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Identifiability and Improvement of Adjoint Error Approach
for Serial Robot Calibration†

Cheng Li1, Yuanqing Wu1, and Zexiang Li1

Abstract— In this paper, we first analyze the identifiability
of POE based Adjoint error approach. By carefully examining
the linear dependence between calibration Jacobian columns,
it is proved that joint offsets and Adjoint errors cannot
be identified simultaneously, and the maximum dimension of
identifiable parameters is 4r + 2t + 6. Some more scenarios
are considered to augment the Adjoint error approach. To
satisfy the constraints on joint relations, constrained method
and projection method are proposed. Moreover, we present the
identifiability of reduction ratios and joint pitches. Simulations
of a 6 Degree-of-Freedom robot and a SCARA robot are
given to illustrate and compare our methods. It shows that
the constrained method can handle such situations effectively
and yields better results.

I. INTRODUCTION

The advancement of technology makes more and more
robots serving for factory automation, especially in comput-
er/communication/consumer electronics (3C) industry with
higher demands on precision, efficiency and adaptation. Off-
line programming is often used to quickly develop the robot-
based automation system, and vision is now a regular tool
for complex parts localization. Accuracy of the robot is of
vital importance if a high precision of 0.03mm is expected
in off-line programmed or visual guided motion. Kinematic
calibration is an effective way to improve robot accuracy.

A good overview of calibration can be found in [1].
Generally speaking, a calibration process consists of 4 steps:
modeling, measurement, identification and correction [2]. D-
H convention [3] is widely used in modeling, with various
modified versions such as Hayati model [4], complete and
parametrically continuous (CPC) model [5] and so on. The
product of exponentials (POE) formula is beginning to enter
the mainstream of industrial robotics. Okamura and Park first
employed POE model in calibration [6], based on which local
POE model [7] and basic Adjoint error model [8] are derived.
We propose a unified framework in [9] to summarize and
compare these methods, which is a prequel to this paper.
Some calibration examples can be found in [10]–[15].

Calibration models should satisfy the requirements of
completeness, minimality and continuity [16]. Any redun-
dancy should be eliminated. Using D-H or modified D-H
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parameters, the maximum number of identifiable parameters
is shown to be 4r + 2t + 6 [17]–[19], where r is the
number of revolute joints and t is the number of prismatic
ones. Meggiolaro and Dubowsky analyzed the parameter
redundancy in generalized error model and get the same
result [20]. In POE based model, it is proven that joint
offset errors are not identifiable in [8], but no analysis on its
identifiability is presented. He et al. claim that the maximum
number of identifiable parameters is 6r+3t+6 [21] in POE
model. However, they overlook the fact that some update
components are of no effect after imposing constant pitch and
unit norm constraints. When arguing the identifiability by lin-
ear dependence between calibration Jacobian columns, few
literatures exam the whole columns composed by multiple
samples. Thanks to the well-structured calibration Jacobian
matrix in [9], we’ll give the first careful analysis to show the
maximum number of identifiable parameters is 4r + 2t+ 6
in POE model.

Beside the basic kinematics model, more facts should be
taken into consideration. In addition to the constant pitch
and unit norm constraints on a single joint, other constraints
on joint relations are also important. For instance we may
want two consecutive joints to keep parallel. Reasons are
twofold. On the one hand, some relations are quite accurate
comparing with the end-effector measurements. Since we
cannot remove the noise out of measurement data, with such
assumptions it is of more information and supposed to get a
better result. On the other hand, in most commercial control
systems certain joint relations are assumed and users have
no way to change it. But to the authors’ knowledge there are
no previous works on dealing with such constraints in POE-
based model. What’s more, reduction ratios also need to be
carefully treated. In many cases, RV or harmonic reducers
are used and reduction ratios are exactly the ratios of gears’
teeth number. However, in some other cases, reduction ratios
are determined by the pitches of ball screws which may not
be precise. Furthermore, when a ball screw with imprecise
pitch is used as robot joint directly, which usually happens
in SCARA robots, pitch becomes one joint coordinate that
needs calibration. We will show that these variations are
closely related to calibration basis and can be handled well.

