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Abstract— This paper describes a hierarchical operational
space control (OSC) method based on least square optimization
and outlines different ways to reduce the dimensionality of
the optimization vector. The framework allows to emulate
various behaviors by prioritized task-space motion, joint torque,
and contact force optimization. Moreover, a methodology is
introduced to partially excite the natural dynamics of the robot
by open-loop motor regulation while the entire behavior is
stabilized by hierarchical OSC. As a major contribution, the
presented control strategies are tested and validated in real
hardware walking, trotting, and pronking experiments using a
fully torque controllable quadrupedal robot.

I. INTRODUCTION

Recent advances in design and actuation of legged robotic
systems make sophisticated, torque controllable robots avail-
able to the research community. In contrast to traditionally
stiff and position controllable devices, these new systems
can softly (and hence safely) interact with their environment
[1]. This fundamental change opens wide opportunities to
bring novel control concepts from simulations into real
world applications. Instead of slow, static walking based
on kinematic motion planning and execution [2], these new
principles have the potential to enable agile, highly dynamic,
and versatile maneuvers. Torque controllability allows to
create sophisticated behaviors by simultaneously emulating
and optimizing desired task-space dynamics, joint torques,
or contact forces.

A particularly interesting approach to control complex,
torque controllable robotic systems is hierarchical opera-
tional space control (OSC). Thereby, the desired system
dynamics are described in task space at different points of
interest on the robot [3]. To give some examples, this can be
controlling the center of gravity (CoG) to ensure stability,
performing stepping tasks with feet, or keeping a certain
optimal posture. The robot behavior is completed by force
and torque objectives like applying a desired contact force,
improving efficiency, or avoiding slippage. Such prioritized
control formulations were first proposed in [4] in the context
of inverse kinematics control and were later generalized for
an arbitrary number of tasks [5]. Along the lines of the
seminal work on OSC by Khatib [6], his group extended the
task prioritization ideas to hierarchical OSC for floating-base
systems. They set up a framework to solve task-space inverse
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Fig. 1. StarlETH is a medium-dog-sized quadrupedal robot driven by
precisely torque controllable series elastic actuators [17].

dynamics with various priorities for both motion as well as
force/torque tasks [7] and recently released this powerful
software package for public [8]. Similar methods were also
published in [9] based on the formulation of a minimization
problem. All these hierarchical control methods guarantee
by iterative null-space projection that a task never impairs
a higher prioritized task. Other methodologies (e.g. [10])
understand the hierarchy of tasks as a set of constrained
quadratic programs (QP) and use numerical solvers [11] to
fast and robustly resolve the redundancy as it can occur
in complex robotic systems. Similar to the iterative null-
space projection, dedicated QP formulations [12] can also be
applied for inverse dynamics methods, e.g. [13], [14]. More-
over, inequality tasks [15] as required to describe position,
torque, or force limitations, can be very naturally integrated
using slack variables. This was shown in [16] for kinematic
problems and [14] later suggested to augment this method
for inverse dynamics.

Hierarchical OSC or inverse dynamics methods in general
are extremely beneficial for stabilizing a certain motion or
behavior. However, finding the appropriate target behavior
tends to be a complex problem that requires substantial
planning and/or optimization [18]. On top of this, the perfor-
mance is limited as the actuators are used in a pure feedback
manner with an additional torque control loop on joint level
that tends to actively suppress passive system dynamics.
This is particularly true for robots like StarlETH (Fig. 1,
[17]), which is based on highly compliant and precisely
torque controllable series elastic actuators (SEA) [19] in all



joints. This actuation principle uses springs to decouple the
motor from the joint and hence has the advantage that it can
increase the peak power and actuator efficiency if properly
excited [20]. In fact, such passive dynamic mechanisms are
not only exploited by several legged robots (e.g. [21], [22]),
but are also one of the main reasons of the high energetic
efficiency in human and animal locomotion [23].

