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Abstract— In this paper, we present a method for learning
and online generalization of maneuvers for quadrotor-type
vehicles. The maneuvers are formulated as optimal control
problems, which are solved using a general purpose optimal
control solver. The solutions are then encoded and generalized
with Dynamic Movement Primitives (DMPs). This allows for
real-time generalization to new goals and in-flight modifications.
An effective method for joining the generalized trajectories is
implemented. We present the necessary theoretical background
and error analysis of the generalization. The effectiveness of
the proposed method is showcased using planar point-to-point
and perching maneuvers in simulation and experiment.

I. INTRODUCTION

Quadrotors belong to the group of unmanned aerial ve-
hicles (UAVs) and vertical take-off and landing aircrafts
(VTOLs). Due to their simple mechanical design, their broad
availability, and mainly, their ability to hover, quadrotors are
well suited for inspection, surveillance and aerial photogra-
phy applications. Current research is focused on autonomous
exploration of unknown environments in search and rescue
scenarios, particularly without external position information,
e.g. in GPS-denied areas [1], [2]. The generation of aerobatic,
aggressive, or time-optimal maneuvers for quadrotors has
so far been addressed by many researchers. The available
approaches differ mainly in the description of the maneuver,
online-offline capabilities, and optimality criteria.

A. Related work

Multiple approaches exist in literature to obtain trajectories
for a quadrotor-like vehicle. In this work, we want the
trajectory to drive the vehicle through predefined states,
while maintaining input and state constraints.

The method described in [3] uses the flatness property
of the quadrotor system to obtain a piecewise polynomial
trajectory in the flat output (Cartesian position and yaw
angle). Trajectories are constrained through a sequence of
keyframes, and are used to obtain feed-forward control
inputs. The trajectory snap, which corresponds to angular
velocity, is minimized using offline linear programming.
Input constraints are handled by temporal scaling of the
trajectory. The control input is assumed to be polynomial,
and its degree depends on the number of constraints in the
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keyframes. Spatial scaling of the whole trajectory is possible
in-flight.

In [4], the authors define a maneuver as a sequence of
discrete motions. An outdoor backflip maneuver is divided
into three stages (impulse, drift, recovery). The safety and
attainability of the desired sets in state space are ensured by
using the backwards reachability concept. The trajectories are
highly parameter dependent. Therefore, the whole set must
be recalculated if a parameter change occurs. The generated
maneuvers are not optimal in any sense.

Real-time generation of time-optimal point-to-point
quadrotor trajectories has been investigated in the literature
[5], [6], [7]. Therein, a closed-form solution minimizing the
maximum acceleration has been found. The effectiveness
of this approach was shown shown in terms of real-time
interception maneuvers [6] and coordinated ball throwing and
catching [7]. An indirect optimal control method is applied
to the minimum time problem in [8].

It can be concluded that several effective methods exist
for trajectory generation of isolated maneuvers (backflip,
flip, point-to-point) and performance measures (minimum
time). This has been achieved primarily by using simplified
planar models. However, handling arbitrary state and input
constraints is still limited. Hence, the real-time generation
of optimal trajectories for arbitrary maneuvers under general
state and input constraints is still an unsolved problem.

B. Scope and contribution of this work

We aim to solve the problem of arbitrary performance
measures and constraints by solving an optimal control prob-
lem offline for a grid of goals. The results are then learned
using a machine learning technique. The learned trajectories
implicitly include the constraints used in the optimal control
problem. This allows for online generalization of the optimal
results to obtain near-optimal trajectories. We base our work
on a similar approach used for robotic arms [9].

The paper is structured as follows. We formulate a maneu-
ver as a general optimal control problem in Section II. It can
therefore consist of multiple phases in order to include, e.g.
via-points, as well as arbitrary state and input constraints.
The solution is obtained offline for a set of trajectories,
using a general-purpose optimal control solver. Second, the
obtained trajectories are learned using Dynamic Movement
Primitives (DMPs) [10] (Section III). In this representation,
the trajectories can be generalized online to new goals. We
developed in-flight DMP modifications to include joining of
trajectories. The effectiveness of the approach is shown for
different simulations and experiments in Section IV.
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Fig. 1. Simplified model of the quadrotor motion in the (x, z)-plane. The
body frame is defined by the axes bx-by-bz.

