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Abstract— A representation for structured activities is devel-
oped that allows a robot to probabilistically infer which task
actions a human is currently performing and to predict which
future actions will be executed and when they will occur. The
goal is to enable a robot to anticipate collaborative actions
in the presence of uncertain sensing and task ambiguity. The
system can represent multi-path tasks where the task variations
may contain partially ordered actions or even optional actions
that may be skipped altogether. The task is represented by an
AND-OR tree structure from which a probabilistic graphical
model is constructed. Inference methods for that model are
derived that support a planning and execution system for the
robot which attempts to minimize a cost function based upon
expected human idle time. We demonstrate the theory in both
simulation and actual human-robot performance of a two-way-
branch assembly task. In particular we show that the inference
model can robustly anticipate the actions of the human even
in the presence of unreliable or noisy detections because of its
integration of all its sensing information along with knowledge
of task structure.

I. INTRODUCTION

Robots can potentially be effective coworkers to humans
in a broad range of applications including industrial man-
ufacturing, logistics, and personal healthcare services [1].
Most prior work in human-robot collaboration has focused
on two research topics: acquiring skills by demonstration
or teaching, and how to properly engage with users [2].
In many of these efforts the difficult questions revolve
around how to generalize the observed human action into
an appropriate robot action plan or determining what type of
robot interaction is most effective in terms of assisting the
human agent.

In these investigations, the observation of the human
is often presumed to be unambiguous and accurate. By
unambiguous we mean that the robot can assume that human
task plans are deterministic; by accurate we mean that the
sensing of the human state is engineered to be precise. But
in the real world, the human agent may be performing one of
a variety of tasks and the execution of those tasks may vary
from execution to execution. Furthermore, the ability to sense
human actions varies with task and environmental conditions.
Thus, a robot must maintain beliefs about the past, current,
and future state of the human in the face of human variability
and perceptual uncertainty to provide effective human-robot
interaction [3].
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Fig. 1: Experimental Station. A Universal UR10 robot assists a
human by fetching and removing bins as needed by anticipating
actions of the human.

In this paper we focus on the specific interaction scenario
in which a human is performing one of a variety of assembly
task variations during which the robot must anticipate which
parts the human will need and when. We use this context
to identify a variety of uncertainties that arise in the robot
perceiving the human actions and making predictions as to
when future actions will occur. First is task ambiguity: the
human agent may choose to perform the same task plan
with varying action orders or step omissions, or perform
entirely distinct task plans. Second is task timing uncertainty:
variations in the duration of the steps in the task. Finally there
is action sensing reliability: sensors designed to respond to
human actions are corrupted by environmental factors which
introduce both noise into measurements and characteristic
disruptions such as when occlusion prevents an action from
being sensed at all.

We present here a representation of human action and an
inference method which probabilistically models the human’s
task, infers which task variation the human is doing and
predicts when elements of that task will be performed. By
modeling detector reliability, incorporating timing distribu-
tions, and reasoning over the full sensor history, the robot
makes efficient use of its knowledge, integrating evidence
over time to improve its belief about the human. After
inferring the human’s state, we utilize a cost-based planner to
optimize the robot’s action plan with respect to the posterior
human action distributions, reducing the expected cost for an
arbitrarily defined system cost function.

The work presented in this paper greatly expands prior
results in [4] by accommodating task descriptions more
complex than simple linear graphs with no task ambiguity.



In that work, the only inference to be performed was when
future actions were likely to be performed and for the robot
to anticipate accordingly. Here, the system can model and
respond to more ambiguous task orderings corresponding to
paths through acyclic polytrees where the branch decisions
are determined by the human and must be implicitly inferred
by the robot through its sensors.

We organize the remainder of our paper as follows.
After discussing selected related works, we develop the
representation and inference method for modeling multi-path
tasks, assessing the likelihood that a given branch of the
task is being performed, and predicting when a particular
sub-task will occur. Using these predictions we employ a
planning and action system for the robot that attempts to
minimize a cost function based upon expected human wait
time. We demonstrate the theory in both simulation and
actual human-robot performance of a simple two-way-branch
assembly task. In particular we show that the inference model
can robustly anticipate the actions of the human even in
the presence of unreliable or noisy detections because it
integrates its entire sensing history with knowledge of task
structure and environmental constraints.

