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Abstract— We introduce the Partial View Heat Kernel
(PVHK) descriptor, for the purpose of 3D object representation
and recognition from partial views, assumed to be partial
object surfaces under self occlusion. PVHK describes partial
views in a geometrically meaningful way, i.e., by establishing
a unique relation between the shape of the view and the
descriptor. PVHK is also stable with respect to sensor noise and
therefore adequate for sensors, such as the current active 3D
cameras. Furthermore, PVHK takes full advantage of the dual
3D/RGB nature of current sensors and seamlessly incorporates
appearance information onto the 3D information. We formally
define the PVHK descriptor, discuss related work, provide
evidence of the PVHK properties and validate them in three
purposefully diverse datasets, and demonstrate its potential for
recognition tasks.

I. INTRODUCTION

We address the 3D representation of objects from multiple

3D partial views, where each partial view is the visible

surface of the object as seen from a view angle, with no

occlusion from other objects. Fig. 1 illustrates a partial view

defined in terms of the position of the camera sensor with

respect to the object.
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(a) A sensor positioned at ν̄ = [θ ,φ ]
grasps an object.

(b) Partial view returned
by the sensor.

Fig. 1. A partial view is defined by the view angle, ν̄ , of the sensor with
respect to an object centered coordinate system.

Partial views are the returned surfaces of sensors as the

object self occludes part of its complete 3D surface. We

investigate the 3D representation of the complete object as

a set of partial views. We are also interested in common
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sensor cameras, such as the Kinect sensor, that combine

RGB and depth information, but are also noisy. To address

these multiple challenges and goals, we introduce a new

representation for partial views, the Partial View Heat Kernel

(PVHK) descriptor, which is:

1) Informative, i.e., a single descriptor robustly describes

each partial view;

2) Stable, i.e., small perturbations on the surface yield

small perturbations on the descriptor;

3) Inclusive, i.e., appearance properties, such as texture,

can be seamlessly incorporated into the geometry-

based descriptor.

The combination of these three characteristics results in a

representation especially suitable for partial views captured

from noisy RGB+Depth sensors during robot navigation

or manipulation where the object surfaces are visible with

limited, if any, occlusion.

To ensure that the descriptor is informative, PVHK builds

upon a measure related to geodesic-distances to represent

distances, over the surface, between a reference point, o′,

and the boundary, as illustrated in Fig. 2. The ordered set of

all the distances represents surfaces in a unique way, apart

from symmetric and isometric transformations.
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Fig. 2. The Partial View Heat Kernel (PVHK) representation describes a
partial view as a function of the distance between a central point, o′, and
each point, l0,a,...,c, in the boundary.

To ensure that the descriptor is stable with respect to noise

and topological artifacts, e.g., holes or small occlusions, we

rely on diffusive geometry concepts to represent average

distances ([1], [2]). Concretely, we model the averaging

process as the propagation along the surface of the heat

placed at a source. Hence, PVHK represents a partial view

as the temperature at boundary as a result of a heat pulse in

the reference point o′.

The stability of the descriptor has a further advantage in

that changes in the view angle do not drastically change the

surface temperature. Hence, the descriptor varies smoothly

with the view angle, which is desirable when representing



objects from partial views. When close view angles generate

very different descriptors, the representation of complete

objects requires a large number of partial views. By changing

slowly, PVHK requires a limited set of partial views.

Finally, to ensure seamless integration of heterogeneous

information, such as surface color, PVHK treats different

visual properties as different heat propagations velocities.

As heterogeneous velocities lead to different temperature

profiles on identical 3D shapes, PVHK uniquely represents

objects with the same geometry but different color or texture.

Furthermore, while color position within the object alters the

descriptor, the change is not sensitive to low level details. For

example, when applying the descriptor to the representation

of people, the change is not sensitive to facial features.

The paper is organized as follows: Section II introduces

the datasets used; in Section III discusses related work and

reviews the previously introduced Heat Kernel; Section IV

introduces our PVHK descriptor, and presents its main

characteristics; Section V presents results from two main

studied applications; and in Section VI we draw conclusions

and address future work directions.

II. DATASETS

In this work, we use three partial view datasets: Dataset-I

(Fig. 3), Dataset-II (Fig. 4), and Dataset-III (Fig. 5), which

respectively correspond to 3D computer models of rigid

objects, to real rigid objects, and to real non-rigid objects.

