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Abstract— We introduce a six-actuator robotic joint
mechanism with biarticular coupling inspired by the
human limb which neither requires pneumatic artifi-
cial muscles nor tendon coupling. The actuator can
independently change monoarticular and biarticular
stiffness as well as both joint positions. We model and
analyse the actuator with respect to stiffness variabil-
ity in comparison with an actuator without biarticular
coupling. We demonstrate that the biarticular cou-
pling considerably extends the range of stiffness with
an 70-fold improvement in versatility, in particular
with respect to the end-point Cartesian stiffness shape
and orientation. We suggest using Cartesian stiffness
isotropy as an optimisation criterion for future under-
actuated versions.

I. INTRODUCTION

Variable Stiffness Actuators (VSAs) are actively being
researched because of their ability to absorb energy
during highly dynamic impacts and their possibility to
temporarily store elastic energy [1], [2], [3], [4], [5],
[6], [7]. Furthermore, humans modulate impedance in
order to meet accuracy demands during goal-directed
arm movements [8]. However, all existing tendon-free
VSAs are designed such that they are only able to
change stiffness and position of one joint (monoarticular
(mon.art.) actuators). In biology, however, one finds
many multi-articulated skeletal muscles, crossing more
than one joint and thus changing both stiffness and
position of each joint when activated. A special case of
these groups of muscles are biarticular (biart.) muscles,
with the prominent examples biceps and triceps brachii,
coupling shoulder and elbow. The role of these muscles
is as follows:

o morphing endpoint stiffness—In [9, pp. 361-366]
English et al. analysed the influence of biart. muscles
based on a musculo-skeletal model of the human
arm. They revealed that the loss of biart. muscles
leads to a more elongated stiffness ellipse (strong
preferred displacement direction), a reduced maxi-
mum stiffness, a reduced possible orientation range
and finally the result that stiffness produced by
double-joint muscles cannot be replaced by using
only single-joint stiffness.

o stabilising the limb—Mclntyre et al. discussed
in [10] the role of destabilising forces at the endpoint
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and their overall influence on joint torques. The
amount of joint torque produced, e.g., in the elbow
can affect the required stiffness at the shoulder.
“... With multijoint muscles present, each muscle
stiffness meed be a function only of its own force
output in order to maintain overall limb stability.
The multiarticular muscles provide the necessary
coupling between joints. This is an example of a
mechanical design simplifying the control problem.”
The self-stabilising characteristics of biart. coupling
were also shown by Iida et al. [11], for both running
and walking gaits.

o independent control of force and position—
Kumamoto et al. showed [12] that biart. muscles
allow for an independent control of endpoint force
and position. Furthermore, they found that these
muscles allow for an independent control of endpoint
stiffness and output force direction.

e open-loop control of position—In [13] Taub et al.
showed that monkeys with deafferent limbs were
able to reach visual targets with and without vi-
sual feedback of limbs position. Consequently, Ku-
mamoto et al. concluded [14] that biart. muscles
allow for precise, smooth and rapid movement pat-
terns of the endpoint without the use of any po-
sitional feedback. They concluded that “...the ar-
bitrary control of the output force direction, and
elastic and viscous ellipses . .. can move the endpoint
precisely to any desired target point without use of a
positional feedback signal, that is a possibility of an
open loop control.”

o transferring energy—biart. muscles provide the ca-
pability to transport the mechanical output mainly
produced by mon.art. muscles to joints where it can
effectively contribute to the desired aim of move-
ment [15]. E.g., during running, instead of braking
the knee using mon.art. muscles and dissipating the
energy in form of heat, the biart. muscles provide
the possibility to optimally transfer the energy to
the hip in order to maintain the forward motion.

In this paper we will present and analyse a two-joint
planar VSA with and without biart. coupling based
on the Bidirectional Antagonism with Variable Stiffness
(BAVS). The actuator BAVS, which is neither tendon-
driven (possible drawback: tendon creeping) nor based on
artificial pneumatic muscles (possible drawback: highly
nonlinear), was introduced in [16]. The focus is to inves-
tigate the ability to adapt passive (intrinsic) endpoint



stiffness at zero net force. We will compare and discuss
these two different types of VSA systems in a simulation
study in order to show what will be lost and what can
be gained in a system with biart. coupling. Therefore
we will set out to investigate the full ability to change
passive stiffness and propose a method that allows us to
do so.

