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Abstract— The workspace and performance of a humanoid
robot is decisively influenced by the design of its torso. The
joints or spinal discs are usually the weak points due to the
high stress they are exposed to, e. g. when lifting heavy objects.
One way to circumvent the necessity of large motors is to use
parallel mechanisms to optimize the distribution of loads. Here,
we analyze the workspace of the humanoid robot Rollin’ Justin
of the German Aerospace Center (DLR) w. r. t. the constraints
imposed by kinematic coupling of torso joints via tendons. The
results of the analysis can be used for planning and reactive
control to efficiently exploit the torso performance capabilities
of the robotic system. As an application, we design a potential
field based controller to avoid violating these constraints and
implement it on the real robot.

I. INTRODUCTION

In humanoid robot design, the focus is often on hands
for grasping, arms for manipulation, and legs for walking.
Only little attention is paid to torso design, although crucial
capabilities of the system are determined by the trunk. In [1]
it is shown that, while walking, energy consumption of
legged humanoids can be reduced by 26.5 % when exploiting
the torso dynamics in contrast to a rigid torso structure.
Another example for the major influence of the trunk is
the overall workspace of the robot. The torso of Twendy-
One [2] with four degrees of freedom (DOF) allows to
grasp objects from the floor. The same applies to Justin [3]
or Kotaro [4], for example. Many tasks in service robotics
require both a large workspace of the end-effectors and
kinematic redundancy, e. g. because of several simultaneous
objectives or constrained motions such as opening a door or
a drawer. Instead of mainly moving the base of a mobile
manipulator [5], a versatile torso can support a lot to incre-
ase the workspace. And there are even tasks in which an
articulated torso is inevitable. Consider a remote object that
can only be grasped by reaching across a table [6].

However, articulated torsos also raise several problems.
Beside increased complexity in terms of the design (electro-
nics, power supply, control), the joints are usually exposed
to high torques. Consider the long lever arm when lifting
an object far away from the hip, for example. That requires
very large motors. One solution is to apply parallel structures
in order to optimize the distribution of loads. The robots
Kotaro [4] and Kojiro [7] use artificial muscles to actuate
a flexible-spine structure. At DLR, the wheeled humanoid
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Fig. 1. The kinematic workspace of the torso center point (shaded area)
is a result of the restricted motion of the passive joint due to the tendon
coupling in the torso.

Justin [3] (Fig. 1) has been designed with three actuated
torso joints and a kinematically coupled fourth one. This
coupling via tendons allows to counteract the torques about
the horizontal axes, see Fig. 2 [8]. Hence, small motors can
be used in the upper body, and that complies well with
the lightweight design principles of Justin. The holonomic
constraint imposed by the tendon routing restricts, however,
the kinematic workspace. That is illustrated by the possible
locations of the torso center point in Fig. 1. The joint torques
are also influenced by that coupling and have to be accounted
for during operation.

In this paper, we will analyze the kinematic and dynamic1

torso workspace of Justin exemplarily for such a kinematic
coupling. Closing the gap between robot performance and
its human archetype requires dealing with this subject, in
particular when considering the impressive workspace of a
human being. We represent the imposed constraints on the
torso in the intuitive Cartesian space of the torso center
point (Fig. 1). The analysis is useful for motion planning
and control. Another contribution of this paper is the ex-

1The dynamic constraints (torque limit constraints) are determined by
instantaneous forces arising from the dynamic equations (inertial, Corio-
lis/centrifugal, gravity, and external forces).

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3684-7/14/$31.00 ©2014 IEEE 3439



perimental evaluation of a controller which repels the torso
from its kinematic and dynamic workspace boundaries. The
experiments are conducted on Justin.

The paper is organized as follows: After a brief intro-
duction to the specific mechanical design of the torso of
Justin in Sec. II-A, the kinematic and the dynamic constraints
on its workspace are derived in Sec. II-B and Sec. II-C,
respectively. Afterwards, Sec. II-D shows applications for
the performed analysis. One of these applications, a potential
field based controller (Sec. II-E), is experimentally validated
on the real robot in Sec. III.

II. THE TORSO WORKSPACE OF JUSTIN

In this section, the structure of the torso of Justin is
introduced and the workspace boundaries are derived from
the mathematical equations which arise from the kinematic
constraints and the actuator limitations.