Fig. 3. Dataset-I: (a) box, (b) mug, (c) cylinder and (d) toy castle.

We use Dataset-I to illustrate and compare aspects of both

PVHK and other descriptors and therefore require a fine

control on the acquisition parameters. We obtain the partial

views by rendering the 3D models using spatial and depth

resolution similar to that of a Kinect camera. We also add

to the depth image a noise proportional to distance, [3], We

simulate the camera at a distance of 1m and view angles,

v̄ = [θ ,φ ], with constant φ and θ = 2o,4o, ...,360o.

We use Dataset-II to provide empirical evidence on the

accuracy of our representation under real sensor conditions.

With a Kinect camera, we collected two sets of partial views,

for training and testing respectively, of 13 rigid and of similar

size objects. Moreover, the partial views for each object

correspond to a known and dense sampling on the observer

orientation, θ ∈ [0o,360o].
We use Dataset-III to illustrate the use both color and 3D

information and applicability of the descriptor on non-rigid

objects. We use partial views of a human in a variety of

different positions, also collected using a Kinect camera.

The datasets include objects that share strong similarities

in terms of size and shape, e.g., cylinders, cups, and mugs.

Furthermore, the objects and partial views have different

Fig. 4. Dataset-II: Real rigid objects.

topologies, to demonstrate the generality of the introduced

PVHK descriptor. Using the datasets we intent to illustrate

and provide a rich empirical evaluation of our introduced

PVHK descriptor.

III. RELATED WORK

We view two ways to represent individual partial views,

namely (i) as a set of local features and (ii) as a single holistic

feature. We present a brief overview on both alternatives,

with emphasis on the holistic features as they provide the

background and motivation for PVHK.

A. Local Features

Local features are common to represent partial views,

since a small set of features can represent complex objects.

Fig. 5. Dataset-III: Real non-rigid, positions of a human.



For example, Fig. 6 shows the five different features required

to represent the box and castle from Dataset-I: three types

of corners (P2, P4 and P5), an edge (P2), and a plane (P1).

x̅

y̅

P2

P3

P1

z̅≡n̅

Fig. 6. Example of shapes that can be described using only 5 local features.

Since local representations describe only a small portion

of an object, recognition algorithms either solve first a regis-

tration problem or combine features into bags of features,

similar to bags of words. Consequently descriptors need

to be invariant to changes in pose. Several representations

achieve this by describing the feature on a tangent space

to the object surface at each point, since this space is not

only invariant to changes in pose as is easy to reproduce.

Examples of such representations are the Fast Point Feature

Histogram (FPFH) [4], Signatures of Histograms of Orien-

Tations(SHOT) [5], Local Surface Patches(LSP) [6], Spin

Images (SI) [7], and Intrinsic Shape Signatures (ISS) [8]

However, methods for estimating the tangent space are

sensitive to noise because they rely on normal estimation.

As we illustrate in Fig. 7, this negatively reflects on the

descriptors. In the figure, we show the variance of different

representations as the distance, d, between object and sensor

increases, increasing the noise. We estimate the variance

by computing the descriptor of the same point over 40

point clouds generated for each value of d. As descriptors

have high dimensionality, we represent the variance as ratio

between the maximum eigenvalue of the covariant matrix

and the mean descriptor. The point used for comparison is

P1 from Fig. 6 and the descriptors correspond to SHOT,

FPFH, and a holistic partial view representation, View Point

Histogram, that we include for comparison purposes.
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Fig. 7. Noise impact on point like descriptors, SHOT and FPFH,
representing the feature P1 (plane) from Fig. 6.

B. Holistic Partial View Features

By describing a larger surface, holistic partial view rep-

resentations are more stable to noise, even when defined

on tangent space. E.g., the Viewpoint Feature Histogram

(VFH) [9] is an extention of FPFH to the whole partial view

but has a lower variance, as we show in Fig. 7

To altogether avoid tangent space estimation, other repre-

sentations build upon distances between points on the object

surface. E.g., representations for complete objects can be

build from the distribution of euclidian distances between

points [10]. Extentions to account also for topological in-

formation, e.g., [11], are constructed by classifying whether

lines connecting pairs of points lay inside the object surface

or not. The later was also extended to partial views as

Ensemble of Shape Functions, (ESF) [12].