The theoretical contribution of this paper is twofold. First,
we present a way of prioritized OSC based on least square
(LS) optimization with a reduced optimization vector which
(i) is generic, (ii) simple and clearly understandable, and
(iii) efficient to implement and solve. Second, we outline a
simple methodology that allows to operate certain motors
of the robot in a open-loop manner to excite the passive
system dynamics, while the remainder of the actuators is
used to stabilize the motion based on hierarchical OSC.
In contrast to many other contributions in this field, the
presented algorithms are not only tested in simulations but
additionally validated on the quadrupedal robot StarlETH
under real world conditions.

II. HIERARCHICAL OSC
A. System Dynamics

The system dynamics in terms of equations of motion
(EoM) of a floating-base system are described in the form

Mg +h+JTF, =877, (1)

with the mass matrix M (q), the force vector h(q,q) as
the sum of Coriolis, centrifugal and gravitational forces,
the ground contact forces Fg, the corresponding Jacobian
J; (q), and the actuator torque 7. Everything is expressed
as a function of the n generalized coordinates q = (qp; q.),
whereby the selection matrix S = [Omxnb Inr} separates
the n, = n — np actuated joint coordinates q, from the
npy = 6 unactuated floating-base coordinates qp. Floating
base systems interact with the environment at continuously
changing contact points. Often, and in particular for control,
this interaction is modeled as a hard contact constraint

ts =J,q+J,q=0, )

which implies that the points in contact with the environment
are not supposed to move.

B. Hierarchical OSC as LS Problem

In a nutshell, hierarchical OSC of floating base systems,
e.g. [24], can be understood as simultaneous execution of
different tasks with different priorities in compliance with the
system dynamics (1) and contact constraints (2). A generic
and well comprehensible formulation is to describe this as a
set of least squares problems

min||Ax — b||2 (3)

with the optimization variable x being a stacked vector of
joint accelerations q, joint torques 7, and contact forces F:
q
x=|T “4)
F,

1) Force Elimination: Instead of expressing the optimiza-
tion as a function of the full optimization vector (4) like in
[9], we can make use of tools that are common from inverse
dynamics control. By using projector matrices P such as
a dynamically consistent null-space projector [25], a QR
decomposition of J4 [26], or Jacobian null-space projections
[271, (1) reduces to

Pr(Mg+h)=PpS’r, )

since PrJ éT = 0. As a benefit, this decreases the optimiza-
tion dimensionality to 1 + n,.:

(4
o (T) ©)

As shown in [28], the choice of projector does not change
the controller but only the way how redundancy is resolved.

2) Torque Elimination: An even simpler approach that
is inspired by [29] is to make use of the structure of the
actuation selection matrix S”. To this end, we consider only
the unactuated part of the dynamics

P, (Mg+h+JIF,) =0, (7)

with P, = [Inb Onbxnr} and P,ST = 0. In fact, anal-
ogous to the null-space calculation of the inverse dynamics
methods, P, represents the null-space of S and reduces the

optimization vector to
_(4a
X = <Fs) . )]

Using this reduced set of optimization variables, the actuator
torque is given by

T=S(Mg+h+J]F,). 9)

Without loss of generality, this method has the benefit that all
projection matrices are known before runtime. In the follow,
we will focus on this method.

C. LS with Torque Reduced Optimization Vector

The behavior of a robotic system is determined by a set of
tasks that are simultaneously executed. With highest priority,
the system dynamics (1) has to be fulfilled:

min|[P; (Mg +h + JTF,) ||»
Ag=P. M JT], by=-P;h (10)
With second priority, the contact condition (2) is ensured:
minlldé + 3.z
A =[J, 0], by=-Jq (11)

Given the structure of Ay and Ay, it can be proven that
both tasks are exactly fulfilled, i.e. that the least squares
optimization results in zero costs. Furthermore, to create
the desired task- or operational space motion I'; ges, a set
of motion optimization tasks can be added:

m)in”f'i,des - rzHQ
(12)

Ai=[J; 0], b;=Fdes—Jiq



Moreover, contact force optimization tasks are written as
min||Wi, g (Fi des — Fi) |2

A;=[0 W,r|], b;=WgF e, (13)

with W, r being a selection matrix of the respective force
directions and F; qe the desired contact forces. As it was
shown in [30], it is possible to integrate the local tangential
planes in W g which drastically reduces the risk of slippage
in uneven ground. Finally, using (9), torque optimization
tasks are stated as

m}ZHHWi,T (Ti,des - Ti) ”2

Ai = Wi,‘rS [M JZ] y bz = Wi,T (Ti,des - Sh) 7(14)

with W . being the torque weighting and selection matrix
and T; g4es the desired torque vector for the corresponding
directions.