A. Model of the Torso

The torso of Justin contains one passive and three actuated
joints, see Fig. 1. Tendons are used to kinematically couple
the torso joints q2, q3, and q4. The vertical axis with joint
value q1 can be treated separately because it is not kinemati-
cally coupled. Fig. 2 depicts the tendon routing. Motors are
placed at q2 and q3. The upper joint q4 is passive and ensures
that the chest is always kept in an upright configuration.
Assuming that the tendons are inelastic, the kinematic, linear,
holonomic constraint

Aq̇ = 0 (1)

with A = [ 0 1 1 1 ] and q̇ = [ q̇1 q̇2 q̇3 q̇4 ]T holds true.
The main advantage of this concept is that load torques,
which occur at the chest, can be redirected to the robot
base without motor work. Of course, this tendon coupling
introduces elasticities so that the kinematic constraint of an
upright torso is an assumption that would only hold for
infinite tendon stiffness. However, experimental evaluations
revealed that the joint angle deflections are very small and
negligible in this context. Any force or torque applied at the
end-effector (or anywhere else on the robot) can easily be
projected back into the torso center point. There, only forces
in the x-z-plane have to be compensated by active control. So
considering only the x-z-plane according to Fig. 2 simplifies
the calculations but does not disregard any relevant physical
effects. More detailed information on the mechanics of the
torso can be found in [8], [9].

B. Kinematic Constraints

According to Fig. 2, the Cartesian coordinates of the torso
center point in the x-z-plane are

p(q) =

(
px(q)
pz(q)

)
=

(
l2 sin(q2) + l3 sin(q2 + q3)
l2 cos(q2) + l3 cos(q2 + q3)

)
(2)

and the Jacobian matrix can be derived as

J(q) =

(
∂p(q)

∂q2

∂p(q)

∂q3

)
(3)

=

(
l2 cos(q2) + l3 cos(q2 + q3) l3 cos(q2 + q3)
−l2 sin(q2)− l3 sin(q2 + q3) −l3 sin(q2 + q3)

)
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Fig. 2. Sketch of the torso illustrating the tendon kinematics [9]. In the
zero configuration, the two torso links are aligned with the vertical axis.

TABLE I
JOINT RANGES FOR THE ACTUATED TORSO JOINTS OF JUSTIN [8].

Joint Minimum value Maximum value

q1 -140◦ 200◦

q2 -90◦ 90◦

q3 max(0◦,−q2) min(135◦, 135◦ − q2)

to relate the Cartesian and the joint space in a differential
way. In Table I, the mechanical end stops of the joints
are listed. These joint ranges along with (2) determine the
kinematic workspace of the torso center point depicted in
Fig. 3, [8]. The analytical expressions of the workspace
boundaries are provided in Table II.

C. Dynamic Constraints

Depending on the configuration of the torso, a load

F =

(
Fx

Fz

)
= Fload

(
cos (α)
− sin (α)

)
(4)

which results at the torso center point requires motor torques
to counteract:

τ = −J(q)TF (5)

= −Fload

(
l3 cos (q2 + q3 − α) + l2 cos (q2 − α)

l3 cos (q2 + q3 − α)

)
.

TABLE II
CENTERS AND RADII OF THE ARCS DEFINING THE KINEMATIC

WORKSPACE BOUNDARIES OF THE TORSO OF JUSTIN.

Arc Constraint Center Radius

1 q2 = −90◦ (−l2, 0) l3

2 q3 = 135◦ (0, 0)
√
l22 + l23 −

√
2l2l3

3 q3 = 135◦ − q2 (l3/
√
2,−l3/

√
2) l2

4 q2 = 90◦ (l2, 0) l3
5 q3 = 0◦ (0, 0) l2 + l3
6 q3 = −q2 (0, l3) l2
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Fig. 3. The workspace of the torso center point (yellow/shaded area) is
bounded by the kinematics of the tendons. The numbers 1–6 correspond to
the arcs in Table II.

The angle α is defined about the y-axis. The range of feasible
motor torques

τ2,min ≤τ2 ≤ τ2,max (6)
τ3,min ≤τ3 ≤ τ3,max (7)

additionally constrains the workspace of the torso if a load
force is applied via (5). These restrictions are called dynamic
constraints because the actual force F is directly linked to
the dynamic equations of the torso. In other words, the cons-
traints incorporate gravitational effects (weight of the upper
body, tools), inertial effects, external forces (contact of the
upper body with the environment), and Coriolis/centrifugal
effects. Moreover, these constraints are not invariant like
the kinematic ones in Fig. 3, but they dynamically change
depending on the actual value of F . That characteristic is
shown in the attached video.