The discriminative power resulting from topological infor-

mation comes at the cost of an increased sensitivity to holes

in the surface due to sensor noise. A more robust approach

relies on the use of diffusive distances [1] as a noise resilient

surrogate to shortest path distances on object surface.

Diffusive distances are related with diffusive processes

occurring over a surface. Diffusive processes can be in-

terpreted as a sequence of local averaging steps applied

to a function representing some quantity, e.g., temperature.

The averaging steps dilute local non-homogeneities in the

function and effectively transport the quantity from regions

of higher values to regions of lower values.

Fig. 8 shows two examples of diffusive processes taking

place on similar surfaces, different only on account of a hole.

In the first example, Fig. 8(a) to Fig. 8(c), the temperature

evolves from an initial source to the whole partial view fol-

lowing a concentric pattern, associated with the shortest path

between points, until reaching the partial view boundaries.

In the second example, Fig. 8(d) to Fig. 8(f), while the hole

affects the shortest path between points, it does not strongly

effect the temperature. The averaging steps result in that the

temperature at a point is defined first by the neighborhood

and only implicitly depends on the distance to the source.

(a) t1 (b) t2 > t1 (c) t3 > t2

(d) t1 (e) t2 (f) t3

Fig. 8. Example of heat propagation on similar surfaces. Color represents
temperature and red regions are warmer than blue. See text for details.

Diffusive processes can describe local features, such as

the Heat Kernel Signature (HKS) [2] and the Scale Invariant



Heat Kernel Signature [13]. HKS is a highly robust local

descriptor that contains large scale information. HKS repre-

sents a point with the temperature evolution after placing,

and immediately removing, a heat source on that point. The

evolution depends on how fast the temperature propagates

to the neighborhood, which in turn depends on the object

geometry. While both descriptors, HKS and SI-HKS, perform

well on complete 3D shapes, the same point on an object

surface may have different descriptors depending on the

partial view. Accordingly, matching features across partial

views using HKS or SI-HKS is not feasible.

C. Shape and Appearance

Current representations may not extend naturally to in-

clude object appearance, i.e., color and/or texture.

Some approaches, e.g., [14], [15], resort to extending ad-

hoc the descriptor dimension to include some color/texture

descriptor on the extra dimensions. However, the joint de-

scriptors do not effectively associate appearance features

with positions in the object.

On the other hand, the photometric heat kernel [16],

directly associates appearance to 3D coordinates by changing

the space where the object is defined. I.e., each point in

the surface lays in a 6D space with physical coordinates

plus RGB values. The formalism used for diffusive process

extends naturally to this new space, however it takes into

account only color gradients and not absolute information,

which may hinder recognition.

Given all the above, we see that heat kernel provides a

noise resilient representation of distances and has already

proved to easily extendable to include color. Thus, we use

the heat propagation as a substitute for a set of representative

distances over a partial view: the ordered set of distances

between boundary points and a single point in the object sur-

face, as we previously illustrated in Fig. 2. By its importance

to our proposed representation, we here briefly review the

heat kernel and its underlying process. (The familiar reader

can step to the next section.)

D. Heat Kernel

Formally, the temperature propagation over a surface de-

fined by a set of vertices V = {v1,v2, ...,vN}, with coordinates

{x̄1, x̄2, ..., x̄N} together with a set of neighborhood relations

N , is described by eq. 1:

L f̄ (t) =−∂t f̄ (t), (1)

where L = R
N,N in eq. 2 is a discrete Laplace-Beltrami

operator, and fi(t) ∈R is the temperature at vi and instant t.

L f̄ (t) = (D−W ) f̄ (t), (2)

Wi, j =

{

1/‖x̄i− x̄ j‖
2, iff v j ∈Ni

0, otherwise
, (3)

where D is a diagonal matrix with entries Dii = ∑N
j=1 Wi j and

Ni is the set of vertices that are neighbors to vertex vi.
1

1We consider neighborhood relations established from a Delaunay trian-
gulation on the depth image returned by the sensor.