II. RELATED WORK

In robotics there has been significant recent study on the
role of prediction on the fluency of human-robot interactions,
along with the development of learning and planning algo-
rithms that perform action selection in a collaborative con-
text; such work usually presumes sensing is straightforward
and that the challenge is making the right action decision.
For example, [5] uses an adaptive Markov model to assign
confidence about predictions of the human partner’s actions.
The uncertain predictions are used in a cost-based framework
to select the best action. In both that work and subsequent
efforts [6] the benefits of employing anticipatory actions in
a human-robot task are well observed in human trials. In all
these systems the actions of the human are presumed to be
clearly and reliably observed.

In the robotics literature there are a variety of approaches
to anticipating the actions of humans. These efforts vary in
how much a priori knowledge the system has about the task
or domain. Huber et. al. [7] provides the robot has complete
knowledge of the sub-tasks performed by the human. Fish
et. al. [8] and Tenorth [9] collect detailed statistics about
the human performance of the specified task and use predict
duration variability over time. Koppula and Saxena [10]
learn likely sequences of human action from training data.
At run time, the robot instantiates a set of probabilistically
weighted “anticipatory temporal conditional random fields”
to predict which actions the human may take and when. The
work presented here also explicitly models possible future
sub-tasks sequencings and maintains a probability for each
based upon prior info and current observations. However,
our possible futures are constrained by an a priori task
description.

Wilcox et. al. [11] use strict temporal constraints to
develop robotic schedules for human-robot collaborative
assembly with the addition of preferences which optimize

the plan over the constraints . While they accommodate
human variability by using different preferences for different
behavior models, they do not address the issue of perceptual
ambiguity. We note that the work presented here also frames
action selection as minimum cost planning in the face of
probabilistic beliefs about when the human will perform
various sub-tasks.

Finally, computer vision research, specifically activity
recognition, has also developed many approaches to mod-
eling activities composed of sequences of actions. Perhaps
the most relevant work is that of Shi et.al. [12] where a
Dynamic Bayes Network variant was proposed to recognize
partially ordered sequential action. Related, Albanese et al.
[13] uses Probabilistic Petri Nets to detect events and [14]
learns an activity’s decomposable structure of “actionlets”
with a probabilistic suffix tree; given that data structure,
early prediction of sub-action can be made. In [15], Tang
et. al. demonstrated how to use a variable-duration Hidden
Markov Model (HMM) to learn an action’s latent temporal
structure and showed it helps improve detection results in
the presence of noisy sensors. This is similar to the work
here where sensing information is integrated with a structural
description of the task to improve action detection.

III. REPRESENTATION AND INFERENCE

In [4], we developed a representation, inference procedure,
and reactive planning system in the context of simple linear
graph task descriptions. The system modeled the task as a
known sequence of human actions, incorporating duration
knowledge, task constraints, and detector observations simul-
taneously. Given a history of task constraints and detector
observations up to the current time and an estimate of these
values in the future, the system inferred the distribution over
when human actions occurred or will occur.

The key development in that work was representing the
linear graph as a sequential Bayes net where the state
variables are the beginning and ending times of each of
the actions. Duration models allowed for conditioning the
end times upon start values, detectors were designed that
provided diagnostic information as to when an action was
occurring, and online inference procedures were developed
that incorporated not only all detections viewed up to the
current time but also task constraints such as whether the
robot had performed a necessary action that would enable
the human to progress in his task.

In this paper we significantly extend that work to allow
for task variations where the human is not limited to a strict
linear path but can be considered as “multi-path”: the task
may be a partially ordered one where certain actions can
occur in a variety of orderings, or even a set of multiple
tasks where some actions may be skipped altogether.