II. RELATED WORK

The use of biarticularity in robotic design is nothing
new. Different implementations have been proposed: ei-
ther by tendon-driven actuation with base-fixed motors
[11], [17], [18], [19], by pneumatic artificial muscles [12],
[20], [21], by planetary gears [22], [23], [24], by pul-
leys [25], or by directly coupling a linear motor with the
end effector [26]. However, even if some of these actuators
are able to change their active (controlled) stiffness (e.g.,
impedance control [26] or stiffness control for disturbance
rejection [23], [25]), not all of these actuators are designed
to change their passive (intrinsic) stiffness [19], [22], [23],
[24], [25], [26] even when actuated by six actuators for
two joints [18].

One of the main objectives of many studies is to
show what is gained with biart. coupling with respect to
endpoint force production [18], [20], [24], [25], [27]. It was
shown that with biart. coupling the shape of the maxi-
mum output force distribution at the endpoint becomes
more homogeneous and changes from quadrangular to
hexagonal.

A view also concentrated on the ability to change pas-
sive stiffness [12], [14], [17], [28]. In [17] Kadota et al. built
a tendon-based robotic platform with biart. coupling
called HIPRO. HIPRO consists of six actuators arranged
in an antagonistic manner with nonlinear elastic elements
for a planar robotic system with two DoF. It was shown
that the system can vary the position of the endpoint
with negligible effects on the orientation of the Cartesian
endpoint stiffness ellipse’.

In [12] and [14], Kumamoto et al. investigated the ca-
pabilities of a robotic planar arm with two DoF actuated
by six pneumatic artificial muscles. As mentioned before
the authors showed that a biart. coupling will positively
contribute to the compliant properties and allow for
independent control of either endpoint position and force
or endpoint force direction and stiffness. Furthermore it
was shown that this coupling will lead to smooth, fine,
and precise movement patterns of the endpoint.

Another study which concentrates on stiffness ellipse
control using VSA mechanisms with biart. coupling was
presented by Kashiwagi et al. [28]. They proposed a con-
trol method called hybrid stiffness ellipse control which
merges mechanical and controlled stiffness of a tendon-
based two-DoF planar robotic actuator with six muscle-
like VSA and ideal exponential elastic elements. Biart.
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coupling was provided in order to be able to change all
elements of the mechanical joint stiffness matrix. With
simulated perturbations they showed that their control
method is always able to adapt to a desired control
stiffness, while the initial response is dominated by the
adjusted intrinsic mechanical stiffness.

III. TyPES
A. Principle of BAVS

Both types of VSAs that we analyse in this paper have
in common that they are based on the principle that
we call Bidirectional Antagonism with Variable Stiff-
ness (BAVS) [16], which is implemented in the forearm
rotation and both wrist joints of the DLR Hand-Arm
System [6]. Fig. 1 (top) shows a simplified version, in
which the motors can be turned around their motor axis
instead of being fixed to a base frame. The two motors
are coupled with the base via nonlinear elastic elements.
Both motors can both push and pull at the drive side of
the joint and assist each other, for which reason we use
the term helping antagonism. The position of the joint

drive side
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Fig. 1. Principle of Bidirectional Antagonism with Variable
Stiffness—The upper figure shows a simplified representation of
BAVS, the lower figure the version of a double spring solution with
symmetric cam discs. Note that for reasons of presentability the
two cam discs are depicted orthogonal to the image plane.

can be changed by identical motor movement, while its
stiffness is changed by an opposed motor movement. Its
realisation as it is implemented in the DLR Hand-Arm
System is shown in Fig. 1 (bottom). The two nonlinear
elastic elements are realised using a combination of a
linear spring and a cam disc with a nonlinear relation
between its rotation and the resulting spring deflection.
In order to fix the motors to the base frame and to use
their full power, a Harmonic Drive is used with a bedded
circular spline, which is coupled to the nonlinear elastic
element (arrangement of the harmonic drive similar to a
planetary gear).