The boundaries concerning τ2 can be derived from (5)
(first line) by inserting the forward kinematics (2). That leads
to

τ2
Fload

= −x sin (α)− z cos (α) , (8)

which represents straight lines in the x-z-plane. Inserting the
boundaries τ2,min and τ2,max from (6) delivers the dynamic
workspace constraints on the Cartesian coordinates of the
torso center point. Their geometric interpretation is very
intuitive: The ratios τ2,min/Fload and τ2,max/Fload determine
the distance between the boundaries while α describes the
decline of the belt for feasible torques in torso joint two.
Examples for this belt are shown in Fig. 4 for different
parameterizations of Fload and α.

The boundaries for τ3 can be derived by solving (5)
(second line) for q2 + q3, which delivers

q2 + q3 = α± arccos

(
−τ3
Floadl3

)
. (9)

Once again, one can apply the limits on the motor torque,
i. e. τ3,min and τ3,max from (7). If τ3, α, and Fload are constant,

then q2+q3 is evidently constant too. Eq. (9) states that there
only exists a configuration if

−1 ≤ − τ3,min

Floadl3
≤ 1 , or − 1 ≤ − τ3,max

Floadl3
≤ 1 . (10)

If these inequalities are not fulfilled, no constraints on
the workspace are imposed by the actuator limits at the
third torso joint. That effect can be interpreted as the mi-
nimum/maximum torque being sufficient to counteract the
given load force in any part of the kinematic workspace.
Analogous to (8), one can express the workspace boundaries
in the x-z-representation by applying the forward kinematics
(2) again.

(x− l3 sin (q2 + q3))
2
+(z − l3 cos (q2 + q3))

2
= l22 . (11)

This constraint is geometrically described by circles with
radius l2 and corresponding centers at

x = l3 sin

(
α± arccos

(
−τ3,min

Floadl3

))
, (12)

z = l3 cos

(
α± arccos

(
−τ3,min

Floadl3

))
, (13)

and

x = l3 sin

(
α± arccos

(
−τ3,max

Floadl3

))
, (14)

z = l3 cos

(
α± arccos

(
−τ3,max

Floadl3

))
. (15)

Due to the cases (9) and the torque limits τ3,min (12)–(13)
and τ3,max (14)–(15), four boundaries of this type exist. More
details on the center locations and workspace specifications
are provided in Table III.

The four circle centers span a rectangle. According to
(12)–(15), their locations depend on the load as well as on
the torque limits. In case of τ2,min = τ3,min = −τ2,max =
−τ3,max, the centers lie on the straight τ2-boundaries. That
can easily be proven by inserting (12)–(15) into (8). The
circular boundaries are illustrated in Fig. 4, and the overall
workspace results from intersecting the kinematic and the
dynamic workspace of the torso. The four scenarios represent
different loads with different effective directions for

−230 Nm ≤ τ2 ≤ 230 Nm ,

−230 Nm ≤ τ3 ≤ 230 Nm .

The τ2-boundaries are parallel to the direction of F , cf. (8).
The circular boundaries are actually defined by semicircles
instead of full circles. This is due to the fact that q3 ≥ 0
always holds according to Table I. Only one half of each
circle ensures a constant angle sum q2 + q3 (cf. (9) and
(11)) that complies both with the holonomic constraint (1)
and q3 ≥ 0. Invalid workspace areas exist between two
circular constraint boundaries based on the same minimum
(or maximum) torque of the joint. There, the joint torque
would exceed the maximum torque or go below the minimum
torque, respectively. If Fload gets smaller, the semicircles ap-
proach each other (Fig. 4c→ Fig. 4a), hence the workspace
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TABLE III
DYNAMIC WORKSPACE CONSTRAINTS DUE TO TORQUE LIMITS IN THE THIRD TORSO JOINT.

τ3 x-Value of Center z-Value of Center Workspace

τ3,min l3 sin

(
α+ arccos

(
−τ3,min

Floadl3

))
l3 cos

(
α+ arccos

(
−τ3,min

Floadl3

))
inside

τ3,min l3 sin

(
α− arccos

(
−τ3,min

Floadl3

))
l3 cos

(
α− arccos

(
−τ3,min

Floadl3

))
outside

τ3,max l3 sin

(
α+ arccos

(
−τ3,max

Floadl3

))
l3 cos

(
α+ arccos

(
−τ3,max

Floadl3

))
outside

τ3,max l3 sin

(
α− arccos

(
−τ3,max

Floadl3

))
l3 cos

(
α− arccos

(
−τ3,max

Floadl3

))
inside

®

X

Z

Y

F

(a) Fload = 800N, α = 90◦

X

Z

Y
®

F

(b) Fload = 800N, α = 70◦

X

Z

Y®

F

(c) Fload = 1200N, α = 90◦

X

Z

Y
®

F

(d) Fload = 550N, α = 90◦

¿2,min ¿3,min ¿2,max ¿3,maxtorso workspace

Fig. 4. Torso workspace of Justin (green/dashed) considering the kinematic and dynamic constraints and a load F . The torque limits are set to
τ 2,min = τ 3,min = −230Nm and τ 2,max = τ 3,max = 230Nm.