II. MODELING AND OPTIMAL CONTROL

A. Planar quadrotor model

In this paper, we use a planar quadrotor model, see Fig.
1. This is a well-established approach which can be found in
[4], [11], [12], [13]. The attitude of the quadrotor is described
by the angle θ about the body axis by, x and z are the position
of the center of gravity in the inertial (x, z)-plane, θ̇ is the
angular velocity about the by-axis. The first control input is
the collective thrust divided by the quadrotor’s mass u1 = T

m
.

The second control input is u2 = τ
J

, where τ and J are the
torque and inertia about the body y-axis, respectively. Using
the state x = [x ẋ z ż θ θ̇]T and control u = [u1 u2]

T , the
equations of motion for the planar model are

ẍ = u1 sin(θ)

z̈ = u1 cos(θ)− g

θ̈ = u2.

(1)

It has previously been shown that the quadrotor system is
differentially flat [14]. This means that the control inputs u

can be algebraically computed from desired accelerations.
Furthermore, u, θ, θ̇ and θ̈ can be calculated from given
desired accelerations ẍd, z̈d. By algebraic manipulation we
obtain

u1 =
√

(z̈d + g)2 + ẍ2
d, (2)

θ = atan2 (−ẍd, g + z̈d) , (3)

where atan2 is the four-quadrant nonsingular variant of the
arctangens function. The angular velocity ω = θ̇ can be
derived by differentiating (3), for which the jerk is needed.
Computing u2 = θ̈ requires the second derivative of the
acceleration (snap) of the trajectory. This shows that only
the flat output and its derivatives are needed for successful
reproduction of a maneuver. Next we formulate optimal con-
trol problems to compute the maneuvers using the presented
model.

B. Optimal control problem

In the first step of our approach, we solve a set of optimal
control problems for a maneuver using model (1).

Definition 1 (Optimal control problem): Find a control
u∗ which causes the system

ẋ = a(x(t),u(t)),

with x ∈ R
n, u ∈ R

m, t ∈ [t0, tf ] subject to the inequality
path constraints

xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax,

and the boundary conditions x(t0) = x0, x(tf ) = xf , to
follow a trajectory x∗ that minimizes the optimality criterion

J (x(t),u(t), t) = JM (x(tf ), tf ) +

∫ tf

t0

JL (x(t),u(t), t) dt.

Model (1) can be rewritten as

ẋ = a(x,u) =

















ẋ
u1 sin(θ)

ż
u1 cos(θ)− g

θ̇
u2

















, (4)

with constraints on the controls u = [u1 u2]
T defined as

T

m
≤ u1 ≤ T

m
, |u2| ≤

τ

J
, (5)

where T and T are the maximum and minimum thrust,
respectively. τ is the maximum absolute torque. Table I
shows the system parameters and constraints used throughout
the paper.

For the purposes of learning meaneuvers, we treat the
solution of the optimal control problem as a black box.
How the solution is obtained is not critical for the methods
presented below. In this paper, we solve the optimal control
problem numerically. We use the Matlab package GPOPS,
which implements the Gauss pseudospectral method [15],
[16], [17]. We are principally interested in the minimum
time problem, hence JM = tf and JL = 0. However, the
pseudospectral optimal solution may oscillate and overshoot
for bang-bang type controls due to the Gibbs phenomenon.
We therefore include a regularization term in the goal func-
tion to obtain smoother controls. This is a consequence of
using a pseudospectral solver. If a different solver is used,
the regularization term may not be needed. Our final goal
function is therefore chosen as

J (x(t),u(t), t) = tf +

∫ tf

0

(

r1u
2
1(t) + r2u

2
2(t)

)

dt, (6)

where r1 and r2 are small regularization parameters. These
are chosen experimentally to minimize the effect of Gibbs’
phenomenon, i.e. obtain smooth inputs. Using a general-
purpose optimal control solver allows the definition of ar-
bitrary maneuvers with state and input constraints. GPOPS
can e.g. also solve multi-phase problems. This allows each
maneuver to contain any feasible states during the maneuver,
e.g. both a velocity and pitch angle can be defined at a phase
boundary.

