3 of the tracking phase—high-dimensional tracking. If
the search fails, the location of the state with the highest path
index value expanded during the search is used as a potential
location for introducing a new high-dimensional region into
G, as it indicates the location farthest along 7,4 the search
was able to reach before it failed, and that location might
require high-dimensional planning.

The search through S™ is very constrained and low-
dimensional. As such, it usually completes very quickly and
incurs only a minor computational burden on the tracking
phase. Moreover, our results suggest that it is extremely
effective in computing feasible high-dimensional paths even
in cluttered environments.

Tracking steps 1 and 2 solve the second sub-problem of
our original high-dimensional planning problem, augmenting
the solution of the first sub-problem with valid coordinates
for the wrist joint angles to produce a valid feasible trajectory
for the full arm. If steps 1 and 2 fail to produce a valid
high-dimensional path from start to goal, we revert to the
default method for tracking used by planning with adaptive
dimensionality.

3) High-dimensional tracking: High-dimensional tracking
(Alg. 1, Lines 22-32) is described in detail in [1] and [2]. The
method involves constructing a high-dimensional tunnel 7
(subgraph of G"?) around the path computed by the adaptive
planning phase 7m,4. Then a high-dimensional search from
start to goal is performed confined to 7—transitions that lead
to states outside 7 are discarded. If a path from start to goal
7 is found and its cost satisfies ¢(7;) < €rrack © ¢(Tad)s
then 7, is returned as a valid path from start to goal. If 7,
does not exist or its cost is too large, new high-dimensional
regions are introduced into G“? and the adaptive planner
proceeds to the next iteration.

D. Theoretical Properties

The extended algorithm for planning with adaptive dimen-
sionality preserves the theoretical properties of the original
algorithm. If the high-dimensional state-space S”¢ is finite,
the algorithm is complete with respect to the underlying
graph G encoding the search problem and is guaranteed
to terminate. If a path 7 is found by the algorithm, then 7
satisfies

C<7T) S €plan * €track * WZJhd (X5'7 XG)
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Fig. 3. PR2 planning an arm motion around a thin tall obstacle. Black
box: tall obstacle, red: heuristic shortest path, green: feasible end-effector
path, shaded region: heuristic function local minimum.

where €4y, is the sub-optimality bound used in the search
through the hybrid state-space G in the adaptive planning
phase of the algorithm. In other words, the cost of a path
returned by the algorithm is bounded by €4 - €trqck times
the cost of an optimal path from Xg to Xg in the high-
dimensional graph G"?.

The theoretical properties of the algorithm guarantee that
on a finite state-space the algorithm will find a path from
start to goal if one exists, and that the cost of the returned
path will be within a user-specified sub-optimality bound
of the optimal path cost. This makes the approach suitable
for applications where the minimization of a cost function,
such as energy consumption or time to reach the goal, is
an important concern. Moreover, the deterministic nature
of the algorithm makes it very consistent and predictable—
similar start/goal configurations yield similar solutions. Con-
sistency and predictability are usually desirable properties
when robots are working around humans.

IV. IMPLEMENTATION

A. State-spaces

To validate our algorithm, we consider the problem of
motion planning for a 7-DoF robotic arm on Willow Garage’s
PR2 platform. The full arm configuration on the PR2 is
defined by its seven joint angles: shoulder pan, shoulder
lift, upper arm roll, elbow flex, forearm roll, wrist flex, and
wrist roll (Fig. 1). Thus, we have a 7-DoF high-dimensional
state-space S hd 1 ow-dimensional states, on the other hand,
are defined by only 4 angles: shoulder pan, shoulder lift,
upper arm roll, and elbow flex, disregarding the 3 degrees
of freedom controlling the wrist. In our implementation, all
angles are uniformly discretized with 3° resolution within
their respective joint limit intervals. Full-arm (and grasped
object, if any) collision checking against the environment is
performed on 7D states. A more relaxed collision checking is
performed on 4D states—only the upper arm and the forearm
links are collision-checked against the environment. Since
4D states do not contain information about the end-effector
orientation, it is not possible to perform gripper and grasped
object collision checking.

Planning for the wrist joint over an adaptive path (step 2
of the tracking phase) is done in a 4-DoF state-space S
defined by 4D state vectors (forearm roll, wrist flex, wrist
roll, path index).

