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Multi-Robot Formation Control Using Distributed
Null Space Behavioral Approach

Shakeel Ahmad, Zhi Feng, and Guoqiang Hu

Abstract—This paper presents a distributed formation control
method for a group of robots. The global objective of achieving
a desired formation is obtained by dividing it into a set of
local objectives which are achieved in a distributed manner. A
basic repetitive pattern in the desired formation is identified and
a corresponding unique differentiable task function is defined
based on the position coordinates of the robots forming the
pattern. Neighbor selection rules are designed for the robots
in such a way that each robot is part of one or more such
patterns. A singularity-robust task-priority inverse kinematics
method is used to design velocity controllers to achieve these
patterns. Since a robot can receive multiple control actions being
part of multiple task functions or patterns, a distributed null
space behavioral (NSB) approach is designed to combine such
multiple control actions in a prioritized way. A comprehensive
stability analysis of the proposed approach based on Lyapunov
methods is presented. Simulation results are provided to verify
the effectiveness of the proposed approach.

Index Terms—Multi-robot Systems; Formation Control; NSB
Approach;

I. INTRODUCTION

The rise of interest in multi-robot systems can be attributed
to the versatility of scenarios in which they can outperform
single robots. Many complex tasks or missions in industry,
military and everyday applications can be carried out by
teams of robots efficiently. Working with a team of simpler
robots could be more cost-effective than working with a
single costly robot. Multiple robots add redundancy to the
overall system, where the group can manage to achieve the
objective even if some robots become faulty.

Multi-robot formation control has been attempted exten-
sively. In [1], artificial potential functions were used to
study the control of a swarm or group of robots. A leader-
follower method has been studied for formation control
[2]–[4]. Decentralized control was used in [5] to connect
independent robotic vehicles so that they act together to
achieve some common formation. The work in [6] deals
with the decomposition of complex formations into simpler
formation tasks and the formation solution design in a
decentralized manner. Consensus strategies have also been
employed to study the same problem [7], [8]. Adaptive
control techniques for formation control can be found in [9].
Recently, distributed formation control strategies have been
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proposed. In [10], a distributed formation control algorithm
is developed based on distributed position estimation using
relative position measurements. Circular formation for a
group of unicycles is achieved by using distributed control
laws based on graph theory in [11].

A major motivation for control of autonomous multi-robot
systems comes from the biological world. Different behaviors
of animals acting in groups such as ants, birds and fishes have
been studied extensively and used in modeling of multi-robot
systems. In [12], formation behaviors were fused with other
navigational behaviors to achieve different tasks for a multi-
robot system.

In behavior based schemes, complex tasks are divided into
a group of smaller and simpler tasks. Each task generates a
control action for the robots. Problem arises when control
actions issued by different tasks conflict with each other.
Several control strategies such as competitive, cooperative
and priority based approaches have been proposed to address
this problem. In competitive methods, the contradiction are
solved by choosing a winning task or behavior based on
a deciding function [13]. In cooperative methods [14], the
control actions from the contradicting tasks are combined
together using some weights. In [15], the authors provided
an experimental validation of the null space behavioral (NSB)
approach in formation control. NSB approach is a behavior
based control approach which has its roots in singularity-
robust task priority inverse kinematics [16]. NSB approach
is a task priority method [16]–[20], which makes sure the
completion of high priority tasks by projecting the low
priority tasks to the null space of higher priority tasks and
low priority tasks are fulfilled only if they do not contradict
with high priority tasks.

Unlike previous works which use centralized NSB, we
propose a distributed NSB based approach in which the task
of achieving a global formation is treated as a combination
of multiple local tasks which are executed locally by small
groups of robots. These local tasks are represented by task
functions which depend on the positions of robots consti-
tuting the group. Using the task-priority inverse kinematics
approach, controllers are designed for achieving these local
tasks. Since in a formation structure, a robot may be a
part of more than one groups or tasks, it will get multiple
control actions. NSB based method is designed to compile the
multiple control actions for an individual robot in a prioritized
way. The stability analysis of the proposed approach for
triangular formation and simulation results are presented to
show the effectiveness of the proposed approach.



II. PROBLEM STATEMENT AND CONTROL DESIGN

Consider a team of N mobile robots which are initially
at random positions in a workplace. The robots are required
to achieve a desired formation which can be a combination
of identical patterns or a combination of different patterns,
in a distributed manner using the position information of the
other robots.

A. Robot Model

For the team of N mobile robots, the position of robot i
is denoted as

pi(t) = [xi(t), yi(t)]
T , i = 1, 2, · · · , N. (1)

The velocity vector for each robot is denoted by

vi(t) = ṗi(t), i = 1, 2, · · · , N. (2)

For subsequent design and analysis, let

p = [p1, p2, · · · , pN ]T , v = [v1, v2, · · · , vN ]T .