In [16] we also introduced different variations of BAVS
as they are a double/single spring solution and asymmet-
ric/symmetric cam disc shape. We showed that asym-
metric cam disc shape and a double spring solution as
it is implemented in the forearm-rotation of the DLR
Hand-Arm System (see Fig. 2) has several advantages in



comparison to single spring solution with symmetric cam
disc shape.
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Fig. 2. Bidirectional Antagonism with Variable Stiffness as it is

implemented in the forearm rotation of the DLR Hand-Arm System
with asymmetric cam disc shape and double spring solution.

The joint stiffness r can be calculated by

or
r= aiqa (1)

where 7 and ¢ are joint torque and its externally incurred
deflection. The torque depends on the spring stiffness
cp = 22.1N/mm, the moment arm of the cam disc
Ip = 21.65mm and the deflection of the springs caused
by the cam disc shape y; /2 and its slope 91/2:

7(0,q) = crlp (1yy + y2ys) (2)
n=Fflo+q y2=f(c—q).

The symmetric cam disc shape is modelled by

yipp(o£q) =R—/R2—(rp(c£q)2+y0, (3)

where R = 8.2mm is the radius of the symmetric cam
disc, o the pretension of the joint in ° and yg = 2 mm the
initial pretension of the spring. The maximum deflection
of each cam disc is limited by £18° being the maximum
deflection of the joint around an equilibrium position.

B. mon.art. VSA system

The mon.art. VSA system that we analyse here is a
planar robotic system with two DoF', elbow and shoulder
joint, which joints are based on the BAVS principle ex-
plained above. The system has no biart. coupling. Unlike
the implementation in the DLR Hand-Arm System (see
Fig. 2), a double-spring solution with symmetric cam
disc shape is chosen for both joints, thus simplifying
the comparability for the planned analysis. In this joint
configuration the maximum stall torque of a single joint
is £8 Nm and the maximum joint stiffness 127.6 Nm/rad.

C. biart. VSA system

The biart. VSA system is in terms of the mon.art.
joints identical to the mon.art. system and basically
consists of two BAVS joints with a double-spring solution
and symmetric cam discs. New is its biart. coupling
(see red dashed regions in Fig. 3). The two joints are
coupled using two series of nonlinear elastic elements
and rotatory motors. The biart. stiffness is changed by
opposed movement of the biart. coupling motors 3 and 4.
In contrast to, e.g., the human legs, this configuration is
able to adjust both joint positions and mon.art. as well
as biart. joint stiffnesses independently. This is realised
through the cam disc—roller combination—contrary to
the mon.art. BAVS—by rotating about the motor axis
without changing their relative orientations. Thus, by
identical movements of motors 3 and 4 the joint positions
can be changed without changing the biart. or mon.art.
stiffnesses.

BAVS implementation
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Fig. 3. A biarticular VSA system with six actuators and two
DoF—The two drive sides of the arm are at the bottom and top
of each figure. Imagine the depicted base as the upper arm of an
elbow-shoulder configuration.

In order to compare the mon.art. and biart. VSA sys-
tems in terms of stiffness adaptability equally, identical
components (same motors, springs and cam discs) as for
the mon.art. joints are used: the motor is fixed to the
frame using a Harmonic Drive with a bedded circular
spline; the nonlinear elastic element is again realised
by a combination of symmetric cam discs and linear
springs. The symmetric cam disc shape used is indeed
not the optimal configuration presented in [16]. But if
an asymmetric cam disc shape would be used, different
behaviour depending on ratios of pretension of biart.



and mon.art. actuators could emerge. Thus it would be
difficult to keep the joint position constant during co-
contraction of the biart. elastic elements.

IV. ANALYSIS

In this section we will model the two systems and
compare them with respect to adjustable static stiffness;
no effects of damping and inertia are considered. Even
if the difference between the two mechanisms would be
more obvious in joint space because the biart. VSA is also
able to adjust off-diagonal joint stiffness terms, we will
compare them in Cartesian space. We think that this way
of comparison is more intuitive due to its comparability
to human measurements, e.g. [29]. The analysis of the
different types is done by modelling a planar two-DoF
arm systems with shoulder (S) and elbow (E) joints (see
Fig. 4).