C. Maneuvers

Although the approach presented in this paper is valid for
general maneuvers, we investigated three kinds of maneuvers
so far: point-to-point, perching, and flip. A maneuver may
contain multiple phases. In that case, a via condition is
imposed, specifying the state at the respective phase bound-



TABLE I

SYSTEM PARAMETERS, STATE AND INPUT CONSTRAINTS USED FOR THE

OPTIMAL CONTROL PROBLEM AND THE PLANAR QUADROTOR MODEL.

System parameters State constraints Input constraints

m = 0.5 kg ẋ = ż = 10m/s T = 12N

J = 3× 10−3 kgm2 ẋ = ż = −10m/s T = 1N

g = 9.81m/s2 θ̇ = 300 ◦/s τ = 0.2Nm

θ̇ = −300 ◦/s τ = −0.2Nm

TABLE II

OVERVIEW OF MANEUVERS CONSIDERED IN THIS PAPER

Maneuver Via condition End condition

Point-to-point –
pf = [xg zg 0]T

ṗf = [0 0 0]T

Perching –
pf = [xg zg

π
2
]T

ṗf = [0 0 0]T

Flip pvia = [xvia zvia π]
T

pf = [xg 0 2π]T

ṗf = [0 0 0]T

ary. The conditions are chosen intuitively by the maneuver
designer.

For notational simplicity we will define the maneuver
constraints through the position p = [x z θ]T and velocity
ṗ = [ẋ ż θ̇]T . All maneuvers start at initial conditions p0 =
[0 0 0]T , ṗ0 = [0 0 0]T , with the via and end conditions
specified in Table II. Fig. 2 shows the trajectories of three
maneuvers considered in this paper.

a) Point-to-point maneuver: The goal is to reach a
desired location pf = [xg zg 0]

T in minimum time. Zero
velocity is imposed at start and end of the maneuver.

b) Perching maneuver: A perching maneuver is a spe-
cial case of a point-to-point flight with a nonzero final
attitude angle, for instance θg = ±π

2 . It illustrates that it
is possible to define fixed states of the quadrotor at specified
instants of time. If a perching mechanism is available, the
quadrotor would hold to a surface at the end of the maneuver.
Otherwise, stabilization to hover must be done.

c) Flip: During the maneuver, the quadrotor passes a
specific via point with the attitude of θvia = π (upside down).
In order to make a full rotation, we set the end pitch angle
to be θf = 2π, with zero velocities to come to hover.

For each maneuver, we solve the optimal control problem
for a series of goal points pf . We obtain a set of optimal
trajectories, which are learned using a representation that
allows generalization to new goals.

III. MANEUVER LEARNING AND GENERALIZATION

A. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) were first in-
troduced in [10]. A DMP consists of a stable possibly
nonlinear dynamic attractor system, which is perturbed by
a learned external force such that the system performs a
desired movement. Due to constant inertia of the quadrotor,
the DMP system is linear in our case. The external force
is represented as a Gaussian basis, enabling to learn and
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Fig. 2. Position trajectories of the maneuvers considered in this paper,
obtained by a general-purpose optimal control solver. The color of the
quadrotor contour corresponds to the defined instants of time at which
a quadrotor is plotted. Fig. 2(a) shows point-to-point trajectories from
p0 = [0 0 0]T to different goal points. Fig. 2(b) depicts perching trajectories

for different maximum angular velocities θ̇. The values differ from the one
specified in Table I. Fig. 2(c) shows flip trajectories for different flip heights.
Fig. 2(d) depicts a flip trajectory with a via point and different goal point.

approximate it from training data. Training trajectories can,
for example, be obtained from a recorded movement, which
is a common approach in the field of imitation learning [10],
[18], [19], from optimal control solutions [20] or any other
type of trajectory generator. DMPs are applied to a variety
of robotics problems [21], [22], [23], since they can produce
both discrete or rythmic movements that can quickly be
adapted to changes in a dynamic environment [24]. Different
motion primitives have been applied to quadrotor helicopters
in [11], [25], [26].