This paper is organized as following: In section II we
discuss the calibration identifiability, and prove the maximum
dimension of identifiable parameters is 4r+ 2t+ 6. Section
III proposes methods to cope with constraints on joint
relations. The way to incorporate reduction ratios and pitches
is presented in section IV. In section V we conclude the paper
and talk about possible future work.
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II. IDENTIFIABILITY OF PARAMETERS

In [9], Adjoint error model and the calibration method are
presented. The forward kinematics for a POE-based serial
robot model is

g = eξ̂1θ1eξ̂2θ2 · · · eξ̂nθneΓ̂ (1)

Subscript is used to denote joint number, and superscript for
the number of sample. Totally m samples are measured. We
follow the notation in [22] and further denote:

Adji = Ad
e
ξ̂iθ

j
i

(2a)

Adi0 � I (2b)

li =

[(∏i−1
k=0 Ad

1
k

)T

, · · · ,
(∏i−1

k=0 Ad
m
k

)T
]T

ξi (2c)

Qi =

⎡
⎢⎣
∏i−1

k=0 Ad
1
k −

∏i

k=0 Ad
1
k

...∏i−1
k=0 Ad

m
k −

∏i

k=0 Ad
m
k

⎤
⎥⎦ (2d)

QΓ =
[(∏n

k=0 Ad
1
k

)T
, · · · , (

∏m

k=0 Ad
m
k )

T
]T

(2e)

The Adjoint error of ξi is δηi, and the Jacobian matrix Aall

for all possible error parameters pall is

Aall = [l1, · · · , ln, Q1, · · · , Qn, QΓ] (3)

with

pall = [δθ1, · · · , δθn, δη
T
1 , · · · , δη

T
n , δη

T
Γ ]

T (4)

y =

⎡
⎢⎣

(δg1 · (g1)−1)∨

...
(δgm · (gm)−1)∨

⎤
⎥⎦ = Aall · pall (5)

where ∨ extracts the vector from a skew-symmetric matrix.
If a column of Aall is linearly dependent on other columns,

its corresponding parameter is not identifiable. We’ll first
prove that all joint offsets and Adjoint errors cannot be
identified simultaneously, then find the maximum number
of identifiable parameters, which is rank(Aall).

A. identifiability of joint offsets

If there exists a constant vector c = [cTi , · · · , c
T
n , c

T
Γ ]

T

such that
li = [Qi, · · · , Qn, QΓ] · c (6)

then li and [Qi, · · · , Qn, QΓ] are linearly dependent. Since
Aall is well-structured, let ci = · · · = cn = cΓ = ξi,

[Qi, · · · , Qn, QΓ] · c

= (Qi + · · ·+Qn +QΓ) · ξi

=

[(∏i−1
k=0 Ad

1
k

)T

, · · · ,
(∏i−1

k=0 Ad
m
k

)T
]T

ξi

= li (i = 1, 2, ..., n)

(7)

Therefore, for any joint, its offset is always linearly depen-
dent on Adjoint errors. In other words, we can never calibrate
joint offsets and Adjoint errors at the same time. Physically
it means that end-effector error caused by joint offsets can
always be equivalently treated as that caused by Adjoint
errors, as shown in Fig.1.

Fig. 1. End-effector error caused by joint offset or Adjoint errors

Such redundancy should be eliminated. We can simply
assume that the error of end-effector comes only from
Adjoint errors without any joint offsets, in which case

A = [Q1, · · · , Qn, QΓ] (8)

p = [δηT1 , · · · , δη
T
n , δη

T
Γ ]

T (9)

Now p has 6n+ 6 parameters.

B. rank of calibration Jacobian matrix

We analyze rank(A) by finding out the kernel ker(A).
From [9] we get the following lemma.

Lemma 1: c(ξ) and x(ξ) are the cylindrical and schönflies
lie subalgebra associated with joint ξ. When ξ = [vT , ωT ]T

is not a prismatic joint,

ker(I −Ad
eξ̂θ

) = c(ξ) (10)

range(I −Ad
eξ̂θ

) = c(

[
ω
v

]
)⊥ (11)

When ξ = [vT , 0]T is a prismatic joint,

ker(I −Ad
eξ̂θ

) = x(ξ) (12)

range(I −Ad
eξ̂θ

) = x(

[
0
v

]
)⊥ (13)

Corollary 1: ξ /∈ range(I −Ad
eξ̂θ

)
It is easy to see that each Qi contributes a kernel part

Ni = span{[· · · , 0, ζTi , 0, · · · ]
T } (14)

where ζi ∈ ker(I −Ad
eξ̂iθi

). By the lemma, Dim(Ni) = 4
if ξi is a prismatic joint, Dim(Ni) = 2 if not. The whole
kernel N contains at least the direct sum of each Ni

N � Ns =
⊕

Ni (15)

So Dim(N ) � Dim(Ns) = 2r + 4t, leaving at most 4r +
2t + 6 parameters to be identifiable. We’ll prove next that
N = Ns if samples are taken properly.