D. Solving a Prioritized LS Problem

A set of least squares problems in the form of (3) with
different priorities can be solved by iterative null-space
projection. As already illustrated by [5] in a similar manner,
the requirement that a task is not allowed to influence any
task with higher priority can be formulated by defining x as
a sum of task specific x; pre-multiplied with the null-space
projection matrix IN; of higher prioritized tasks:

nr
X = E kak~
k=1

The null-space projector N; is defined as N; =
N ([Af AiT_l]T) with N7 = I and the sufficient
property

15)

AN; =0 Vi < j. (16)
It can be computed using the pseudo inverse as outlined in
e.g. [5], [25] or by a singular value decomposition (SVD)
[31] which shows better numerical stability. Using property
(16), the prioritized minimization problem (3) can be solved
for each task individually by inserting (15) and solving for

X;:

nr
Ax—b; = A Z Nixi — b, (17)
k=1
i—1
X, = (AZNZ)Jr (bZ — A, ZNka> . (18)
k=1

It can be analytically proven that (i) tasks with higher priority
are not influenced by tasks with lower priority and (ii)
that the solution is globally optimal. For the corresponding
proofs, the interested reader is referred to [31]. Furthermore,
as long as the rows of A;N; are linearly independent, the
task is exactly fulfilled (A;x = b;). To ensure numerical
robustness also in case A;IN; being rank deficient, we use a
SVD pseudo inversion [32].

E. Inequality Constraints

To describe the behavior of complex legged robots, it is
often required to additionally integrate inequality constraints

in the proposed control framework, e.g. to handle joint
angle limitation or motor torque saturation on task-space
level [15], [13]. The simplest possibility is to activate the
corresponding inequality task as equality tasks as soon as
the inequality constraint is violated. By assigning a higher
priority than to all other tasks, we can ensure that (in
case there is a feasible solution to the problem) the actual
solution fulfills the inequality constraint. However, to handle
multiple independent inequality tasks as well as to activate
and deactivate them, it is required to always iterate through
all possible combinations of active and inactive constraints,
which can become computationally intensive. While this
approach works well for our application with a rather low
number of inequality constraints, a more elaborated and
natural method was presented in [16]. Using a constrained
quadratic programming (QP) formulation, they propose to
integrate the inequality tasks with slack variables and to solve
the problem using numerical QP solvers.

III. EXPLOITING PASSIVE DYNAMICS

As outlined in the introduction, it can be required that
certain actuators of the robot, indicated by the selection ma-
trix Spp, are operated in an open-loop manner to optimally
excite the passive system dynamics

Tpp = SppST, (20)

while the remainder of the actuators is dedicated to stabi-
lize the target behavior based on the outlined hierarchical
OSC. Such combined control problem can be solved by
considering the passive dynamics as measurable system
disturbance Tpp = TpPD,meas, Which is only possible
since torque controllable robots like StarlETH feature precise
joint torque sensing capabilities. In particular for SEAs, the
natural joint spring dynamics during stance has typically a
frequency clearly below 10 Hz, which is significantly lower
than the sampling respectively control frequency (400 Hz for
StarlETH). Hence, these torque measurements can be directly
integrated as a single task of high priority (right after the
system dynamics and contact constraints)

Ay =SppS M JT], by =7ppmeas—SrpSh, 21)

implying that the joint torque remains constant over two
sampling steps.

IV. RESULTS

In the first set of experiments, the applicability and
robustness of the proposed prioritized LS optimization is
demonstrated in static and dynamic gaits. In the second set,
the exploitation of passive dynamics is evaluated in highly
dynamic pronking maneuvers and compared to pure feedback
control. All experiments are first tested in simulation and
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Fig. 2. The present control strategy was tested in three gaits.

subsequently validated in hardware experiments with the
freely moving robot being operated on a treadmill using pure
onboard intelligence (no external motion capture system). All
kinematic and dynamic system properties are take from the
CAD model and the OSC gains were tuned by hand.