Orient

biarticular

Fig. 4. Simplified planar arm model consisting of the two joints
shoulder and elbow driven by six actuators, four monoarticular
and two biarticular muscles. The two compared systems are either
equipped or not with a biart. VSA coupling. Furthermore, the
orientation Korient of the considered Cartesian stiffness ellipse and
its eigenvalues Amin and Amax are depicted.

A. Model

The torque at the shoulder 7¢ and elbow 7g joint can
be calculated by

TS/E = TS/Emon T Thiart (4)

where 75/, . is the torque produced by the mon.art.
and Thiapy the torque produced by the biart. actuators
at the shoulder and elbow joint. As we discussed in
Section III the torque produced by a BAVS with a double
spring solution can be calculated by

TSumon (Tms45) = CF D (Y8,01Y5,., + YSm2¥5,.2)
TBuon (Tmi 4B) = CF D (VB YE,, T YEmaYE,,) s (5)
where 0,4, are the pretension and ¢s/p the external

deflections of the shoulder and elbow joint. y,,, and y.,, are
the deflections of the springs and the correspondent cam

disc slope (see Fig. 3). The torque of the biart. actuators
can be derived by

Thiart (06, 45, qE) = CF ID (ysbyiqb + yEby/Eb) ,  (6)

and depends on the biart. pretension o3, and the external
joint deflections gg, .

In general, the joint stiffness matrix can be calculated
by R = 90T/0Q € R™ " where T and @ are the
joint torques and the external joint deflections; n the
number of joints. Because the stiffness of each joint
can be changed, R is a square matrix. For the systems
considered here this matrix equals

R {Tss

T'SE
TES

TEE

Tbiart ) (7)

T Smon T Thiart
T Emon T Tbiart

Tbiart

The first index of the scalar entries of (7) indicates the
entry of T, the second the entry of ) for the partial
differentiation (cf. [29]). Note that for the mon.art. VSA
no joint coupling is provided and thus the joint stiffness
has no off-diagonal terms rgg = rgg = 0. If stiffness
is computed around an equilibrium position, a mapping
between joint and Cartesian stiffness can be achieved by

R=J(@Q)"KJQ), (8)

where J(Q) is the Jacobian, which is a 2 x 2 matrix for
the hand-arm model [30]. Both stiffness matrices R and
K are symmetric because the two systems are modelled
as conservative systems. Eq. (8) can be rewritten as

K=J@Q) TRJQ)™ (9)

Because J(Q) is square for the considered model its
inverse can be computed. The Jacobian is obtained by

—lgss —lgsse —lESsE
J =
@) lscs +1lgcse  lpcske
ss =sings ssp = sin(gs + qg) (10)
cs =cosqs csp = cos(qs + qg),

and contains the information about the geometrical re-
lations between the joints. qg and qg are the angles
describing the position of the shoulder and elbow, lg
and [g are the link length of the upper and lower arm,
respectively.

B. Comparison of the eigenvalues in Cartesian space

It is obvious that the biart. actuator can reach larger
stiffness ranges than the mon.art. VSA, because the
biart. coupling increases off-diagonal as well as diagonal
terms of the joint stiffness matrix R (see Eq. (4)—(7)).
In order to show what can be gained with respect to the
biart. coupling rather than showing how more actuators
will increase the stiffness we limited the compared Carte-
sian stiffness space to the maximum,/ minimum range
that the mon.art. actuator is able to reach (4 < K, <

99N/m, —99 < K,y < —4N/m and 20 < K, <
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Comparison of the Cartesian stiffness K that can be reached by the two systems and their difference—The eigenvalues of the