For a serial robot with n joints, we take 2n samples:{
θ2i−1 =[0, · · · , 0, θ2i−1

i , 0, · · · , 0]

θ2i =[0, · · · , 0, θ2ii , 0, · · · , 0]
(16)

where θ2i−1
i �= θ2ii , θ2i−1

i �= 0, θ2ii �= 0. The sample strategy
is to take two different non-zero angles each time joint by
joint. The calibration Jacobian matrix becomes

A =

⎡
⎢⎢⎢⎣

I−Ad1
1 ··· 0 Ad1

1

I−Ad2
1 ··· 0 Ad2

1

...
. . .

...
...

0 ··· I−Ad2n−1
n Ad2n−1

n

0 ··· I−Ad2n
n Ad2n

n

⎤
⎥⎥⎥⎦ (17)
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The following column manipulation does not affect the rank

A′ = A ·

⎡
⎣ I I

. . .
...

I I
I

⎤
⎦ =

⎡
⎢⎢⎢⎣

I−Ad1
1 ··· 0 I

I−Ad2
1 ··· 0 I

...
. . .

...
...

0 ··· I−Ad2n−1
n I

0 ··· I−Ad2n
n I

⎤
⎥⎥⎥⎦ (18)

rank(A) = rank(A′) (19)

To discover more possible kernel, let’s try to find a non-zero
vector x = [xT

1 , · · · , x
T
n , x

T
Γ ]

T /∈ Ns such that A′x = 0.
Assume xΓ = 0,

(I −Ad2ii )xi = 0 (20)

which leads to xi ∈ ker(I − Ad2ii ), x ∈ Ns. So xΓ �= 0.
Re-order the terms and we get{

(I − Ad2i−1
i )xi = −xΓ

(I −Ad2ii )xi = −xΓ

(21)

Subtract the (2i− 1)th equation from the (2i)th one

0 = (Ad2i−1
i −Ad2ii )xi

= Ad2i−1
i (I −Ad

e
ξ̂i(θ

2i
i

−θ
2i−1
i

))xi

(22)

Since θ2i−1
i �= θ2ii ,

xi ∈ ker(I −Ad
e
ξ̂i(θ

2i
i

−θ
2i−1
i

)) = ker(I −Ad2ii ) (23)

which conflicts with the fact (I − Ad2ii )xi = −xΓ �= 0.
Therefore, no such x can be found.

By construction we prove that if sampled properly, N =
Ns, Dim(N ) = 2r + 4t. So the maximum dimension of
identifiable parameters is 4r + 2t+ 6. The kernel N is just
what we get rid of by finding basis matrix in [9].

III. CONSTRAINTS ON JOINT RELATIONS

In the nominal model robot joints are usually perpendic-
ular, parallel or intersected with each other, while it would
not be true in practice. However we often want to keep the
constraints after calibration, as in Fig.2. It’s not only because
some relations are quite accurate comparing with noisy
measurements, but also due to control systems’ restrictions.
In most commercial control systems robots are described by
models with such assumptions, and users cannot change it.
The effective dimension of identifiable parameters decreases
under constraints. How should we handle such scenarios?

(a) (b) (c)

Fig. 2. Two joints keep (a) parallel; (b) perpendicular; (c) intersected

A first thought is that, we can project the result in each
calibration iteration to satisfy the constraints. This is ”pro-
jection method”. It seems plausible but may not be optimal.
Or we integrate the constraints into calibration process, by
”constrained method”. We’ll show that constrained method
can be realized by composing basis properly. Let’s first

discuss some simple situations. Denote two joints ξ1 =
[vT1 , ω

T
1 ]

T and ξ2 = [vT2 , ω
T
2 ]

T .