The heat kernel is the solution of eq. 1 at vertex v j when

the initial temperature profile, h(0, x̄), is a Dirac delta in

source vertex vs. The problem has a closed form solution

given by eq. 4

k(v j,vs, t) =
N

∑
i=1

e−λitφi, jφi,s, (4)

where φi, j is the value, at vertex v j, of the eigenvector of L

associated with eigenvalue λi.

Eq. 4 contains information on the complete surface

through the eigenvalues and eigenvectors of L, i.e., even

when v j and vs are fixed points on the object surface, the

descriptors changes if L changes.

Furthermore, as with other graph Laplacians, λ1 = 0 and

λ2 can be seen as the scale of the graph.

IV. PARTIAL VIEW HEAT KERNEL

We define PVHK as the temperature at the surface bound-

ary ts seconds after placing the source on a vertex, vs.

To ensure that PVHK consistently defines a visible surface,

we choose vs as the point closest to the observer, as we can

easily find the point for each view angle. Additionally, the

value of ts must be large enough to ensure that the heat has

time to reach the boundary, but also that the equilibrium is

not reached, i.e., that not all the points in the surface are at

the same temperature. Since both events depend on the partial

view size, and in particular on λ2, we choose ts = λ−1
2 .

Hence, given a partial view with a set of vertices V and

a set of boundary vertices B = {vb1,vb2, ...,vbM} ⊂ V , we

compute the temperature at vb j as

T (vb j) =
30

∑
i=1

e−λi/λ2φi,b jφi,s, (5)

using the lowest 30 eigenvalues, as e−λi/λ2 ∼ 0 for i > 30.

Finally, to ensure that all descriptors have the same size

independently of the number of vertices, PVHK corresponds

to a linear interpolation of the temperature T (vb j) with

respect to the boundary length. Algorithm 1 summarizes the

steps required to estimate the PVHK descriptor

Input: Set of vertices V , Boundary vertices B,

Neighborhoods N , Observer position x̄o.

Output: PVHK descriptor, z̄.

Find source position:

vs←minv∈V ‖x̄(v)− x̄o‖;
compute temperature at boundary:

T̄ (vb)← eq. 5;

compute normalized length at each boundary vertex:

lB← ∑M
j=1 ‖x̄(vb, j−1‖;

[l̄]i∈{1,...,M}← ∑i
j=1 ‖x̄(vb, j−1)− x̄(vb, j)‖/lB;

interpolate the temperature:

[z̄]k∈{1,...,K}← interp1(k/K, T̄ (vb), l̄).
Algorithm 1: How to compute PVHK for a partial view.



A. Stability and Smoothness

The stability ensures that PVHK changes smoothly with

respect to changes in the view angle. Changes in the view

angle lead to (i) the source moving over the object, as the

closest point to the observer changes; and (ii) the visible

surface of the object, including the boundary, changing. As

long as there are no severe changes on the object surface,

both changes happen smoothly.

The smoothness impact is two fold: (i) it guarantees that

the set of descriptors for a given object are contained in a

finite and contiguous portion of the descriptors space, which

is important for classification with discriminative methods;

(ii) it guarantees that descriptors associated with similar

view angles are also similar, which reduces the error on

applications with view angle estimation.

In Fig. 9 we highlight both characteristics in PVHK on 2D

Isomap projections, [17], of four representations applied to

Dataset I. Dots corresponds to partial views, as illustrated in

9(a) for the rectangular box, and connected dots are contigu-

ous view angles. The other representations are the VFH and

ESF, from the Point Cloud Library [18] implementation; and

SI-HKS, from our own implementation. From the projections

we see that ESF and PVHK are more effective at separating

objects, since partial views from different objects do not get

mixed in a 2D projection. However, ESF does not change as

smoothly with the view angle as PVHK, notably in the cup

and the castle example.

(a) VFH
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Fig. 9. 2D Isomap projections for four representations applied to all partial
views generated from Dataset-I. See the text for details

We also note that SI-HKS bag of features approach for

combining local features, while robust at discriminating

between complete objects, is not suitable for partial views.

As the heat kernel signature of a single point depends on the

complete visible surface, there is a greater variability in the

descriptor from changes in the view point.