We utilize the critically damped second-order mass-spring-
damper formulation

mr̈ + dṙ + κ(r − rg) + f t = 0, (7)

where r = [x y z]T is the trajectory in the flat outputs,
m is the quadrotor mass, κ > 0 is a stiffness parameter,
d = 2

√
mκ is the critical damping parameter, and f t =

[ft,x ft,y ft,z]
T is the trajectory force. We use all three spatial

coordinates, since the planar maneuvers can be executed
in an arbitrary vertical plane using a proper transformation
of the force f t. For six degrees of freedom maneuvers,
(7) can be extended by the yaw angle. By formulating the
trajectory in this way, we can encode position r, velocity
ṙ, and acceleration r̈ using only the learned force f t. The
goal position rg allows the generalization of the movement
primitive to new goals. For f = 0, it can be shown that rg
is the asymptotically BIBO stable equilibrium.

To learn and approximate the perturbation force f t which



is needed to produce a desired trajectory r(t) using the mass-
spring-damper system (7), f t is encoded into a normalized
Radial Basis Function (RBF) with N basis functions [10]
that is defined as

f
≈
(s) =

N
∑

i=1

wiΨi(s)

N
∑

i=1

Ψi(s)

s, (8)

where the Gaussian basis is defined as

Ψi(s) = exp
(

−hi(s− ci)
2
)

. (9)

Its center points are located at

ci = exp

(

−αs

i− 1

N − 1

)

. (10)

The widths are defined as

hi =

{ βs

(ci+1−ci)2
+ γs, i = 1, ..., N − 1,

hN−1, i = N.
(11)

The parameters βs > 0 and γs are used to adjust the shape
of the basis functions, and αs > 0 determines the locations
of their centers. The path parameter s is a normalized time
coordinate. It is defined by the differential equation [18]

ṡ = −αs

λt

s, s(0) = 1, s(tf ) = 0. (12)

Definition of the DMP through s enables temporal scaling
of the trajectories. Furthermore, as s decreases towards zero,
the perturbation force f

≈
also decreases towards zero. Then,

(7) is still a stable attractor. Here, λt > 0 is an additional
temporal scaling factor, which should not be mistaken with
the duration tf of a movement. Within the learning process
we set λt = 1. For reproduction of learned trajectories it
is used to apply temporal scaling. Note that (10) and (11)
represent one possible choice for the centers and widths,
which results for βs 6= 0 and the path parameter (12) in
identical and equally distributed Gaussian basis functions
with respect to time t [20].

B. Learning and optimization

The basis function approximation of the target force is
linearly dependent on the weights. Therefore, it can be
written as

Aw = f
≈
≈ f t, (13)

where

A =















Ψ1(s1)
N∑

i=1
Ψi(s1)

s1 ... ΨN (s1)
N∑

i=1
Ψi(s1)

s1

... ... ...
Ψ1(sM )

N∑
i=1

Ψi(sM )

sM ... ΨN (sM )
N∑

i=1

Ψi(sM )

sM















. (14)

Here, sj denotes the value of the path parameter at t =
j∆t, with ∆t being the trajectory sampling step, and M the
number of samples. The least-squares goal function

Γ =

M
∑

i=1

(f t,i − f
≈,i)

2

N
M
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Fig. 3. Root mean square fitting error of the DMP force f t using different
number of basis functions with (e∗RMS) and without (eRMS) optimized
parameters αs, βs, γs. The parameters are optimized on a family of R
trajectories. Parameter optimization can improve the fitting by several orders
of magnitude.

can thus be optimized by the left Moore-Penrose pseudo-
inverse, i.e. linear regression

w∗ = A+f t. (15)

The quality of the approximation depends significantly
on αs, βs, γs, κ̂, and N . In practice, κ̂ and N have to
be adjusted manually such that the target force ft is not
oscillating. Additionally, to reproduce the original input data
with higher accuracy, an optimization [27] of the three tuning
parameters αs, βs, γs, that minimizes the goal function Γ,
was done using the Matlab function fmincon. Since this
provides only local convergence, a good initial parameter
estimate is needed. The effect of using optimized parameters
on the fitting accuracy is shown in Fig. 3. Fig. 4 illustrates
the learning scheme for fitting one training trajectory.

C. Reproduction of trajectories

Having obtained the optimal weights w∗

i of the Gaussian
basis, the learned trajectory can be reproduced by numeri-
cally integrating

mr̈ = −d̂(t)ṙ − κ̂(t)(r − rg)− f
≈
, (16)

with initial conditions ṙ(0) = ṙ0, r(0) = r0. Here, d̂(t) and
κ̂(t) are time-varying damping and stiffness defined below.
We use the approximated perturbation force f

≈
as an input.