A. AND-OR tree task representation

We begin by defining a representation for the multi-path
task which governs what human action plans are considered.
A task is an ordered AND-OR tree with leaves called
primitive actions. Primitive actions are discrete human states
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Fig. 2: A complex activity represented by (a) an AND-OR tree
representation of a task and (b) the equivalent acyclic FSM

associated with a start and end time and a probabilistic de-
tector which provides evidence about the transition timings.
Inner nodes are composition elements which collect children
and indicate either an AND rule or OR rule. An AND rule
designates that if this node is executed by the human, all
of the children will be performed in the order specified. OR
rules assert that exactly one of its children is an acceptable
path. Skip primitives are leaves of an OR node that indicate
the execution of the node can be skipped entirely.

Figure 2(a) illustrates a task with action primitives A,B,C
and D. The tree encodes that first A and B can be performed
in any order, followed by C in either case, and finally, D
can be performed, but is optional. We can see that tasks
could also be encoded as acceptable strings to an acyclic,
nondeterministic finite state machine (FSM) (Fig. 2(b)).
Thus, the proposed representation is analogous in prior work
from both robotics (e.g. [16]) and computer vision [12, 17].
However, the AND-OR tree representation can only encode
action plans of finite length.

In the following sections, we discuss conversion of our
AND-OR tree representation into a probabilistic graphical
model for predicting human actions and their timings.

B. Primitive actions and detectors

For each primitive action A we denote As and Ae to be the
probabilistic variables representing its start and end time. We
utilize a discrete representation of time, where each variable
admits integer values. Each value represents a continuous
time interval with a scaling that depends on the ratio of T ,
the number of time intervals, to Tmax , a maximum duration
for the task. Each action detector variable ZA is conditioned
on an primitive action’s start and end times which can be
potentially reused for other actions. Furthermore, each end
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Fig. 3: The S AND rule from figure 2 converted into a Bayes net
of three subtasks. Since the green C action is a primitive, the start
and stop times are conditioned on the sensor ZC . The dotted lines
indicate a further expansion as seen in figure 4.

time Ae is conditioned on the action’s start As, and each
start time Bs is conditioned on the previous action’s end Ae
(see action C in fig. 3). Note that while this notion is always
valid in our previous work [4], the intra-action conditionals
will soon be modified for some connections.

We assume a duration prior for each action, P (Ae|As),
distributed according to a trimmed Gaussian whose pa-
rameters are learned offline. In our experiments, for the
action transition conditional P (Bs|Ae) we used a gating
function which enforces the environmental constraint that if
the conditions for the human to perform the next action have
not yet been met, then the transition cannot yet have been
made (see [4]). We also produce an observation likelihood
P (ZA|As, Ae) from the raw action detector FA[α, β]. The
detector represents how consistent the observed data is with
the action starting at time α and ending at time β for
every possible(α, β) of the entire input sequence. Then,
the likelihood can be computed based on that detection:
P (ZA|As = α,Ae = β) = hAFA[α, β] for a constant hA.
The choice of FA reflects the sensitivity and reliability of
the sensing system in being able detect the action A. If, for
example, there was no available sensing, then FA would be a
constant, effectively eliminating any impact on the inference.

C. Sequence of actions: AND

An AND-rule conversion is shown in Fig. 3. We set the
start and the end of a composition according to its start and
end of its subtasks (Ss = Xs, Se = Ye, denoted by red
arrows). Given all the conditional probability tables (CPT)
have been computed, we can use a message-passing algo-
rithm to perform exact inference. The local output will be the
posterior distributions of the start and end of every actions:
P (Z) and P (Ss|Z), P (Se|Z), P (Xs|Z), P (Xe|Z), . . . [4].