grows. At the point of overlapping, the constraints vanish, see
Fig. 4d. The load specification in Fig. 4d with Fload = 550 N
and α = 90◦ represents a typical (static) lifting task of
an object of about 10 kg. Thereby, the object can easily be
picked up from the floor. Even an increase of the object
weight to 20 kg still allows to pick it up from the floor. The
attached video illustrates the feasible workspace for a varying
load.

D. Applications of the Analysis

The knowledge about the kinematic and dynamic cons-
traints on the torso can be used in different applications, in
particular for planning and control: The feasibility of torso
configurations and the distance to the limits/boundaries can
be used as constraints in motion planning algorithms in order
to obtain proper and feasible trajectories. One way to deal
with the force dependency of the torque constraints (Sec.
II-C) is to consider a complete dynamic model of the robot
during planning or to set sufficiently large safety margins in
case of neglected inertial or other dynamic effects. Another
scenario is active control to comply with the constraints.
Potential field based approaches [10] are predestined for
such an application. Several other objectives have already
been accounted for by these techniques on Justin, e. g. self-
collision avoidance [11], Cartesian impedance of the end-
effectors [12], singularity avoidance and so forth [13], [14].
Such a controller is explained in the following section.

E. Controller Design

In a torque controlled mode, repulsive potential fields
Vrep,total(q) can be used to avoid the kinematic and dynamic
boundaries of the torso, e. g. by the control law

τ = −
(
∂Vrep,total(q)

∂q

)T

−D(q)q̇ + g(q) . (16)

The term g(q) compensates for gravitational effects. The
positive definite damping matrix

D(q) = D
(
M(q),

∂2Vrep,total(q)

∂q2
, ξ

)
(17)

is configuration dependent and allows to realize a parti-
cular damping ratio ξ in the direction of the repulsion.
The determination of (17) is straightforward and uses the
projections of the joint mass matrix M(q) and the actual
potential stiffness ∂2Vrep,total(q)/∂q2 in repulsion direction
for a mass-spring-damper relation. Compared to classical
potential field based approaches, the force dependency of
the dynamic constraints complicates the design because it
leads to an implicit relation between load force (including
the repulsive force) and distance to the boundaries. This
can be easily interpreted: If the torso center point is close
to a dynamic boundary and penetrates the potential field,
a repulsive force is generated which increases the load on
the joints and pulls this boundary even closer. That reduces
the distance to the boundary and increases the repulsive
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force in turn. A local solution to that problem has to be
found in order to apply a control law similar to (16). Based
on the load force, the repulsive force from each kinematic
constraint i can be computed straightforwardly using the
shortest distance di and direction ni to each boundary.
The direction of the force is either pointing towards or
away from the circle center, depending on the boundary.
Due to the effect of the repulsive force on the dynamic
constraints, they are resolved separately. Therefore, the worst
case scenario with the maximum repulsive force F rep,max,i
from each dynamic boundary is considered. At each circular
boundary i, the direction ni is determined in the same way
as for the kinematic constraints. At the straight boundaries,
the force is directed perpendicular to the boundary into the
workspace. The repulsive force increases the load on the
joints. If it is considered as the counterforce to an additional
load force −F rep,max,i, this results in change of the original
load force F from (4) into a new load force

F new,i = F − F rep,max,i , (18)

which constructs new boundaries for τ2 and τ3. For the deter-
mination of the repulsive force from the dynamic boundaries,
both sets of dynamic boundaries, those calculated with F
and those calculated with F new,i have to be considered. The
relevant distance di for the calculation of the force from
each dynamic boundary i is given by the minimum distance
between the torso center point and the boundaries

di = min(di(F ), di(F new,i)) . (19)

However, the directions ni(F ) are taken from the calculation
of the boundaries with F . That choice solves the implicit
problem mentioned above. The repulsive force from any
kinematic or dynamic constraint is given by

F rep,i = Frep(di) · ni , (20)

where Frep(di) is related to the according potential Vrep(di)
by its gradient [10]. All single repulsive forces F rep,i (kine-
matic, dynamic for τ2, dynamic for τ3) are added vectorially
to determine the final direction of the overall repulsive force

n =
Σ
i
F rep,i

‖Σ
i
F rep,i‖2

. (21)

The magnitude is defined by the overall minimum distance

dmin = min
i

(di) (22)

to the boundaries i (kinematic and dynamic). Finally, the
repulsive force is given by

F rep = Frep(dmin) · n . (23)

III. EXPERIMENTS

In this section, the controller (Sec. II-E) is applied and
validated in two experiments.

starting point

trajectory

endpoint

2
5

6

4

3

1

0

Fig. 5. Experiment #1: In gravity compensation mode, the torso is manually
moved in the x-z-plane without consideration of any constraints by the user
himself. The torso center point stays within the admissible workspace due
to active repulsion from the kinematic and dynamic boundaries. The instants
0© to 6© correspond to the ones in Fig. 6.