For reproduction, we note that the trajectory will reach the
goal also for nonzero initial conditions r0 and ṙ0. This
feature is heavily used in imitation learning [10], [18], [19].
However, we avoid this approach since the learned optimal
solutions are only valid for the respective initial conditions.
We extend the DMP approach presented above with a time-
varying stiffness κ̂(t), which is continuously increasing and
bounded, instead of being constant [20]. This attenuates
the problem of the spring term κ(x(t = 0) − xg) in (7),
which produces a jump in the acceleration at the start of the
trajectory. We use the stiffness

κ̂(t) = κ

(

1− exp

(

− t

k tf

))

, (17)

wherein k is a positive constant tuning parameter, κ is the
upper bound of the resulting stiffness and tf is the duration
of the trajectory. The damping d̂(t) = 2

√
mκ̂ then also

becomes time-varying to maintain critical damping along the
trajectory. For a maneuver that exceeds tf , κ̂(t) converges
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(with duration tf and time step ∆t)
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• number of Gaussians N ,
• parameters for time-varying stiffness κ̂(t),
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Fig. 4. Flowchart of the complete learning scheme including an optimiza-
tion loop for the Gaussian basis functions.

to the upper bound κ. The parameter k can be obtained
by evaluating (17) for κ(t) = κd(td), i.e. setting a desired
stiffness κd at a specified time td.

Furthermore, DMPs allow spatial scaling by a factor λs

and temporal scaling by a factor λt. The scaled trajectory r̃

will then be

mλ2
tλs

¨̃r(λtt) = −d̂λtλs
˙̃r − κ̂(λsr̃ − rg)− f

≈
. (18)

The trajectory is reproduced by numerically integrating (18)
up to time λttf . For consistency, the temporal scaling factor
λt has to be equal for the dynamic system (18) and for the
path parameter s in (12).

D. Generalization to new goals

Using the DMP approach, it is possible to generalize the
learned trajectories to new goals. By storing optimal control
solutions for a spatial grid of goal points, we can generalize
the DMP force for a new goal: for each point on the grid,
we store the corresponding weights w and trajectory duration
tf (see Fig. 5(a)). Before fitting, all trajectories are scaled
to a common duration t0 with λt = t0/tf . For any new
goal not on the grid, we use bilinear interpolation of the
weights and the duration. Thereby we obtain the force f

≈

and time scaling parameter for the new goal. Hence, to adjust
the trajectory to a new goal rg , the weights used in f

≈
are

interpolated from existing approximations. Each trajectory in
the grid is represented by a DMP. In effect, we interpolate
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(a) Surface plot of durations tf
with respect to position in the
(x, z)-plane obtained from training
data using bicubic interpolation.
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(b) Selected four point-to-point
trajectories with a fifth one in-
between.

Fig. 5. Interpolation of the weights from a mesh of point-to-point training
trajectories. Only trajectories for x ≥ 0 were computed, since the solutions
are symmetric with respect to the z-axis. Fig. 5(a) shows a three-dimensional
plot of the durations tf with respect to the x- and z-positions of the
trajectory goals, motivating the bilinear interpolation of the durations. The
four trajectories in Fig. 5(b) were selected to show the bilinear interpolation
used to generate the trajectory to the point in-between.

a new DMP for the new goal. This allows to cover a larger
range of trajectories than with a simple DMP generalization
approach. This requires that all solutions on the grid have
the same number of basis functions. Therefore, we run batch
fitting and parameter optimization for all trajectories on the
grid. In this way, the obtained parameters will be optimal
for the entire set of learned trajectories. The interpolated
trajectory for a point inside a grid is shown in Fig. 5(b). This
approach assumes linear behavior of the trajectory duration
between the grid points. The assumption is a valid if the
trajectories satisfy smoothness properties between the grid
points.