D. Branching: OR

An OR-rule conversion is shown in Fig. 4. Here we
describe a more complicated composition: the subtask X
suggests that the human will take either path X1 or X2
with discrete probability pX1, pX2 = 1 − pX1 (Fig. 4).
The network will include the nodes Xs, Xe and recursively
all components in X1, X2. If the human takes path X1,
we would have Xs = X1s, Xe = X1e, and we need
to represent that X2 does not happen, which we denote
X2s = X2e = −1. We use ∃X1 and !X1 to denote the event
X1 happens (X1s, X1e > 0) or not (X1s = X1e = −1).
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Fig. 4: The XOR rule from figure 2 converted into a Bayes net
with two possible paths. In this subtask, action primitives A and
B can be performed in either order. The switching variable Xi is
added to help manage the OR relationship. In this instance, the
action detectors are shared across branches.

A standard approach to realizing ”OR” in Bayes network
is using a ”switching” variable Xi [18].

The timing of X can be presented in terms of the timing
of X1 and X2 as

P (Xe = α,Z) =W1P (X1e = α,ZX1|∃X1)+

W2P (X2e = α,ZX2|∃X2)

W1 = P (∃X1)P (ZX2|!X2); W2 = P (∃X2)P (ZX1|!X1)

If X1 is a primitive action, then P (ZX1|!X1) =
hX1FX1[−1,−1]; we choose FX1[−1,−1] to have the
“null” score of FX1 defined to be its average score com-
puted over all training data. If X1 is a composition, then
P (ZX1|!X1) =

∏
M in X1 P (Z

M |!M)
More simply, the inference’s forward and backward pro-

cesses are performed on X1 and X2, then the results are
combined for X. The weights of X1 and X2 depend on two
factors: the prior probabilities P (∃X1), P (∃X2) and the
likelihood P (Zx|ms,me) for every primitive action m in X1
and X2. For example, strong detection of actions in subtask
X1 which are consistent with the duration priors would make
X more likely to be X1 than X2.

Note that while the themes and applications make this
model seem like an HMM, this model is very different. While
in an HMM, state variables represent the actual state of the
system at a particular time step, our representation’s state
variables are the timings of the beginning and ending of
states. This approach allows us to enforce strict task struc-
ture constraints, reducing variability, while still maintaining
healthy alternative hypothesises.

E. Inference

The message-passing algorithm is used to perform infer-
ence. Besides values between 1 and T , the distribution of the
timings now also include special value −1, which indicates
the human never performs the action. The inference returns
as output: the posterior probabilities of whether each branch

was taken, and the distributions of when an action starts or
ends, given the action was performed. From this output, we
can also compute the probability that the action x is being
performed at time step t, for every x and t.

Inference is performed at a particular point in time and as
more sensor information is received, inference should be run
again to produce updated predictions. Likelihood values for
detections which have not yet occurred are set to a uniform
constant. The running time for inference is roughly O

(
NT 2

)
where N is the number of action primitives and T is the
number of time intervals in the discrete time state. This hints
that the primary trade-off in efficiency is reduced precision in
the timing densities. For details on the inference algorithms
refer to Appendix A.

IV. EXAMPLE APPLICATION DESCRIPTION

We first present a human-robot collaborative application
we use to motivate our investigation. A human sits at a table
across from a robot collaborator who is safely out of reach
of the human, but who can move a set of bins both into and
out of the reach of the human (Fig. 1). Each bin contains a
variable number of Baufix toys, a wooden construction set
of screws, nuts, and bolts, which can be used to make small
model vehicles and other designs. The bins are kitted so that
a subset of the bins could be used to construct a few different
models.

For the task, the human is instructed to begin building a
model from the pieces in the bins. Their reaches are generally
restricted to withdraw one part from a bin at a time. Since
the human cannot remove a part from a bin not in reach,
this imposes a task constraint which the robot must satisfy
for the pair to complete the task. When the human needs to
reach for a part from a bin not in the workspace, they are
instructed to wait until the robot has delivered the bin they
need. Based on observations of the human gathered from
sensors in the environment, combined with a model of the
task, the robot begins delivering bins the human might need.
There are only M slots (M = 3 for our experiments) in
the human’s workspace into which the robot can place bins,
so eventually the robot must decide to remove unneeded
bins and deliver more demanded ones. When more than one
construction is possible, the knowledge of which one the
human is performing is not made explicit a priori and must
be inferred by the activity of the human.