A. Consecutive revolute joint and prismatic joint parallel

It is typical for the last two joints of SCARA robot since
they correspond physically to one ball screw spline unit.
Assume ξ1 is the revolute joint and ξ2 is prismatic (ω2 = 0),
the constraint can be expressed as

ω1 = v2 (24)

To satisfy the constraint, no matter how one joint changes
its orientation, the other one does it exactly the same way.
In terms of basis, the orientational parts for ξ1 and for ξ2
are the same. The basis sub-block for ξ1, ξ2 as a group is

Basis(ξ1, ξ2) =

[
br1 br2 b1,t1 b1,t2
br1 br2 0 0

]
(25)

where b is a column representing one possible Adjoint error.
Here ξ1 can have its own translational change.

B. Two consecutive revolute joints parallel

If ξ1, ξ2 keep parallel,

ω1 = ω2 (26)

Similarly, it requires the two joints have the same rotation
bases. They can have different translational changes each.

Basis(ξ1, ξ2) =

[
br1 br2 b1,t1 b1,t2 0 0
br1 br2 0 0 b2,t1 b2,t2

]
(27)

C. Two consecutive revolute joints perpendicular

For ξ1, ξ2 to be perpendicular,

ωT
1 ω2 = 0 (28)

Hence the two joints should have no relative rotation about
their common perpendicular line. In addition to the the same
rotation bases, we bring back one joint offset δθ1 to provide
the remaining possible rotational change of ξ2 relative to ξ1.

Basis(ξ1, ξ2) =

[
bδθ1 br1 br2 b1,t1 b1,t2 0 0
0 br1 br2 0 0 b2,t1 b2,t2

]
(29)

Note that ξ2 can rotate in the direction of 3 bases
(bδθ1 , br1, br2), which seems not minimal. However, only the
minimality of constrained joint group is meaningful here.

D. Two consecutive revolute joint axes intersected

When the axes of ξ1, ξ2 intersected,

ξ1 � ξ2 = vT1 ω2 + vT2 ω1 = 0 (30)

The two joints can translate together and have individual
rotational change each about the intersection point.

Basis(ξ1, ξ2) =

[
b1,r1 b1,r2 0 0 btx bty btz
0 0 b2,r1 b2,r2 btx bty btz

]
(31)

where btx, bty , btz stands for translational basis in x, y, z
directions respectively.

Now we have the basic idea of how to cope with con-
straints. It is hard to elaborate all the cases. Let’s just take
a look at the following example of 6 DoF serial robot.
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TABLE I

PARAMETER OF 6 DOF ROBOT (UNIT:MM)

Nominal Strict Relax
ξ1 (0,0,0,0,0,1) (0,0,0,-0.0069,0.0110,0.9999) (0,0,0,-0.0069,0.0110,0.9999)
ξ2 (-450,0,150,0,1,0) (-456.2702,7.1714,153.1302,0.0120,0.9998,-0.0109) (-456.2685,7.1912,153.1345,0.0121,0.9999,-0.0110)
ξ3 (-1020,0,150,0,1,0) (-1027.0507,14.7527,217.8679,0.0120,0.9998,-0.0109) (-1027.06126,14.7820,217.8160,0.0121,0.9999,-0.0110)
ξ4 (0,1170,0,1,0,0) (15.5054,1203.4094,-7.6911,0.9832,-0.0138,-0.1819) (15.4571,1203.4096,-7.7516,0.9832,-0.0138,-0.1819)
ξ5 (-1170,0,800,0,1,0) (-1057.6017,-44.4919,873.1381,0.0301,0.9957,0.0872) (-1057.5397,-44.5567,873.2099,0.0301,0.9957,0.0873)
ξ6 (0,1170,0,1,0,0) (21.0239,1161.2066,-12.4274,0.9922,-0.0193,-0.1228) (20.9662,1161.2069,-12.4967,0.9922,-0.0192,-0.1228)
ξΓ (850,0,1170,0,0,0) (932.9693,3.1212,1067.1911,0,0,0) (932.9693,3.1212,1067.1911,0,0,0)

Fig. 3. A 6 DoF robot and its parameter definition

E. Example: 6 DoF robot

Robot and its parameter definition are shown in Fig. 3.
As you can see, parameters are of D-H style and the

following joint relations are assumed at initial configuration:

1) joint 1 and 2 are perpendicular.
2) joint 2 and 3 are parallel.
3) joint 3 and 4 are perpendicular.
4) joint 4, 5, 6 are perpendicular to each other, and

intersect at one point.