In [1], 7D/3D planning with adaptive dimensionality was
used to perform motion planning for the arm of a PR2
robot, where 3D states represented the end-effector position
in (z,y,z). In contrast, in this work we choose to do the
planning with adaptive dimensionality in 7D/4D. Firstly,
this allows us to speed up the tracking phase, as described
in section III-C. Second, the four dimensions we select
for the low-dimensional states determine the positions and
orientations of the two largest links of the arm—the upper
arm and the forearm. This allows for much more accurate
collision checking for low-D states, as the positions of the
two largest links of the arm are known for low-D states.
Thus, the adaptive planning phase produces trajectories that
are more likely to be tracked successfully. For example, when
using 3D end-effector (z,y,z) low-D states, the planning
phase will produce a low-D end-effector path similar to the
one shown in red in Fig. 3, which will be impossible for the
tracking phase to follow and a new high-D region will be
introduced behind the obstacle. By using 4D main arm joint
angles as low-D states, on the other hand, the planning phase
search will produce a low-D path similar to the one shown
in green in Fig. 3, which will be more likely to be tracked
successfully without additional iterations being necessary.

A desired 6-DoF cartesian pose is used to define the goal.
Note that, due to the redundancy in the manipulator, a 6-
DoF cartesian pose corresponds to multiple goal states in
the 7-DoF state-space of the arm.

B. Transitions and Cost Function

We use motion primitives, similarly to [16], to construct
the transitions we use in our graph. Thus, each transition rep-
resents a feasible path from one state to another. The graph
is constructed dynamically as the graph search progresses,
as the size of the state-space is prohibitively large to pre-
compute the entire graph. Similar to [16], each of our high-
dimensional transitions is a 7-DoF vector of joint velocities
for each of the joints in the arm, and a 4-DoF vector for
low-dimensional states. We use a very simple set of fixed
transitions, allowing only one joint angle to change with each
transition. For each joint, we have 2 short transitions allowing
41 unit of discretization change in the joint angle value,
and 2 long transitions allowing =£2 units of discretization
change in the joint angle value. Thus, we have a total of
28 possible transitions for each high-dimensional state, and
16 possible transitions for low-dimensional states. Similarly,
when planning for the wrist joint over an adaptive path (step
2 of the tracking phase) we use transitions allowing £1 unit
of discretization change in the joint angle value for each of
the three wrist joints. These transitions were selected for the
sake of simplicity. However, more complex transitions that
operate on several joints simultaneously can be used by the
planner.



We take the same approach as in [18] for computing
dynamic transitions. For any high-dimensional state S whose
end-effector position is within a fixed distance threshold of
the goal position, we try to compute a dynamic transition
using inverse kinematics. The inverse kinematics solver is
seeded with the joint angles angless of the state S and
is asked to compute joint angles anglesrx that satisfy
the goal position and orientation of the end-effector (i.e.
the 6-DoF cartesian goal pose). If the kinematics solver is
able to compute joint angles anglesyxk satisfying the goal
constraints, and the interpolated trajectory from anglesg to
anglesrk 1is collision-free and obeys joint limit constraints,
then this trajectory (from anglesg to anglesrg) is used as
a transition from S to the goal state defined by angles;x.

For any high-dimensional state S whose end-effector po-
sition matches exactly the goal position, we use an analytical
solver to compute the values for the forearm roll, wrist flex,
and wrist roll angles, that would satisfy the goal orientation
constraints, while maintaining the same values for the other
4 joint angles [18]. If the transition from S to the desired
values for forearm roll, wrist flex, and wrist roll is collision-
free and obeys joint limit constraints, it is used as a transition
from S to the goal state.

C. Heuristic

The heuristic function in a graph search serves to improve
the efficiency of the search by guiding it in promising
directions. A common way to compute a heuristic function is
to use a simplified lower-dimensional version of the planning
problem. In order to be informative, the heuristic needs to
capture environment properties, such as obstacles. This is
especially true for cluttered environments. To compute the
heuristic function, we discretize the environment into 3D
voxels and we use a 3D Dijkstra’s search accounting for
obstacles to find the least cost paths for the end-effector
from every voxel to the goal voxel (corresponding to the
(z,y, z) position of the cartesian goal pose). We use a highly
optimized implementation of 3D Dijkstra’s search, which is
able to very quickly compute the heuristic. This heuristic is
very helpful in guiding the search around the obstacles in the
environment and towards the cartesian goal position. Figure 3
shows an example where the 3D Dijkstra’s search heuristic
has a pronounced local minimum (shaded area behind the
black obstacle). Our approach is quite robust with respect to
such local minima as these local minima are overcome by
expanding states in the much smaller 4D state-space.