We define each primitive action as a draw of a particular
piece inside a particular bin. The start of this ”drawing
action” is defined as the moment when the hand touches
the piece (and the end of the action is the start of the next
one). We use a likelihood function

FA[α, β] = N(Hα(bin(A));µPos(A), σPos(A)) + wm

where bin(A) is the bin corresponding to action A, and Ht(b)
is the position of the closest hand to bin b, represented in
the local coordinate frame of b, at time step t. Parameters
µPos(A) and σPos(A) are learned during training. σPos(A)

represents confidence about the detector’s accuracy, while
wm is a uniform distribution that represents the confidence



about the detector’s recall. With the defined parameters, a
high confidence detector will have small σPos(A) and small
wm. As these 2 parameters get bigger, the system is less
confident in its sensing. A very high value of σPos(A) or wm
would make FA[α, β] nearly constant , which is equivalent
to no available sensing information. We also compute the
expected detection score and assign this value to FA[−1,−1].

A special ”waiting action” is included before every ”draw-
ing action” to add the constraint that a bin must be in the
workspace before an draw can occur. Instead of separate
duration and detection likelihoods for this special action, we
define the multiplication of both as: P (Ae = β, ZA|As =
α) = 1 if bin(A) is not available during the interval [α, β−1]
and becomes available at time step β, or otherwise 0.

Using the inference output, a prediction can be made
about what actions have already happened, what actions are
going to be performed next and when. The planner needs
to know when a bin is needed and not. Hence we will use
the distribution of the start of the action of waiting to draw
the first piece from the bin as when that bin is needed, and
the last piece from the bin as when that bin is no longer
needed. We presented in our previous paper [4] a cost-based
planner which optimizes bin delivery and removal timings
given the posterior distributions . The planner attempts to
minimize expected sum squared wait times, which we use to
reduce both total wait time and the maximum wait period.
The planning is mostly identical, except that costs are now
weighted by the posterior branch probabilities which come
from the OR-rules.

V. EVALUATION

A. Task Descriptions

We developed a simple, illustrative task, to demonstrate
the types of behavior our system exhibits in a collaborative
assembly scenario. The human attempts to assemble one of
two possible toys whose parts are each separated into 4 bins
and the robot has no prior knowledge as to which toy the
human will be assembling. The two toy models have an
identical assembly structure and the base structure, in bin
A, is the same for both. However, each model is a different
color, and all successive parts past the base are in different
bins. Thus, the human needs bins B1, B2, and B3 for model
B and C1, C2, and C3 for model C. We require that the
human perform one reach for each part in the bin and there
are total of 14 parts that need to be assembled, 6 in bin A,
1 in bin B1/C1, 1 in bin B2/C2, and 6 in bin B3/C3. The bin
A is already in the human’s workspace when the task starts
and takes enough time that both bin B1 and bin C1 can be
delivered before the human finishes with it.

Since the robot cannot determine which model the human
is building before reaching into one of the bins in a branch,
the robot almost always begins by delivering both B1 and
C1. Assuming the robot does not remove bins preemptively
a problem we explored more heavily in our previous work
[4], the best case scenario is when the robot only delivers
bins *2 and *3 for the branch the human performing. In the
worst case, the same bins are delivered in the branch the

0 10 20 30 40 50 60

Time (s)

t = 55s

0 10 20 30 40 50 60
0

0.05

0.1

Time (s)

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

0

0.05

0.1

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

t = 22s

Bin A

Bin A

Bin A

Bin A

Bin C1 Bin C2

Now

NowNow

Now

Bin C1 Bin C2

Bin B2Bin B1 Bin B1

Bin B2
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reaches into bins A, B1, and B2. As more evidence is observed,
the robot understands that the human does not need C1 or C2 and
the timing predictions become sharper.

robot is not performing, followed by the two in the branch
they are performing.

B. Simulation

We developed a simulator which allowed us to evaluate
both our inference and our planner in a controlled environ-
ment. The human agent simulation was programmed to reach
towards bins based on random times drawn from our duration
model. If a necessary bin was not available in the workspace,
the agent would remain stationary and wait.