Three calibration methods are implemented and compared,
namely ”free method” that ignores all the constraints, ”con-
strained method” that calibrates the robot under constraints
by choosing proper basis, and ”projection method” that
projects the result of free method in each iteration.

Since all the joints are under certain perpendicular/parallel
restrictions, we assign the so(3) rotational change freedom
to the whole robot, of which the basis is Br. Joint offsets
δθ3, δθ4 and δθ5 are introduced to handle perpendicular
constraints. δθ1 is not needed because it is covered in Br.
Joint 1,2,3 have their own translational change Bti (i =
1, 2, 3), and the last three joints have the same translational
basis Btq . The whole basis matrix is

B =

⎡
⎢⎢⎢⎢⎣

I3 0 0 0 0 0 0
0 Br Bt1 0 0 0 0
0 Br 0 Bt2 0 0 0
0 Br 0 0 Bt3 0 0
0 Br 0 0 0 Btq 0
0 Br 0 0 0 Btq 0
0 Br 0 0 0 Btq 0
0 Br 0 0 0 0 IΓ

⎤
⎥⎥⎥⎥⎦ (32)

where I3 is the part for joint offsets, and IΓ stands for the
initial configuration error of tool frame.

Two sets of joint coordinates are generated and listed in
Table I. In the ”strict” model we carefully keep all constraints
satisfied, while in ”relax” model we perturb it a little bit.
For example, there is a 0.023◦ difference for joint 1,2 to be
perpendicular. 100 poses are picked randomly in workspace
and end-effector configurations are measured for calibration.
Gauss noise is added to each measurement with standard
deviation 0.02mm in position components and standard
deviation 0.0002rad in orientation components. Another 500

samples are randomly picked for verification. Error is the
maximum distance of points (0, 0, 0), (100, 0, 0), (0, 100, 0),
(0, 0, 100) (mm) in tool frame between actual and calibrated
models. Calibration process is repeated for 1000 times and
the error histograms is shown in Fig.4. Repeating the process
and evaluating the methods’ performance by histograms can
eliminate the random factors and make the result comparable.
In real application, we don’t need to repeat.

(a)

(b)

(c)

Fig. 4. 6 DoF Robot Simulation: error of (a) model with nominal
parameters; (b) strict model; (c) relax model

Errors of nominal model are quite large due to the large
kinematics error we introduced (about 5mm in length of
links and 5◦ in joint offsets), and errors are reduced obvious-
ly after calibration. In strict model the constrained method is
the best, while in relax model the free method is better than
constrained method, in statistic sense. It is quite reasonable.
When real joint relations satisfy the constraints, free method
is driven away by measurement noises. But in relax model,
constrained method cannot compensate errors away from
nominal constraints. To our surprise, projection method is
always the worst.

If we compare the same method between two models, the
error levels of free method is close, showing the consistency
of its performance; but constrained and projection method
are much worse in relax model. Given that most commercial
control systems do have the restriction, it’s really important
for real robot to satisfy the constraints as well as possible.
One way to exam how well the constraints are satisfied is to
compare the results of free and constrained methods.
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TABLE II

PARAMETER OF SCARA ROBOT (UNIT:MM)

Nominal Strict Relax
ξ1 (0,0,0,0,0,1) (0,0,0,-0.0459,-0.0576,0.9973) (0,0,0,-0.0456,-0.0576,0.9973)
ξ2 (0,-225,0,0,0,1) (16.1511,-225.8596,-12.2966,-0.0459,-0.0576,0.9973) (16.1687,-225.8598,-12.2701,-0.0459,-0.0575,0.9973)
ξ3 (0,0,1,0,0,0) (-0.0459,-0.0576,0.9973,0,0,0) (-0.0458,-0.0576,0.9973,0,0,0)
ξ4 (0,-350,16/(2π),0,0,1) (38.9140,-343.9504,-15.4992,-0.0459,-0.0576,0.9973) (38.9016,-343.9506,-15.5249,-0.0458,-0.0576,0.9973)
ξΓ (350,0,217,0,0,0) (337.2009,27.3724,237.0478,0,0,0) (337.2009,27.3724,237.0478,0,0,0)
r (1/80, 1/50, 5/6, 1/11.4) (1/80.2, 1/49.9, 0.85, 1/11.27)