E. Joining of Trajectories

In order to generate a sequence of maneuvers, the tra-
jectories produced by DMPs can be joined. Use cases are
for instance a flight through via points, a double flip, or
switching from the current trajectory to a different one. The
latter implies that the goal point of the first trajectory is
not reached yet. In the simplest case, the trajectories can
be sequentially reproduced. This approach is referred to as
simple joining [28], which leads to zero velocity at the
transition point. A jump in acceleration also occurs due to
the abruptly altered goal. This problem can be overcome by
reformulating the DMP as a third-order system [28], [29].
Two DMPs can then be smoothly joined by overlapping the
Gaussian basis kernels [28] or by explicitly calculating the
initial conditions of the second DMP [29]. Alternatively, the
second-order DMP weights can be adapted online [29].

To avoid acceleration discontinuities when joining, we
use an attractor to blend the goal positions at the transition
point. The novel approach is inspired by proxy-based control
[30], [31]. There, a virtual proxy object is attached to the
controlled object in order to smoothly recover from large
position errors. For joining, we blend the goal rg from rg,1
to rg,2 using the system

mpr̈g + d̂pṙg + κ̂p(rg − rg,2) = 0, (19)

where mp is the proxy mass, κ̂p is the time-varying proxy
stiffness and d̂p is the time-varying proxy damping. Con-



x
g

[m
]

z
g

[m
]

λ
t

[-
]

t [s]

xg,i
xg

zg,i
zg

λt,i
λt

0 0.5 1 1.5 2 2.5 3 3.5 4
2

2.2

2.4

0

0.5

1

1

2

3

(a) Blending of the goal positions
xg (top), zg (middle) and the tem-
poral scaling factor λt (bottom).

z
[m

]
ż

[m
/s

]
z̈
[m

/s
2
]

t [s]

z zj

z̈ z̈j
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Fig. 6. Joining of two trajectories given in relative coordinates from (0, 0)T

to (1, 1)T with tf,1 = 2.5 s and from (0, 0)T to (2,−1)T with tf,2 = 2 s.
The two trajectories were joined at tj = 0.6tf,1 = 1.5 s. To obtain smooth
blending of the goal positions (xg , zg)T , the temporal scaling factor λt and
the perturbation forces f≈,x, f≈,z , attractors of type (19) were used. For
comparison, the trajectory generated using simple joining without blending
is also shown in all plots (-).

stant parameters can also be used, although time-varying
parameters produce smoother results. The initial conditions
are rg(0) = rg,1 and ṙg(0) = 0. System (19) is simulated
for 0 < tj < tf,1, while reproduction of the second DMP
starts at tj . Duration of the joined trajectory is therefore be
tf = tj+tf,2. Hence, we start blending the second trajectory
before reproduction of the first one is finished.

Fig. 6 shows the blended goal, DMP forces and z-
coordinate for simple joining and proxy-based joining.
Clearly, proxy-based joining produces a continuous result.

IV. ANALYSIS AND EXPERIMENTAL RESULTS

A. Trajectory generalization

In order to select an appropriate grid size for a given
maneuver, we evaluated the DMP generalization error for
various grid sizes (for the point-to-point and perching ma-
neuvers). Figs 7(a) and 7(b) depict the evaluated generalized
points for the two maneuvers. We chose the center point of
the grid and edge midpoints where the expected errors are
largest. An optimal solution was obtained for each of the
evaluated points for comparison. The generalization error
is shown in Fig. 7. We compare the cost function of the
generalized trajectory to the optimal one. The increase is
shown in relative terms, as J̃i = (Jdmp,i − Jopt)/Jopt. We
additionally show the RMS of all considered points J̃all

to evaluate the total generalization error for the grid size.
Additionally, we provide the RMS error of the generalized
(x, z) position trajectory w.r.t. the optimal one.

For both maneuvers the trajectory error eRMS rises ex-
ponentially with grid size. However, the cost function is a
better indicator of the generalization error. The point-to-point
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Fig. 7. Generalization error for the maneuvers. Figs. (a) and (b) show the
trajectory shape from (0, 0) to different goal points. The markers represent
the interpolation points. Figs. (c) and (d) show the generalization errors
of the corresponding interpolation points for different grid sizes ∆mesh.
The thick dashed line in (c) and (d) shows the RMS of all trajectory
errors J̃all. For the point-to-point maneuver (a), the cost function of the
generalized trajectories remains constant through various mesh size, even
though the (x, z) trajectory error eRMS rises exponentially. In contrast, the
perching maneuver (b) is very sensitive to grid size. At 3 m grid size, the
maximum cost function increase is 20-fold, for the leftmost generalized
point. Accordingly, the RMS of all cost functions increases 9-fold. Here,
the trajectory error eRMS shows the same behaviour as in the point-to-point
maneuver. Hence, smaller grid sizes should be used for highly dynamic
maneuvers.

maneuver is mostly invariant to the grid size, as the cost
function increase remains almost constant through all grid
sizes, at about 5% above the optimal one. Generalization on
the edges degrades with grid size, and generalization in the
center of the grid remains almost constant. This could be
explained by mostly polynomial control inputs for this type
of maneuver, which can be nicely spatially scaled.