In order to investigate the behavior of our system in the
face of action detection ambiguity, we modified the detector
to present a false hand position to the detectors. A calibration
error is introduced which shifts the perceived hand positions
so that a reach into one bin often looks more like a reach
into the next bin to the side.

Likewise, in the robot’s inference model, we alter the
parameters of the sensor model to control the “detector
confidence”. The detector’s precision confidence is modified
to be lower by widening the detector’s σ value so that it has
less precision but higher recall.

In Fig. 6 we illustrate how the inference resolves both task
uncertainty and model uncertainty simultaneously. Early on,
the robot projects the timings of future human actions to be
wide and attributes equal probability to both paths. Once the
robot detects reaches, it knows both when the human began
using the bins and which bins they need.

We compared a well-calibrated reliable detector to one
with a calibration error when the robot had either a high and
low confidence in the precision of the detector. The results
of our simulation trials can be found in Fig. 5. In the high
confidence case, the robot committed to the path it saw first,
delivering bins *2 and *3 as soon as possible. When the
detector was reliable, this meant the human never had to wait.
However, when it had a calibration error, after incorrectly
perceiving a reach into the other bin, it overcommitted down
the wrong path, delivering two bins the human did not need.

The calibration error was overcome by lowering the con-
fidence in the sensor. In the low confidence cases, the robot
made the human wait slightly longer than the first condition,
but not as long as when it overcommitted. It accomplished
this by covering its bases, delivering both *2 bins, regardless
of which it saw first. We can see that for the reliable detector,
this meant that it did not perform as well as the high
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An example run of the simulated system where the human took the
C branch followed by the E branch. The system had a calibration
error and moderately tuned parameters.

confidence case. Thus, correctly tuning the robot’s belief
about its detector to its underlying performance is important
for improving system performance.

We also applied the simulator to a more complex grammar
to demonstrate it can model arbitrary tasks (Fig. 7). The robot
began by delivering both B1 and C1, to determine which

branch the human was doing. The robot first mistakenly
delivered B2, but then recovered when it saw no reaches.
It delivered the C bins, followed by D1 and E1. When E1

was delivered, it immediately got positive information, so it
skipped the F bins entirely, immediately delivering G1. Note
that it waited until D1 was delivered to finally remove the
B bins, and instead removing the C bins very quickly. This
shows how the robot is optimizing over residual ambiguity
to both follow its most likely paths while still covering its
bases as best as possible.

C. Robot implementation

In this section we present experiments performed by a
human-robot collaborative team performing the task de-
scribed above. The robot was a 6-DOF Universal Robots
UR-10 mounted to a steel table with a Robotiq C-model
parallel jaw gripper (Figure 1). Above the robot, a webcam
was mounted to track the positions and orientations of the
bins, affixed with ARTag augmented reality tags. To the side
of the human and bins, a Kinect RGB-D sensor was mounted
to sense the behavior of the human. The entire system is
calibrated such that the locations of the bins are known with
respect to both the robot and the human sensing.

The task the human performed is exactly the same task de-
scribed in section IV that involves building either of two toy
models, A and B. To track the human collaborator’s hands,
we used brightly colored surgical gloves and implemented a
color blob tracker on the RGB-D sensor. A relatively simple
model of euclidean distance between the bin and the hand
closest to it, is used to compute the detection score FA, as
described in detail in section IV.



The approach we take with the human-robot collaboration
mirrors that taken in simulation. For the sensing system we
consider three cases. The first, “reliable”, is denoted RD and
is where the detectors performance reflects the statistics seen
in the training data. The second and third, each “unreliable”,
have some form of sensing perturbation introduced. One
disturbance, analogous to the simulation, is Calibration Error
(CE) where we altered the extrinsic calibration of the Kinect
by 6 cm. This has a similar effect to the tripod mounting the
Kinect being inadvertently shifted. The other perturbation,
referred to as False Positives (FP), involved attaching a glove
having the same color as one of those being tracked to the
bin corresponding to the bin B2 in view of the Kinect. It
produced the effect of having a high detection score for
that bin throughout the duration of the task, hence that bin
receives many false positives.