IV. REDUCTION RATIO AND PITCH

A. reduction ratio

Apart from the geometric parameters discussed above,
reduction ratios may also need calibration. To be general,
let’s assume all reduction ratios are imprecise. The forward
kinematics formula with reduction ratios is

f = eξ̂1r1θ1eξ̂2r2θ2 · · · eξ̂nrnθneΓ̂ (33)

Denote
Adji = Ad

e
ξ̂iriθ

j
i

(34)

It should not be confused with the previous notation. After
all, they are the same formula with or without reduction ratio
being expressed explicitly. The calibration Jacobian column
for reduction ratio error δri is

ui =

⎡
⎣
(

i−1∏
k=0

Ad1k

)T

θ1i , · · · ,

(
i−1∏
k=0

Admk

)T

θmi

⎤
⎦
T

ξi (35)

With reduction ratios, the calibration Jacobian now is

Ar = [u1, · · · , un, Q1, · · · , Qn, QΓ] (36)

with corresponding error vector

pr = [δr1, · · · , δrn, δη
T
1 , · · · , δη

T
n , δη

T
Γ ]

T (37)

ker(Ar) = Nr is augmented from N

Nr = [0, · · · , 0]T ×N (38)

Similar sample strategy and argument is used to get
rank(Ar). After matrix manipulation,

A′

r =

⎡
⎢⎢⎢⎣

θ1
1ξ1 ··· 0 I−Ad1

1 ··· 0 I

θ2
1ξ2 ··· 0 I−Ad2

1 ··· 0 I

...
. . .

...
...

. . .
...

...
0 ··· θ2n−1

n ξn 0 ··· I−Ad2n−1
n I

0 ··· θ2n
n ξn 0 ··· I−Ad2n

n I

⎤
⎥⎥⎥⎦ (39)

We want to find xr = [y1, · · · , yn, xT
1 , · · · , x

T
n , x

T
Γ ]

T /∈ Nr

such that A′
rxr = 0. Re-order the terms and we get{
(I −Ad2i−1

i )xi + ξiθ
2i−1
i yi = −xΓ

(I −Ad2ii )xi + ξiθ
2i
i yi = −xΓ

(40)

If xΓ = 0,

(I −Ad2ii )xi + ξiθ
2i
i yi = 0 (41)

According to the corollary, ξ /∈ range(I −Ad
eξ̂θ

). So xi ∈
ker(I −Ad2ii ), yi = 0, then xr ∈ Nr.

If xΓ �= 0, subtract the two equations,

(Ad2i−1
i −Ad2ii )xi + ξi(θ

2i−1
i − θ2ii )yi

= Ad2i−1
i (I −Ad

e
ξ̂i(θ

2i
i

−θ
2i−1
i

))xi + ξi(θ
2i−1
i − θ2ii )yi

= 0
(42)

Since θ2i−1
i �= θ2ii , the same argument holds, so{

xi ∈ ker(I −Ad
e
ξ̂i(θ

2i
i

−θ
2i−1
i

)
) = ker(I −Ad2ii )

yi = 0
(43)

which conflicts the fact (I −Ad2ii )xi + ξiθ
2i
i yi = −xΓ �= 0.

Therefore no such xr can be found, which proves that Nr

is all the kernel, and reduction ratios can be calibrated.
Although there’s one more identifiable parameters asso-

ciated with each joint, strictly speaking reduction ratio is
not a geometric parameter. The maximum dimension of
identifiable geometric parameters is still 4r + 2t+ 6.

B. pitch

In Adjoint error model the joint pitch keeps unchanged in
calibration. It is useful for zero and infinite pitch joints. But
what about a finite pitch joint with imprecise pitch? We can
go back to Park’s scheme [6], but at the same time we get
back the unit norm constraint. After knowing the way to deal
with joint relation constraints and reduction ratios, instead of
one joint ξh with imprecise pitch, we can decompose it to
a revolute joint ξr coincided with a prismatic one ξt. The
angles are related by the pitch h.