B. NSB Design

Under the framework of the NSB approach, the desired
task is divided into a set of M simpler tasks. Let the jth

task be represented by the task function αj with

αj = fj(p), j = 1, 2, · · · ,M, (3)

where fj(·): R2N → Rm is a continuously differentiable
vector valued function. Thus, the time derivative of (3) can
be written as

α̇j =
N∑
i=1

∂fj(p)

∂pi
vi = Jj(p)v, (4)

where Jj(p) ∈ Rm×2N is the Jacobian matrix for fj(p) and
v ∈ R2N is the velocity. Using a singularity-robust task-
priority inverse kinematics technique, the control action for
the robots to achieve desired value of task function i.e., αj,d

is designed as
v = J†

j (p)α̇j,d, (5)

where J†
j is a Moore-Penrose pseudoinverse of the task func-

tion Jacobian matrix Jj and for underdetermined Jacobian
matrix, it is given by

J†
j = JT

j (JjJ
T
j )−1. (6)

In order to avoid the problem of numerical drift, the
controller is redesigned as

v = J†
j (p)(α̇j,d −Kjα̃j), (7)

where α̃j = αj − αj,d and Kj is a diagonal controller gain
matrix with positive diagonal elements.

Using the NSB approach, the task with highest priority is
always executed while lower priority tasks are executed by
projecting them onto the subspaces where they do not oppose
the execution of higher priority tasks. For M tasks, with ‘T1’

being the highest priority index and ‘TM ’ being the lowest,
using NSB the overall control action can be written as

v = vT1 +(I−J†
1J1)vT2 + · · ·+(I−J†

1···M−1J1···M−1)vTM
,

(8)
where

(
I − J†

1J1

)
is the null-space projector of task T1 and

(I − J†
1···M−1J1···M−1) represents the null-space projector

of all the tasks from T1 to TM−1 obtained by stacking their
corresponding Jacobian matrices [15], [18].

Another way of combining multiple tasks using NSB is
given by

v = vT1 + (I − J†
1J1)vT2 + · · ·+

M−1

Π
i=1

(I − J†
i Ji)vTM , (9)

which projects lower priority tasks onto the null space of
its successive higher priority task only instead of projecting
onto the null space of all higher priority tasks as in (8).

C. Control Development

The global objective of achieving a desired formation is
divided into a set of local objectives which are represented
by their corresponding task functions. These local objectives
will be achieved by small groups of robots.

One leader is chosen which selects its neighbors where
number of neighbors depends on desired formation defined
by a task function. The rest of the robots mimic the leader and
each of them selects same number of neighbours as leader. A
set of neighbor selection rules for the robots will be defined
based on a minimum distance criteria.

Once the groups are formed, each group of robots works
to achieve the similar task function as achieved by group
containing leader. A problem arises when a robot is a part
of more than one group and gets different control actions
from different groups. In this scenario, the NSB method is
utilized to avoid the contradiction in deciding the control
velocity for the robot by assigning priorities to the control
actions coming from different groups. The proposed strategy
is explained using a case study for triangular formation in
Section III.

The previous implementations of NSB in the literature
usually deal with one group of robots performing multiple
tasks. Whereas, this implementation is focused on multiple
groups of robots, performing different or same tasks with one
or more robots in common among the groups, acting as the
source of contention. This contention is avoided by assigning
priorities among the groups.

Consider a scenario where robot ‘i’ is a part of three
different groups a, b and c with a population of Na, Nb

and Nc robots, respectively. The group a has the highest
priority. Each group tries to achieve objectives represented
by their task functions. Using the task-priority inverse kine-
matics technique, the corresponding velocities va ∈ R2Na ,
vb ∈ R2Nb , and vc ∈ R2Nc , are designed as

vi = J†
i (pi)α̇i,d, (10)

where i=a, b, c and pa, pb, and pc represent the positions of
robots in groups a, b, and c, respectively.



The above velocity actions cannot be combined using the
usual NSB implementation as each velocity vector pertains
to a different set of robots with one or more common robots
among them. The control action for robot ‘i’ is obtained by
combining the related sections from va and null projectors
of va on the other tasks as

vi = [va]i + [(I − J†
aJa)vb]i + [(I − J†

abJab)vC ]i, (11)

where index ‘i’ represents the section of controller corre-
sponding to robot ‘i’.

III. TRIANGULAR FORMATION

In this section, the proposed method is demonstrated
through a group of robots which form a triangular formation
in a distributed manner. In the triangular formation, the robot
placed at the top vertex of triangle is considered as the leader
robot. To form its local triangle, it selects two neighbors
from the population based on a minimum distance criteria.
For the rest of the robots, including the neighbors of the
leader robot, each selects two neighbors from the remaining
population of robots and moves towards making a triangle
with their neighbors. Mathematically, each triangle group
will be assigned the same task function due to the same
local geometric shape. If the desired formation comprises
different shapes for different groups of robots, then different
task functions can be assigned to different groups.

To facilitate the neighbor selection for the robots, a set
of neighbor selection rules are designed. In absence of
these rules, conflict can occur among robots over neighbour
selection and they may not be able to converge to the desired
formation. These rules can be changed if need arises for a
different formation structure. For triangular formation, the
neighbor selection rules are defined as follows.