B. Adding Texture

We introduce texture into PVHK representation by slightly

modifying the heat equation. The heat equation assumes the

whole surface propagates heat at the same rate. By locally

using different rates, we generate different the descriptors for

objects with the same geometry. Thus, to differentiate objects

on both appearance and geometry, we associate appearance

with propagation rate. We thus rewrite the heat equation as:

Lh(v,vs, t) = c(v)∂th(v,vs, t), (6)

where c(v) : V → R is any scalar function associated with

color, or texture, at vertex v.

The solution to the non-homogeneous problem in Eq. 6

is identical to the solution to the homogeneous problem in

Eq. 1, but φ and λ are now the solution of the generalized

eigenvalue problem Lφ̄i = Cφ̄iλi, where C is a diagonal

matrix with entries equal to c(v). The solution then becomes

h̃(v j,vs, t) = ∑M
i=1 φi, j exp(−λit)φi,sCs,s.

Our proposed approach differs from previous efforts to

combine color and geometry, in particular from [16]. No-

tably, we can extend the function c(v) to represent any scalar

quantity and not just color. Examples of useful scalars are the

color hue value or cluster indices, e.g., after some clustering

preprocessing using any other appearance representation.

We illustrate the impact of adding appearance information

to the descriptor by considering a person in the same posi-

tion, wearing the same clothes but with different colors, as in

Fig. 10. We assume that our scalar function c(v) corresponds

to the color hue value when scaled to the interval [0.5,1] and

present the temperature along the boundary in the graphic

on Fig. 10. The four descriptors present a common behavior

associated with shape, e.g., the head, point l1, introduces

the same decrease in the temperature. However, the color

modulates the temperature in a very significant way. Notably,

the color at the source, which in the example is placed in

the blouse, leads to the gap between Original+Different Skirt

and Different Blouse + Different Dress.

l0

l1

l2

l3
l4

Fig. 10. Color impact on the descriptor. On top, we present the mesh
and colors. On the bottom, we present the respective descriptors, i.e., the
temperature values along the boundary.



V. APPLICATIONS

We envision mainly two applications for PVHK: (i) recog-

nition of rigid objects, and (ii) tracking of articulated shapes.

A. Recognition

We show the effectiveness of PVHK at object recognition

on Dataset-II, without using color. Classification was based

on nearest neighbors, using an L2-norm. As PVHK is defined

over a closed curve, it is ambiguous over circular shifts. Thus

the nearest neighbor search considers all such shifts.

Fig. 11. Confusion matrix for PVHK testing

Fig. 11 presents the a confusion matrix that relates the

true view angle of each element on the testing dataset, on

the x-axis, to the view angle of the closest descriptor from

the training dataset, on the y-axis. The confusion matrix

shows that most miss classifications correspond to similar

objects, e.g., the cream pitcher and the mug. The matrix

shows also the inner category confusion that we expect in

objects with strong symmetries, such as the drinking glass.

The overall accuracy was 95% and the accuracy for each

class is represent in the column to the right of the matrix.

B. Tracking of Articulated Shapes

Deformations on clothes and body due to movement make

tracking articulated shapes, such as humans, very chal-

lenging. However, the heat kernel is invariant to isometric

deformations, which means that PVHK will also be resilient

to most deformations and not change with movement.

Using the Dataset-III, we estimate the PVHK descriptor

for different poses of a human moving between the six posi-

tions in Fig. 5. Fig. 12 presents the 2D Isomap projection and

respective labels for the dataset. Specifically, the figure shows

the separation of descriptors into two groups associated with

the position of the arms with respect to the body.

The results in Fig. 12 imply that, while using our proposed

descriptor PVHK, an articulated body can be represented

by a reduced number of rigid shapes. Consequently, hint

that tracking and recognition, if aided by including color

or texture information, can be easily achieved.
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Fig. 12. 2D Isomap projection for a human moving.

VI. CONCLUSIONS

In this work we introduce a partial view representation and

demonstrate that it is informative, stable to perturbations and

effective at representing both geometry and appearance.

PVHK is especially suitable when there is little occlusion

from other objects. We thus forsee a large spectrum of

applications ranging from robot manipulation, where there is

only the target object present, to robot controlled perception,

where the robot can move to avoid occlusions.

Furthermore, the color extension of PVHK is able to

represent color distributions over geometry, which opens the

door to many other applications. We highlight its adequacy

for tracking humans in a contained environment, where, by

being insensitive to low level details of the face and to most

deformations, PVHK allows for anonymity and robustness.
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