ξh =

[
−ω × q + hω

ω

]
, ξr =

[
−ω × q

ω

]
, ξt =

[
ω
0

]
(44)

eξ̂hrθ = eξ̂rrθeξ̂thrθ = eξ̂thrθeξ̂rrθ (45)

So the problem is converted to the one we can solve. An
example of SCARA robot is presented next to illustrate how
to deal with reduction ratios and pitches.

C. Example: SCARA

Fig. 5. A SCARA robot and its parameter definition

Fig.5 shows the robot and its parameter definition. Joint
coordinates of strict model and relax model are listed in
Table II. The last line contains reduction ratios. Joint 4 is
decomposed and the equivalent forward kinematics is

f = eξ̂1r1θ1eξ̂2r2θ2eξ̂3(r3θ3+hr4θ4)eξ̂
′

4r4θ4eΓ̂ (46)
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where ξ′4 is the rotational part of ξ4. It is not hard to write
out its calibration basis.

B =

⎡
⎢⎣

I5 0 0 0 0 0
0 Br Bt1 0 0 0
0 Br 0 Bt2 0 0
0 Br 0 0 0 0
0 Br 0 0 Bt4 0
0 Br 0 0 0 IΓ

⎤
⎥⎦ (47)

I5 is the block for pitch and reduction ratios. Same sample
strategy and verification method are used as in the previous
simulation, and error histograms are shown in Fig.6.

(a)

(b)

(c)

Fig. 6. SCARA Robot Simulation: error of (a) model with nominal
parameters; (b) strict model; (c) relax model

In this simulation, errors are also reduced significantly
by calibration. Performances of constrained and projection
method are nearly the same. That may because SCARA’s
constraints are relatively simple. This simulation illustrates
that reduction ratios and pitches can be identified by our
calibration approach.

V. CONCLUSION AND FUTURE WORK

In this paper, by examining the rank of calibration Ja-
cobian matrix, we first prove that the maximum dimension
of identifiable parameters is 4r + 2t + 6 in POE model.
Since real robots and control systems are concerned, we
then propose constrained method and projection method to
handle constraints on joint relations. Moreover, calibration
of reduction ratios and pitched can also be handled well by
augmenting the error basis, and its identifiability is proved.
Simulations on a 6 DoF robot and a SCARA robot are
presented to illustrate and compare the performance. Real
experiments are under preparation to verify the effectiveness
of our calibration methods.

In our simulations, random samples are taken over the
robots workspace. In literatures the sample strategy can
be optimized by maximizing observation index, mostly in
numerical or heuristic methods. Analytical relation is hard
to find due to the complicated calibration Jacobian structure.
In Adjoint error model the structure is quite simple and clear.
One possible future work is to find the analytical relation thus
optimization could be easy and efficient.
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[16] K. Schröer, S.L. Albright, and M. Grethlein. Complete, minimal and
model-continuous kinematic models for robot calibration. Robotics
and Computer-Integrated Manufacturing, 13(1):73–85, 1997.

[17] L.J. Everett and A.H. Suryohadiprojo. A study of kinematic models
for forward calibration of manipulators. In Robotics and Automation,
1988. Proceedings., 1988 IEEE International Conference on, pages
798–800. IEEE, 1988.

[18] L.J. Everett and H. TSING-WONG. The theory of kinematic parameter
identification for industrial robots. Journal of dynamic systems,
measurement, and control, 110(1):96–100, 1988.

[19] W. Khalil, M. Gautier, and Ch. Enguehard. Identifiable parameters and
optimum configurations for robots calibration. Robotica, 9(01):63–70,
1991.

[20] M.A. Meggiolaro and S. Dubowsky. An analytical method to eliminate
the redundant parameters in robot calibration. In Robotics and Automa-
tion, 2000. Proceedings. ICRA’00. IEEE International Conference on,
volume 4, pages 3609–3615. IEEE, 2000.

[21] R.B. He, Y.J. Zhao, S.N. Yang, and S.Z. Yang. Kinematic-parameter
identification for serial-robot calibration based on poe formula.
Robotics, IEEE Transactions on, 26(3):411–423, 2010.

[22] Z. Li, S.S. Sastry, and R.M. Murray. A mathematical introduction to
robotic manipulation, 1994.

This is the Pre-Published Version 