The perching maneuver shows exponential increase in the
cost function, dominated by the error in the left grid edge.
This indicates that the maneuver’s generalization accuracy
is very sensitive to grid size. The control inputs for the
maneuver are nonlinear and obviously do not lend themselves
to spatial scaling. Hence, for complex maneuvers a smaller
grid size should be used.

B. Experimental and simulation results

The experiments were carried out using an AscTec Hum-
mingbird quadrotor with a custom quaternion-based attitude
controller with disturbance observation. The position and
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Fig. 8. Composite photos of the performed experiments that can be seen
in the video attachment. From left to right: point-to-point maneuver; two
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Fig. 9. Experimental results of five point-to-point maneuvers in minimum
time. It can be seen that the model inaccuracies lead to large deviations
for fast maneuvers. Optimal Jopt = 2.004 × 103, experimental Jexp =
3.036×103. During the maneuver, the velocity reaches 3.9 m/s at t = 9.2 s.

attitude are measured using an external A.R.T. tracking
system running at 60 Hz. A marker is rigidly attached
to the quadrotor frame. The IMU measurement range is
limited to 300 ◦/s, therefore our trajectories were computed
accordingly. The DMP reproduction and position controller
are running in Simulink, with attitude and thrust commands
sent wirelessly via XBee. The maneuvers were flown in the
(x, z)-plane. Simulations were carried out in Simulink, using
a full six-degrees of freedom quadrotor model.

Fig. 8 depicts composite photos of the performed exper-
iments. We show extensions to the DMP approach using
the point-to-point maneuver. The perching maneuver was
reproduced without perching mechanism, so the quadrotor
was commanded to stabilize at the end of the trajectory.

Fig. 9 shows the pitch Euler angle and the (x, z)-trajectory
during five point-to-point maneuvers. The limiting factor
in the experiment is the angular velocity due to the IMU.
The maximum angle is thus 45 ◦ during the maneuver. The
trajectory shows large position overshoot at the end of the
trajectory. Since the velocity reaches 3.9 m/s during the
maneuver, unmodeled aerodynamics come into effect and
diminish the tracking accuracy.

The simulation of trajectory joining in Fig. 10 shows the
difference between simple joining (attaching two trajectories)
and the joining method presented in this paper. Simple
joining results in zero velocity at the joining point. Hence,
the trajectories are just reproduced one after the other. The
trajectory stops in the rightmost circle in Fig. 10(a). With
our joining method, at t0,2 = 0.6tf,1, the trajectory velocity
is nonzero at the joining point. Larger accelerations are
produced than in simple joining. However, the trajectory
quickly converges to the reproduced one. The trajectory stops
in the lefttmost circle in Fig. 10(a). Proxy-based joining
clearly produces smooth trajectories, and leads to the same
final position as simple joining. Fig. 10 depicts a proxy-
based joining experiment. The same effect at the end of
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Fig. 10. Simulation and experimental results of joined and simple point-
to-point maneuvers. The maneuvers were joined at 0.6tf,1 for proxy-based
joining, and at 1.2tf,1 for simple joining. Circles mark the start of a
trajectory, and the cross marks the end of a maneuver.

the trajectory can be seen as in the point-to-point maneuver,
owing to unmodeled aerodynamics.

Fig. 11 shows simulation and experimental results for
the perching maneuver. The attitude controller dynamics are
not considered in the model used for trajectory generation.
Therefore, the desired pitch angle of 90◦ was not reached
exectly in simulation nor experiment. This indicates that
either the controller dynamics have to be considered in the
trajectory generation, or a method for improving trajectory
execution is required.