(symmetric) Cartesian stiffness matrix and the orientation of the corresponding eigenvector are depicted. In Fig. 5(a) and 5(c) the larger
eigenvalue Amax is depicted in green, the small eigenvalue Amax in blue in form of a distance to the centre of the polar plot. The radius
of the polar plot is normalized to range between 0 and 1 where a radius of 1 corresponds to the biggest Amax. The polar angle of each
eigenvalue corresponds to the respective orientation. The darker a colour of a segment the more often this eigenvalue was reached. The
black line in each plot corresponds to the convex hull. The comparison in Fig. 5(b) shows in green and blue, which points can only be
reached by the biart. system, and in red which only the mon.art. system can reach. The mon.art. VSA can reach 0.2% of the 106 Cartesian
stiffness combinations, whereas the biart. VSA reaches 14.5%. The area of the convex hull enclosing the larger eigenvalue of the biart.
system is 1.6 times as large; the area of the convex hull enclosing the smaller eigenvalue twice as large as the mon.art. system.

498 N/m). Thus we varied the Cartesian stiffness matrix
K at the end effector within the achievable range of
Cartesian stiffness the mon.art. actuator is able to reach
instead of varying stiffness in joint space. In order to keep
the analysis simple, we make following restrictions:

e The link lengths g = lp =1 = 0.8 m are identical.

e As it can be seen from Eq. (9) and (10), Cartesian
stiffness K can be adjusted by changing the joint
position and keeping joint stiffness R constant. Be-
cause the suggested VSA systems are able to adjust
their joint stiffness independent from joint position
we will compare them in a central position with a
shoulder angle fixed at 45° and an elbow angle of
90°.

o We will only allow changes in stiffness caused by co-
contraction which can be preset by the VSA around
an equilibrium position without any interaction with
the environment. Changes in stiffness that will lead
to a change in joint position or emerge from an ex-
ternal deflection of the joints will not be considered.

e Only co-contraction of respective antagonistic pairs
will be allowed for the biart. VSA. Thus, it will not
be possible to contract a biart. actuator against a
mon.art. one and vice versa.

Co-contraction can be achieved by pretensioning the
two mon.art. actuators o,,, and o,,, and for the biart.
VSA additionally by pretensioning the biart. coupling oy.
Because within this work we assume only stiffness around
an equilibrium position without any external deflection,
Egs. (3), (5) and (6) only depend on the mentioned
pretensions.

The (symmetric) Cartesian stiffness matrix K was
computed for 106 different configurations. These Carte-

sian stiffnesses were transformed to joint space and it
was checked whether a corresponding set of combinations
of mon.art. and biart. cam disc pretensions within the
maximum deflection of the cam discs could be found. The
transformation of the set into joint space will typically
lead to non-zero off-diagonal joint stiffness terms. Since
the mon.art. VSA can only vary diagonal joint stiffness
terms of R and a computation of R out of varying K will
almost never lead to zero off-diagonal terms, we limited
them to a corresponding maximum pretension of 0.1° for
the mon.art. VSA. This corresponds approximately to
the accuracy within which the cam discs can be adjusted.
If we would allow only exactly zero off-diagonal terms
for the mon.art. system, the capability of this system
would be disproportionately high underestimated. Note
that, in a real system as well, e.g. due to static friction,
the computation of R out of a measured K of a system
without biart. coupling would most likely never lead to
zero off-diagonal terms of R.

Following the representation in [30], we depict the
distributions of Cartesian stiffnesses that can be reached
by the two systems in Fig. 5. The mon.art. system is
able to reach 0.2%, the biart. VSA 14.5% of the 10°
Cartesian stiffness combinations. Fig. 5(b) shows the
difference between the compared systems. It shows that
the biart. coupling allows the system to reach many more
eigenvalues of K than just the mon.art. system is capable
of?. However, there are also sections which can only be
reached by the mon.art. VSA. We will examine this more

2Note that, if we will use the same representation to depict the
stiffness R in joint space, the mon.art. system will only be able to
reach values along the horizontal and vertical axis, while the biart.
system will as well reach in-between stiffness combinations.



closely below.

C. Comparison of shape and orientation of endpoint
stiffness

Hogan introduced in [29] a singular value decomposi-
tion of the endpoint stiffness matrix K to visualise the
stiffness as an ellipse with its attributes size, shape and
orientation as a way of graphical representation of the
stiffness configuration at the endpoint. The characteris-
tics shape and orientation can be considered as criteria
of quality while the size is a criterion of quantity. Since it
is quite obvious that the biart. VSA can generate higher
stiffnesses with two more built-in springs, the focus in
this paper is more on the quality rather than the quantity
of stiffness that can be obtained by biart. springs.