A. Static Walking

For static gaits (Fig. 2(a)), the robot has at least three
legs in simultaneous ground contact. This allows to fully
define the motion of the main body. In addition to setting
the priority of the system dynamics (1) and contact constraint
(2) consistency to the highest level, regulation of the body
position and orientation is chosen as less important tasks.
The body position is shifted between the successive support
triangles to maintain stability while walking and the body
orientation is kept constant.

Since at least three legs are in simultaneous ground
contact, the system has internal contact directions (red arrows
in Fig. 2(a)) that allow to change the contact force or joint
torque distribution without influencing the motion. Hence,
as task with lowest priority we choose either to optimize
for efficiency or for robustness against slippage. Since the
energy consumption of electric motors is often quantified
by the integral over current square [33], efficiency can be
optimized by torque minimization (W, = I, T4es = 0).
(Risk of) slippage on the other side is mainly depending
on the local tangential forces and can hence be lowered by
a force minimization task that selects the local tangential
forces by W . For flat ground, W can be simply chosen
as unitary matrix, which additionally evenly distributes the
vertical load.

We conducted two walking sequences over four full gait
cycles with either energy (Fig. 3, black) or risk of slippage
minimization (Fig. 3, red). Between this two experiments,
the average absolute difference of the main body position
was only 3.6mm and the body orientation in roll, pitch,
and yaw diverged less than 0.5 °. Despite the same motion,
the joint torque (Figs. 3(a) and 3(b)) and tangential contact
forces (Fig. 3(c)) show a largely different distribution. In
fact, minimizing the torques (black) yields an overall energy

consumption £ = [ 72dt of 15% less than with the
tangential force minimization (red). In return, the risk of
slippage increases from i = mean FF tan_ ) = (.046 to
w=0.2.

B. Dynamic Trotting

For dynamic trotting gaits (Fig. 2(b)), the robot con-
tinuously alternates the diagonal pairs of supporting legs.

LF Hip Load LF Knee Load

tangential force

torque [Nm]
torque [Nm]

2 4 6

time [s] time [s] time [s]

(a) Hip torque (b) Knee torque (c) Tangential force

Fig. 3. Efficiency (black) or risk of slippage (red) optimization results
in different joint torque (a,b) and contact force (c) distributions while the
motion remains equal.

Thereby, the robot is statically unstable, as the angular mo-
mentum around the line of support cannot be changed (blue
arrow). To control respectively stabilize this gait, we use the
following tasks with decreasing priority: system dynamics
(1), contact constraint (2), body orientation, body height,
horizontal body velocity, and contact force alignment. Due to
the system underactuation, the horizontal body velocity task
is only fulfilled as well as possible in a LS sense. However,
the gait can still be stabilized even under significant external
disturbances by appropriately choosing the stepping location
[34].

This trotting gait was successfully tested with different
gait parameters like duty cycle or vertical oscillation of the
main body but with the same control structure and gains. The
picture series in Fig. 4 illustrates a trotting example on the
treadmill with a speed of about 0.5 Ws. Although robustness
against disturbances is hard to quantify, it was experimentally
validated by external pulls and pushes or unperceived ground
obstacles.

C. Pronking while Exploiting Passive Dynamics

Pronking is a dynamic gait with all four legs in synchro-
nized gait phase and a substantial flight phase (Fig. 2(c)).
In the present experiment, the robot achieves a jumping
height (vertical distance between highest point in flight curve
and height at lift-off) of about 0.11m at a duty factor
(relative time in ground contact) of about 0.5 (Fig. 5). In
contrast to the two previous gaits, the main body is not kept
at constant height but undergoes significant oscillations in
vertical direction. Hence, to make such a gait energetically
efficient, it is important to optimally excite the natural spring
dynamics in the SEA joints which mostly contribute the
vertical oscillation dynamics. Similarly to the early research
by Raibert [35] or single legged hopping [20], the knee
joints are solely used as thrust source by extending the
knee motor with constant speed directly after landing. In the
first phase after touchdown, the joint springs substantially
deflect and hence store kinetic energy from the downward
motion in potential spring energy. In the second phase after
mid-stance, the entire body is accelerated upwards until
liftoff. The task decomposition for the controller was chosen
as follows with decreasing priority: system dynamics (1),
contact constraint (2), passive dynamics in the knee joint
(21), body orientation, horizontal body velocity, and contact
force alignment. Importantly, the body height is not actively
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Fig. 6. Position and power courses in the left front knee joint during
pronking simulation (a,d) and experiments exploiting the passive dynamics
(b,e) and with pure feedback control (c,f). By exploiting the passive
dynamics (a,c) the motor travel distance, motor energy, and peak power
can be reduced while the peak power at the joint is increased.