Also following the simulation approach, we varied the
model parameterization used for inference. The first of
these we refer to as High Confidence (HC). These are the
parameters learned from training data which was collected
without the above mentioned perturbations. The two remain-
ing parameters settings we refer to as “Low” confidence,
LC1 and LC2. These parameters reflect two possible types
of sensor uncertainty. LC1 models inaccuracy in detection
as an increase in the variance of detector measurement. LC2
models the unreliability of actual detection such as when
occlusion might prevent any detection of an action.

Table I shows the average human total waiting times for
a task performed in each of the conditions. The High Confi-
dence parameterization - learned from unperturbed sensing -
performs well in RD but causes the human to wait for long
periods of time in the other cases. Specifically, CE causes
the detection scores to become quite small which lead to the
system being unsure of when a reach into a bin is made. This
causes the system to wait an extended time before deciding
that a bin is no longer needed. The incorrect detections also
leads to ambiguity in terms of which task is being performed
making the system slow in recovering after committing to
an incorrect model. In FP, the high detection score for B2

causes a bias toward task B, so the system always commits
by delivering B3, B4. Thus, when task C is actually being
performed, the human has to wait for a long period.

The low confidence parameterization LC1 for CE was pro-
duced by increasing the variance on the detection Gaussians.
Notice that this parameterization does not presume having
knowledge of the actual perturbation - in this case an actual
bias. Rather, it simply permits noisy detections. This has the
effect of increasing the detection scores when reaches into
the bins are far from the learned positions. This causes the
system’s task uncertainty to increase causing the robot to not
commit to any particular task until a later time. For instance,
when a reach is made into B2 but the calibration causes the
reach to appear near C2 as well, the robot delivers both B3

and C3. This leads to a reduced waiting time as the system
understands there is uncertainty in the sensors and reacts
by being conservative and waiting a small period instead of
making a mistake that may cause a long wait.

Mean Human Total Wait Time (s)
Reliable Calib False
Detect Error Positives

High Conf 3.0 84.1 57.0
Low Conf Calib 4.6 19.6
Low Conf FP 7.9 37.4

TABLE I: Averaged total wait times for N = 6 real-world
trials for each condition. Waiting Times and appropriate detec-
tion confidence parameterizations for Calibration Error and False-
Positive perturbations. As can be seen from the first columns when
the sensors are reliable the waiting times are lower. Also, lower
confidence parameters perform better than a high confidence model
when faced with systematic perturbations.

The low confidence LC2 settings in FP were found simply
by scaling down the raw detection score for the bin with
the glove attached. This is analogous to reducing the net
effect of that sensor. Again, the model of the uncertainty
used is not aware of the actual defect in the sensing, only
that the sensor for some particular action is “stuck” on.
This reduces the confidence in detections of B2 and thus
in the confidence that the task B is being performed. It
was noticed that in this case the system, owing to a large
number of false positives committed initially to task B.
However, it was able to recover from this mistake fairly
quick leading to the average waiting time being less than
those of the High Confidence parameterization. While such
a perturbation and confidence setting may seem contrived,
we provide this only as another example of the system being
able to easily accommodate particular sensor degradation by
a simple adjustment to the parameters of our model, not by
having an accurate assessment of the sensor failure mode.

Another observation made through these experiments is
that even though the High Confidence works best for Reliable
Detection, the other two settings are still able to perform
well in both the Reliable Detection case and the perturbed
situations. The Calibration Error situation directly mirrors
the effect seen in simulation. The False Positive perturbation
demonstrates the effect of task ambiguity on our system.
Although, the noise model in the real experiments differs
from that in simulation. We believe that the behavior of
the system in terms high and appropriately confident pa-
rameterizations with respect to the presence and absence of
systematic perturbations remain the same.