A. Experiment #1:

This experiment is supposed to show how the controller
forces the torso to stay in the admissible workspace. The
user interacts with the robot in gravity compensation mode2

and moves the torso in the x-z-plane. The path of the torso
center point is illustrated in Fig. 5. The damping ratio is
set to ξ = 0.3, the load force is specified by α = 90◦ and
Fload = 470 N. That load describes the weight of the whole
upper body. The applied potentials have the form

Vrep(di(q)) =

−
fmax

3d2start
(di − dstart)

3 ∀ di ≤ dstart

0 ∀ di > dstart

(24)

with maximum force fmax = 50 N. The potential is nonzero
for distances closer than dstart = 0.1 m to the boundary.
This parameterization leads to a maximum stiffness in the
potential of 1000 N/m for di = 0 m. The minimum and
maximum torques are set to ±140 Nm. An additional sin-
gularity avoidance is applied to avoid the outstretched torso
configuration. The repulsive and damping forces along the
path and the repulsion state of the controller are given
in Fig. 6 as well as the torques measured at the second
and third torso joint. During 41.5 s ≤ t ≤ 46.5 s, one
limit is slightly violated as τ3 < τ3,min. That is due to
the assumed static force of 470 N while dynamic effects
such as the externally applied forces by the user, inertial
effects, and Coriolis/centrifugal forces are not considered in
the control during the motion. However, that violation poses
no problem because the limit torques of ±140 Nm have been
set conservatively since the actuator limits in the torso joints
of Justin are actually ±230 Nm. That is one way to avoid the

2A gravity model is computed online and the gravitational effects are
compensated.
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Fig. 6. Experiment #1: The repulsive and damping forces corresponding to
the path of the torso center point (Fig. 5) as well as the relevant joint torques
are depicted. Except for two situations at about t = 20 s and t = 60 s, the
controller is permanently active due to the large potential field extent. The
instants 0© to 6© correspond to the ones in Fig. 5.

numerically expensive computations of an online dynamic
model of the robot as well as measurement of external forces.

B. Experiment #2:

The same potential and load parameterization as in experi-
ment #1 is used here, but the potential field is larger now with
a starting distance of dstart = 0.14 m. Three damping ratios
are compared. Fig. 7 and Fig. 8 depict the torso trajectory and
the corresponding forces, respectively. The motion is realized
by applying the same, fixed torque profile for each damping
ratio additional to the controller from Sec. II-E. As expected,
increasing the damping reduces the repulsion by tendency.
The experiments show that a damping ratio 0.3 ≤ ξ ≤ 0.6
leads to a proper motion behavior. A damping value in this
range appears to be a good compromise between deliberate
dissipation of kinetic energy and restriction of the dynamic
capabilities of the torso.

IV. CONCLUSION

The workspace and performance of a humanoid robot
is significantly determined by the design of its torso. The
typically high loads on the respective joints can be drastically
reduced by kinematically coupling them. That, in turn, leads
to configuration-based constraints on the system. Here, we
analyzed these kinematic and dynamic constraints on the
torso of the humanoid robot Rollin’ Justin of the DLR.
One application for that analysis, i. e. a potential field based
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Fig. 7. Experiment #2: Path of the torso center point for different damping
ratios ξ ∈ {0, 0.3, 0.6}. A predefined torque profile triggers the motion.
The corresponding forces are depicted in Fig. 8. The parameterization is:
Fload = 470N, α = 90◦, τ2,min = τ3,min = −140Nm, τ2,max = τ3,max =
140Nm.
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Fig. 8. Experiment #2: The repulsive and damping forces for the three
damping parameterizations (ξ ∈ {0, 0.3, 0.6}) in Fig. 7 are depicted.

controller to repel from these boundaries, has been designed,
implemented, and evaluated on the robot.
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[3] C. Borst, T. Wimböck, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias,
P. R. Giordano, R. Konietschke, W. Sepp, S. Fuchs, C. Rink, A. Albu-
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