The shape of the stiffness ellipse is computed by

; (11)

and is a characterisation of isotropy of the endpoint
stiffness. Apax/min are the eigenvalues and denotes the
stiffness in the direction of the major and minor axis
of the stiffness ellipse. Kehape 0of 1 represents an ideal
isotropic endpoint stiffness, i.e., the endpoint stiffness
can be represented by a circle. It means that a force
perturbing the endpoint in any direction would lead to an
unique and proportional restoring force and displacement
in exactly the opposite direction. Thus, it is reasonable to
conclude that a Kghape of 1 is a desirable property and
can be used as a metric for stability, e.g., for holding
a position in unstable force fields or in a situation of
an expected load with unknown impact direction [31].
As Hogan discussed in [29] a mechanism without biart.
coupling will never be able to achieve ideal isotropy at
the endpoint, and with biart. coupling only in a limited
space of an elbow angle larger than 90° and less than
180°. Using equations (8) and (10) and the condition for
isotropy at the endpoint [29]

-k 0
=0 4
it follows that the mechanism must hold the following
condition in joint space:

)\min

Amax
Kshape = ‘

(12)

_,[ Tss Tss/2 ]
o 7“55/2 7“55/(2+2COS(QE)) ’

to achieve isotropy at the end effector. With (7) it follows
that rpiart = 2rg,,,,- The condition shows that the joint
stiffness of the biart. coupling must be twice the stiffness
of the mon.art. shoulder actuator to achieve isotropy
at the endpoint. This condition is somewhat similar to
the fact that the biart. muscles in the human arm are
much stronger compared to the mon.art. muscles. On the
other hand, a large Kghape can be desirable in reaching
movements with a perpendicular instable force field [32],
where high stiffness is required in the direction of the
unstable force field and low stiffness in the direction of

(13)
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Fig. 6. Histogram of occurrences of Kgpape for the reached K of
the 108 Cartesian stiffness combinations.

the movement in order to stay on the track. All in all,
it can be concluded that a wide range for Kgnape with a
minimum close to 1 is desirable.

In Fig. 6 the distribution of Kghape of the reachable
Cartesian stiffness combinations for both actuator types
is depicted in form of a histogram showing how often
which Kgnape can be reached by either mechanism. It
shows that the minimum Kgnape that can be reached by
the mechanism with biart. coupling is 4.2 and without
5.8. Additionally, the mechanism with biart. coupling
can reach values up to 29.0 while the mon.art. system
has an upper limit of 25.1. The minimum Kgnape of the
mon.art. VSA is also its most often occurring Kghape and
one of the most occurring values of the biart. VSA and
belong to Cartesian stiffness combinations, where a large
mon.art. shoulder joint stiffness rgg and a small elbow
joint stiffness rpp is required. However, even if biart.
coupling is provided a Kgnape of 1 cannot be reached.
Further analysis showed that the minimum Kgpape of the
biart. VSA remains the same even if the Cartesian space
is not limited to the mon.art. stiffness. Nevertheless, in
the proposed biart. mechanism we want to be able to
use the same springs for both, for the mon.art. actuators
as well as for the biart., leading to a minimum Kgpape
unequal to 1.

The orientation of the stiffness ellipses can be calcu-
lated using the definition of the dot product in Euclidean

space
Korient = arccos (<(1)) . v) ,

where v denotes the normalized eigenvector correspond-
ing t0 Amax and Kopient is the angle between the positive
z-axis and v (see Fig. 4). Fig. 7 shows the distribution of
Korieny that could be reached by the two mechanisms
(similar to Fig. 6). It shows that the biart. system
covers a range of about 39.2° and the mon.art. system
of about 36.2° of different K, iens. However, in contrast

(14)
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Fig. 7. Histogram of occurrence of Korient for the reached K of
the 108 Cartesian stiffness combinations.