VI. DISCUSSION AND CONCLUSION

We have proposed a significant extension of our previous
work which allows us to model multi-path branching in a
probabilistic manner. By maintaining densities over multiple
branch possibilities, the robot can act in a way that does
not require it to commit to only one particular branch belief.
By encoding the task structure, the robot can continually
integrate new information and propagate it forward and
backward in time, always improving its perception of the
human’s past, current, and future states.

Furthermore, the robot can use its knowledge to be more
or less conservative when it comes to making predictions
about which actions the human will need the robot to do
next. The robot can leverage this information to optimize its



execution to reduce the number of supporting actions it must
perform and to improve collaborative task efficiency.

We have performed experiments which demonstrate that
by simply adjusting the confidence in the detectors, the sys-
tem can behave more appropriately in the face of uncertainty
and perceptual perturbations. We also show that even naive
detectors like the one used here with appropriate parameters
can handle complex perturbations.

In future work, we will perform a more rigorous real-world
evaluation of the system with more trials and novice users.
Specifically we will investigate the impact of the system
inference settings on the human agent’s sense of fluency.
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APPENDIX

The whole network is constructed recursively, the
message-passing inference is also a recursive algorithm,
consisting of 4 steps:

Inputs: (1) P (∃S): the prior probability of S happening,
(2) P (Ss|∃S): The prior probability of the start of S,
(3) P (Zend|Se,∃S): the likelihood representing the con-
straint on the end of S, and (4) the CPT P (Ae|As) and
P (ZA|As, Ae) for all primitive action A (recall that our
random variables have discrete values between 1 and T. The
special value As = Ae = −1 means ∃A, the case where the
action A happens)

Step 1, Forward phase: Given P (As, Zpre(A)|∃A), one
can compute P (Ae, Zpre(A),A|∃A) for every action A (where
Zpre(A) stands for the observation of all actions happening
before A). If A is a primitive action, then compute the
joint P (As, Ae, Zpre(A),A|∃A) and perform marginalization.
If A is defined as M AND N, then recursively compute
P (Me, Z

pre(A),M |∃M) and P (Ne, Z
pre(A),M,N |∃N) then

we have the distribution of Ae the same as Ne. On the other
hand if A is defined as M OR N, then the distribution of Ae
will be weighted combination of Me and Ne according to
equation 3.

The forward process starts with P (Ss|∃S) and recursively
compute P (As, Zpre(A)|∃A), P (Ae, Zpre(A),A|∃A) for ev-
ery action A

Step 2, Backward phase: similarly, this process
starts with P (Zend|Se,∃S) and recursively compute
P (Zpost(A)|Ae,∃A), P (ZA,post(A)|As,∃A) for every action
A (here Zpost(A) stands for observation of all actions hap-
pening after A).

Step 3, compute the posteriors: this is done simply
by multiplying the forward and backward messages, we
obtain P (As, Z|∃A) and P (Ae, Z|∃A) for every action A.
Additionally we can have P (Z) =

∑
t>0 P (Ss = t, Z)

Step 4, compute the posterior probabilities of an action
happening: starting with P (∃S|Z) = P (∃S) = 1, evaluate
P (∃A|Z) for every symbol A recursively.

Given S is defined as A AND B, then P (∃A|Z) =
P (∃B|Z) = P (∃S|Z).

Given S is defined as A OR B, one can compute (apply
similar formulas for B):

P (∃A|Z) = P (∃S|Z) P (∃A,Z|∃S)
P (∃A,Z|∃S) + P (∃B,Z|∃S)

(1)

where P (∃A,Z|∃S) can be calculated:

P (∃A,Z|∃S) = P (∃A|∃S)
∑
t>0

P (Ae = t, Z|∃A) (2)

Output: the probability of action A happening P (∃A|Z),
and if that the case, the distribution of the start and end
P (As, Z|∃A), P (Ae, Z|∃A). We can compute:

P (As|Z) = P (∃A|Z) P (As, Z|∃A)∑
t>0 P (As = t, Z|∃A)

(3)

for values between 1 and T. Note that P (As = −1|Z) =
P (!A|Z) = 1− P (∃A|Z).