regulated as the vertical oscillatory motion evolves from the
passive knee joint dynamics.

Figure 6 unveils some interesting findings when comparing
the presented algorithm used to excite passive dynamics in
simulation (Figs. 6(a) and 6(d)) and experiment (Figs. 6(b)
and 6(e)) with a classical control approach where the motion
is first optimized in simulation and then executed with pure
feedback control on the system (Figs. 6(c) and 6(f), [18]). In
the idealized simulation (Fig. 6(a)), the motor (red) expands
with constant velocity while the knee (black) undergoes a

A full gait cycle of pronking with a height of 0.11 m and a duty factor of about 0.56.

large motion with a deceleration phase until mid-stance and
a slightly longer acceleration phase before lift-off. Expansion
with constant velocity is not possible in the real experiments
(Fig. 6(b)) due to saturation effects during mid-stance phase,
which leads to a motor deceleration and a longer contact time
with larger joint deflections. The classical control approach
of following a desired main body trajectory (optimized in
simulation) using pure feedback control (Fig. 6(b)) yields an
even longer stance duration, whereby the motor velocity gets
negative during mid-stance phase.

Active excitation of the passive spring dynamics has a
beneficial impact on the power curve as the motor in Fig. 6(e)
produces exclusively positive power throughout the entire
stance phase while the joint first decelerates (energy is
stored in the spring) and then re-accelerates again. In fact,
the relation between the positive power the motor produces
and the positive power the joint actually needs to maintain
the pronking gait is only about 58%. The rest is passively
stored and released by the series elastic actuators. This is
different for the pure feedback controller (Fig. 6(f)). The
motor actively breaks and produces almost the same amount
of energy as required at the joint (98%). The second benefit
can be seen in the peak power of both methods. When
exploiting the passive dynamics, the motor peak power is
below 50 W, while the closed loop controller requires almost
80 W. Moreover, we can identify in (Fig. 6(e)) a clear peak
power amplification from the motor to the joint by more than
a factor 2.

V. CONCLUSION

The contribution of this paper is two-pronged. First, we
presented a hierarchical OSC method based on prioritized
least squares optimization. Taking use of the special structure
of the equations of motion, all tasks are expressed with a
reduced optimization vector. Such control problem can be
solved by iterative null-space projection or a numerical QP
solver. The functionality and applicability of this approach
was successfully evaluated in static walking and dynamic
trotting experiments using the quadrupedal robot StarlETH
[17]. Additionally to robust locomotion, it was demonstrated



how the energetic efficiency and risk against slippage can be
improved by optimally shaping the internal contact forces —
without changing the overall motion.

Second, we outlined a simple method that allows to excite
the passive dynamics of distinct actuators while the motion
is stabilized by hierarchical OSC. We employed this strategy
in a pronking gait with a substantial flying phase. The
generated excitation and motion shows major advantages in
comparison to a traditional feedback control approach. The
energy recuperation can be improved such that 42% of the
energy turnover during stance is passively recovered by the
series elasticity in the joints. In addition, the peak power at
the motor is reduced by about 40% and the peak power at
the joint is almost tripled. Astonishingly, large coincidence
can be found when comparing the resulting power and
position curves during stance phase with the observation in
the muscular-tendon system of humans and animals during
steady state running [36].

Going beyond the presented results, it is our goal to apply
this hierarchical OSC controller to further gaits and combine
it with the optimization framework presented in [18]. With
this, we expect to excite and stabilize locomotion patterns
that are impossible to achieve with pure feedback or pure
open-loop control.
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