V. EXPERIMENTAL SETUP

We used Willow Garage’s PR2 robot as the testing plat-
form to evaluate the performance of our new approach for
arm motion planning with adaptive dimensionality. Most of
our experiments were performed in an open-source simulator
called Gazebo. The robot model used in simulation is a
fairly accurate representation of the PR2. We also ran several
experiments on the PR2 itself.

. Planning Time (s) Successful
Algorithm mean std devn min  max Plans
7D/4D Adaptive 0.93 0.70 0.03  8.47 87.36%
4D ARA* 0.12 0.16 0.01 1.27 71.51%
7D ARA* 2.96 2.00 0.01 995 52.96%
OMPL PRM 0.33 2.13 0.01 943 83.80%
OMPL RRT-Connect 0.03 0.03 0.01  0.39 86.62%
OMPL RRT* 0.36 1.32 0.01 9.73 86.42%

TABLE I
PLANNING TIME AND SUCCESS RATE COMPARISON BETWEEN ARM
PLANNERS ON 524 PLANNING SCENARIOS IN SIMULATION. RESULTS
FOR ALL SAMPLING-BASED (OMPL) PLANNERS ARE AVERAGED OVER
10 PLANNING TRIALS ON EACH SCENARIO.

A. Simulation

To measure the performance of the algorithm, we used
524 planning scenarios through various environments. The
difficulty level of the environments varied from obstacle-
free to highly cluttered. Some examples of environments
used in our simulations are shown in Fig. 4—various tables,
shelves, bookcases, and cuboid obstacles of random sizes and
locations. The difficulty level of the 524 planning scenarios
varied based on the environment used in the scenario, and
the particular start and goal configurations. In some scenarios
the path from start to goal was fairly trivial, where in others,
highly complex maneuvering was necessary to reach the
goal. We compared our 7D/4D adaptive planner to a number
of popular planners available from the Open Motion Planning
Library (OMPL) [19]—PRM planner, RRT-Connect planner,
and RRT* planner. We also compared against a 4D ARA*
planner that only considers the wrist orientation near the
goal position, and a 7D ARA* planner that plans in all 7-
DoF. Each planner was given a 10-second planning limit to
produce a path for each of the 524 environments. If a planner
failed to produce a path within the allowed time limit, the
scenario was reported as failure. Due to their randomized
nature, the sampling-based OMPL planners were given 10
planning trials on each of the scenarios and the observed
results were averaged.

B. Physical PR2

We also developed a framework for the use of the 7D/4D
adaptive planner on a real PR2. The framework accepts
and serves planning requests to a desired 6-DoF cartesian
pose for the end-effector either programmatically, or through
the use of a GUI. We observed quick responsiveness from
the planner when asked to produce paths through typical
household environments. An example scenario of the robot
reaching into a refrigerator, grasping an object, and safely
retrieving the object from the fridge is shown in the video
accompanying this work. Since grasp selection is outside the
scope of this work, a teleoperator selected a suitable grasp
pose.

VI. RESULTS

As seen in Table I, the adaptive planner was not able
to match the planning times of the sampling-based OMPL



Fig. 4. Examples of environments used in simulation: table-top, shelf,
bookcase, cuboid obstacles

planners. However, the achieved average planning time is
still quite satisfactory. The 7D ARA* planner demonstrated
the worst performance with highest average planning time
and only solving just over half of the scenarios. The 4D
ARA* planner was able to achieve planning times similar
to the OMPL planners, however as it considers the end-
effector orientation only in a small region around the goal,
it is unable to solve planning problems that require the end-
effector orientation to change far from the goal position,
which explains the relatively low success rate, especially
in cluttered environments. The 7D/4D adaptive planner had
the highest success rate and was able to solve some of the
toughest scenarios within the allowed time limit.