C. A comment on computational complexity

We shortly outline the computational complexity for a grid
of K trajectories, each approximated with N basis funtions,
and sampled at M points. Offline, the optimal trajectory has
to be computed K times, and a KM × N matrix must be
pseudo-inverted. We obtain K × N weights to be stored.
For online reproduction first the interpolation weights are
obtained. The exp(·) function must be evaluated N times for
each integration step. Hence, the computational complexity
during reproduction depends on the integration time step and
number of basis functions.

V. CONCLUSION

In this paper we presented a novel method for learning
optimal control solutions and generalizing them in real-
time for a quadrotor-type vehicle with flat dynamics. The
generalization is based on an adapted DMP approach. More
specifically, our algorithm encodes a grid of optimal solu-
tions that were generated offline into a dynamical system
of second order. The trained DMP is then able to gener-
alize to unforeseen goal states instantaneously via weight
intrapolation. The effectiveness of the approach was shown
in simulations and experiments.
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Fig. 11. Simulation and experimental results of perching maneuver to
(1.8 m, 0 m, 0.6 m). The circle marks start of the maneuver, and the cross
marks its end. The attitude controller dynamics are not considered in the
model used for trajectory generation. Therefore, the goal attitude θg = π

2

was not reached in simulation nor experiment.

Analysis has shown that for rather complex maneuvers,
such as perching, a smaller grid size should be used to obtain
good generalization properties. The point-to-point maneuver
generalization error was shown to be mostly invariant to
grid size. Furthermore, we presented a real-time approach
to trajectory joining by proxy-based blending of trajectory
parameters. This makes it possible to seamlessly combine
partial solutions to more sophisticated maneuvers.

Our next steps are to perform a thorough analysis of
the limitations of the presented approach. We will also
compare other DMP joining methods with the presented one.
Furthermore, the approach presented in this paper is fully
applicable to 6-DOF maneuvers, which we intend to validate.
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[21] J. Kober, K. Mülling, O. Krömer, C. Lampert, B. Schölkopf, and
J. Peters, “Movement templates for learning of hitting and batting,” in
ICRA, 2010, pp. 853 – 858.

[22] P. Kormushev, S. Calinon, and D. Caldwell, “Robot motor skill
coordination with EM-based reinforcement learning,” in IROS, 2010,
pp. 3232 – 3237.

[23] B. Nemec, M. Zorko, and L. Zlajpah, “Learning of a ball-in-a-cup
playing robot,” in Proceedings of the International Workshop on
Robotics in Alpe-Adria-Danube Region, 2010, pp. 297 – 301.

[24] S. Schaal, “Dynamic movement primitives a framework for motor
control in humans and humanoid robotics,” University of Southern
California, Tech. Rep., 2003.

[25] A. Schoellig, M. Hehn, S. Lupashin, and R. DAndrea, “Feasiblity of
motion primitives for choreographed quadrocopter flight,” in American
Control Conference, 2011, pp. 3843 – 3849.

[26] A. Schoellig, C. Wiltsche, and R. DAndrea, “Feed-forward parameter
identification for precise periodic quadrocopter motions,” in American
Control Conference, 2012, pp. 4313 – 4318.

[27] A. Gams, T. Petric, L. Zlajpah, and A. Ude, “Optimizing parameters
of trajectory representation for movement generalization: Robotic
throwing,” in Proceedings of the International Workshop on Robotics
in Alpe-Adria-Danube Region, 2010, pp. 161 – 166.

[28] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Wörgötter, “Joining
movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting,” IEEE Transactions
on Robotics, vol. 28, pp. 145 – 157, 2012.

[29] B. Nemec and A. Ude, “Action sequencing using dynamic movement
primitives,” Robotica, vol. 30, pp. 837–846, 9 2012.

[30] M. V. Damme, B. Vanderborght, R. V. Ham, B. Verrelst, F. Daerden,
and D. Lefeber, “Proxy-based sliding mode control of a manipulator
actuated by pleated pneumatic artificial muscles,” in ICRA, 2007, pp.
4355 – 4360.

[31] R. Kikuuwe, S. Yasukouchi, H. Fujimoto, and M. Yamamoto, “Proxy-
based sliding mode control: A safer extension of PID position control,”
IEEE Transactions on Robotics, vol. 26, no. 4, pp. 670 – 683, August
2010.