t0 Kghape, there are a few orientations up to 2.1° higher
than the largest orientations of the biart. VSA which
appear either generally or more frequently be used by
the mon.art. actuator. So why does the biart. VSA, which
has the same mon.art. properties, but additionally biart.
coupling, not reach these orientations? This is caused
by the pretension yg of the biart. springs, similar to
the mon.art. springs. This pretension causes a positive
shift in the stiffness rgs and rgp in a way that the
difference between rgs and rpp decreases. As a result
the orientation of the stiffness ellipse changes. Thus, if
it is favoured to reach also the higher orientations, the
pretension of the biart. springs had to be reduced, but
it has to be considered that these larger orientations
usually belong to a high Kghape (extremely elongated
stiffness ellipse).

V. DISCUSSION AND CONCLUSION

In this work we proposed a mechanism of a VSA with
biart. coupling. As the biart. mechanism is based on
BAVS principle, which we introduced in [16], the system
is able to independently change endpoint stiffness and
position. Furthermore, a change in mon.art. stiffness will
not lead to a change in biart. stiffness and vice versa,
thus giving more control stability.

In our simulation study we investigated how a system
with vs. without biart. coupling can reach a range of
Cartesian endpoint stiffnesses. To this end, we used a
method to plot a multiple set of stiffness configurations
described in [30] to compare different planar VSA mech-
anisms. With respect to stiffness reachability, we found
that biart. coupling considerably extends the system
capabilities by a 70-fold improvement in versatility and
can therefore be strongly favoured over mon.art. ones.

The range of orientations and shapes of Cartesian
endpoint stiffness ellipses that the proposed biart. ac-
tuator can reach is slightly larger than that of the purely

mon.art. system. Additionally, with 39.2° it is larger
than found in humans studies at 30° [33], [34], [35].
Interestingly, we found that the mon.art. mechanism
reaches stiffness combinations that the biart. VSA cannot
reach; this can be explained by the pretension of the
biart. springs.

It has to be acknowledged that more complex prin-
ciples can enrich biart. manipulator behaviour. For in-
stance, allowing to preload the biart. actuator against a
mon.art. one, leading to non-symmetric co-contraction.
Furthermore, if the system has been designed such that
the strength of the biart. springs is twice the strength
of the mon.art. ones, endpoint stiffness isotropy can be
achieved. This can be helpful to absorb the energy of an
expected load with unknown impact direction. However,
in order to compare both actuator types equally and to
keep the extensive calculation simple, we refrained from
these possibilities.

As already stated in the introduction, the design nei-
ther requires the use of pneumatic artificial muscles nor
tendon-coupling, which can be an advantage if one aims
to avoid non-linearities due to tendon creeping, com-
pressibility of air, and hysteresis effects of viscoelastic
materials. Conversely, we cannot claim that our approach
is universally optimal; for instance, in comparison to
tendon driven systems it increases inertia at the drive
side of the joint.

Suitable applications for this actuator are primarily
humanoid robotics, in particular in constructing ver-
satile arms and legs, but the approach is also useful
for industrial robotics. As we initially stated, the biart.
coupling will stabilise the locomotion system obtain-
ing inherent mechanical stability, thus simplifying the
control problem. Furthermore, the possibility to trans-
fer energy between joints can be used to reduce the
amount of required energy during highly dynamic tasks;
the increased stiffness range allows the system assume
bandwidth-dependent optimal stiffness. This is useful for,
e.g., switching between running and walking gaits or in a
pick-and-place task. On the other hand, the wide range
of stiffnesses allows the system to be highly precise in
a static positioning tasks, by being stiff in one direction
and flexible in another.

Finally, it has to be acknowledged that the biart.
coupling leads to mechanical complexity. The additional
gears and motors introduce more backlash, tolerances,
and friction issues. Implementing 6 motors for a planar
2-DoF movement seems like a mechanical overkill. Thus,
in future work we want to address different underactu-
ated versions of the proposed actuator and optimise the
stiffness ratios in mon.art. as well as for the biart. actu-
ators, e.g., with respect to ranges of Cartesian endpoint
stiffness ellipse orientations and shapes and with respect
to its isotropy.
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