More specifically, the sampling-based methods performed
best on the more open scenarios with fewer obstacles, where
a feasible path was easy to identify with only a few samples.
Our approach was also able to solve such problems quickly,
however, the planning times were 2-4 times slower (but still
within 1.5 seconds). The benefits of our algorithm were most
obvious on the more cluttered scenarios, some of which
exhibited narrow solution spaces, which were challenging
for the sampling-based methods. The performance of our
approach does not suffer in such scenarios and it was able
to solve those scenarios quickly. The scenarios that our
approach exhibited its worst performance were situations
for which the 3D Dijkstra heuristic for the end-effector was
leading the search in an unfeasible direction or it exhibited
pronounced local minima. This occurred most often on the
environments with random cuboid obstacles (Fig. 4 bottom
right). For some scenarios the heuristic was “pulling” the
end-effector to the far side of a cuboid obstacle, similar to
the example shown in Fig. 3. Significantly larger number of
state expansions were necessary to overcome the heuristic

Distance Traveled (m)
Algorithm Wrist Gripper Tip Elbow
mean std dev. mean std dev mean std dev
7D/AD Adaptive 1.30 0.70 1.84 0.72 0.64 0.36
4D ARA* 1.64 0.91 1.98 1.22 0.79 0.41
7D ARA* 1.44 0.80 1.86 1.20 0.71 0.39
OMPL PRM 1.75 0.91 2.23 1.12 1.10 0.58
OMPL RRT-Connect 1.56 0.79 1.93 0.93 1.01 0.52
OMPL RRT* 1.53 0.77 1.91 0.92 0.98 0.50
TABLE 11

PATH QUALITY COMPARISON BETWEEN VARIOUS ARM PLANNERS: THE
AVERAGE DISTANCE TRAVELED BY THE WRIST, GRIPPER TIP, AND
ELBOW FOR THE TRAJECTORIES COMPUTED BY EACH PLANNER ON 524
PLANNING SCENARIOS IN SIMULATION. THE SAME SMOOTHING WAS
PERFOMED ON THE TRAJECTORIES FROM ALL PLANNERS. RESULTS FOR
ALL SAMPLING-BASED (OMPL) PLANNERS ARE AVERAGED OVER 10
PLANNING TRIALS ON EACH SCENARIO.

Tracking Step % of successful tracking phases | Avg. Time (s)

1. Interpolation 49.55% 0.001

2. 4D Orientation Planning 44.59% 0.244

3. HD Tracking 5.86% 1.431
TABLE III

PERFORMANCE AND SUCCESS RATE OF EACH OF THE THREE STEPS OF
THE TRACKING PHASE OF THE 7D/4D ADAPTIVE PLANNER. OVER 94%
OF SUCCESSFUL TRACKING PHASES ARE COMPLETED BY THE MUCH
FASTER INTERPOLATION OR 4D ORIENTATION PLANNING STEPS. THE
MORE COMPUTATIONALLY EXPENSIVE HD TRACKING IS PERFORMED IN
LESS THAN 6% OF THE TRACKING PHASES.

local minimum leading to higher planning times.

Table II illustrates the average quality of the paths gener-
ated by each of the 6 planners. For each computed trajectory,
we kept track of the distance traveled by three key points
on the arm—the wrist, the elbow, and the gripper tip. As
seen in the table, the 7D/4D planner produced the shortest
trajectories on average. The OMPL planners had significantly
higher distances traveled by the elbow, even after trajec-
tory smoothing. This suggests that many of the trajectories
computed by the OMPL planners had unnecessary elbow
motions.

Table III shows the benefits of the main contribution of
this work. It illustrates the number of successful tracking
phases completed by each of the three tracking steps as a
percentage of all tracking phases performed, and the average
time of each tracking step. Nearly half of all tracking phases
were solved by simple interpolation, which took a negligible
amount of time. The 4-DoF end-effector orientation track-
ing was successful in nearly 45% of the tracking phases
performed, and was much quicker than performing high-
dimensional tracking. The more computationally expensive
HD tracking had to be performed only in less than 6% of
all tracking phases. Thus, the two proposed novel ways of
performing tracking in the context of planning with adaptive
dimensionality for robotic arms with independent wrist joints
prove to be very effective and significantly improve the
performance of the algorithm.



VII. CONCLUSION

In this work we presented an extension of our algorithm
for planning with adaptive dimensionality for robotic ma-
nipulators with independent wrist joints. Our results show
that exploiting the fact that the manipulator’s wrist can
be controlled independently from the rest of the arm sig-
nificantly improves the performance of the tracking phase
of the algorithm. Although our planner does not match
the efficiency of sampling-based methods, our experimental
results, coupled with strong guarantees on completeness and
bounds on solution cost sub-optimality, show that it provides
a good compromise between planning time, planning success
rate, and solution quality.
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