Algorithm 1: (Neighbor Selection Algorithm)
1). The leader robot selects its two neighbors (left and right)
from N − 1 robots based on a minimum distance rule.
2). A list containing the selected neighbors is updated

C = {ri, rj}.
3). A list of robots available to be selected as neighbors is
maintained

A = {r1, r2, · · · , rN−1} − C.
4). The first element from C is picked. Two minimum
distance neighbors are selected from A. Repeat Steps 2 and 3.
5). The second element from C is picked and its left neighbor
is selected the same as the right neighbor of the first element
of C. The right neighbor is selected based on the minimum
distance rule. Steps 2 and 3 are repeated.
6). The first two elements of C are deleted and Steps 4 and
5 are repeated until list A is depleted.

Remark 1: The above rules use centralized neighbour
selection based on distance information only. To implement
these rules in a distributed manner, distance information alone
is not enough and additional information such as communica-
tion among the robots shall be used. The centralized neighbor
selection is conducted only when the robot formation control
is initiated, but not throughout the whole formation control
process.

Since the basic building block of the desired formation is a
triangle and it is repeated throughout the formation, one task
function describing a triangle can be assigned to all groups
of robots. One group includes three robots with one as the
parent node and the other two as left and right children nodes.

The task function defining an equilateral triangle is given
as

αi =
[
yi − yl, yi − yr, xr − xl, xi −

xl

2
− xr

2

]T
, (12)

where ‘i’ represents the leader of group and ‘l’ and ’r’
represent the left and right neighbors of ‘i’, respectively.

There are different ways to define the above task function
provided that it is a differentiable function and its Jacobian
is non-singular.

The desired value of the task function is given as

αi,d =
[
altitude, altitude, base, 0

]T
. (13)

The values of altitude and base can be selected to obtain
a basic triangle of desired size. The corresponding Jacobian
matrix for the above task function is given by

Ji =


0 1 0 −1 0 0
0 1 0 0 0 −1
0 0 −1 0 1 0
1 0 − 1

2 0 −1
2 0


Since a robot may get control laws from multiple groups, a

priority assignment for combining different control laws can
be written in a descending priority order as

1). Control law from task function in which robot ‘i’ is
right neighbor.

2). Control law from task function in which robot ’i’ is
left neighbor.

3). Control law from task function in which robot ’i’ is
parent member.

The general combined velocity controller for a single robot
using the above priority rules is defined as follows.

vi = −[J†
a(Kaα̃a + α̇a,d)](5:6,1)

−[(I − J†
aJa)J

†
b (Kbα̃b + α̇b,d)](3:4,1)

−[(I − J†
abJab)J

†
c (Kcα̃c + α̇c,d)](1:2,1), (14)

where ‘a’, ’b’ and ‘c’ represent the task functions in which
‘i’ appears as the right neighbor, left neighbor and parent,
respectively, and Ka, Kb, and Kc are the gains for three
control actions. If a robot is not a part of all these three task
functions, then only the relevant portion of controller will be
implemented.

IV. STABILITY ANALYSIS

For triangular formation, a robot can be a part of at most
three groups. Stability analysis for each case is presented to
show that even if a robot is shared by multiple groups, the
proposed method drives the robots to the desired formation.



A. Each Robot is subject to only one task function

This is the most basic case with only one task function. It
indicates that the robot is involved in only one basic triangle.

The task function is given as

αa =
[
y1 − y2, y1 − y3, x3 − x2, x1 − (x2+x3)

2

]T
(15)

The desired value of task function αa,d is given as in (13).
Based on (5-7), the velocity controller for this case is

presented as
va = −J†

a[(Kaα̃a − α̇a,d)]. (16)
Under the designed controller (16), a desired formation for

this case is achieved if the designed controller gain matrix
Ka is positive.

Stability analysis: Consider a Lyapunov function based on
the task function error

V =
1

2
∥α̃a∥2 . (17)

Based on (5-7) and the velocity controller, we have
α̇a = Java. (18)

From (18) and (16), we have
α̇a = −Kaα̃a + α̇a,d. (19)

Thus, using (7) and (19), the derivative of (17) with respect
to time is

V̇ = α̃T
a (α̇a − α̇a,d) = −λmin(Ka) ∥α̃a∥2 . (20)

Since the controller gain matrix Ka is positive, it is not
difficult to obtain that V ∈ L∞. Therefore, according to
Barbalat’s Lemma, one can conclude that αa → αa,d as t →
∞.

B. Each robot is subject to not more than two task functions

This case considers a basic formation pattern where each
robot gets not more than two control actions from two
different groups. The following analysis shows that using the
proposed controller, the robot can ensure that task functions
of all of its groups can be satisfied. Fig.1 represents the
scenario.

a

b c
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�

Fig. 1: Each robot is subjected
to not more than two task
functions
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Fig. 2: Each robot is subjected
to not more than three task
functions

Here, robots 2, 3, and 5 get two control actions from their
corresponding groups. Combining the two control actions
using NSB, the completion of tasks of all three groups
involved can be guaranteed.

The task functions governing the three triangles are

αa =
[
y1 − y2 y1 − y3 x3 − x2 x1 − (x2+x3)

2

]T
,

αb =
[
y2 − y4 y2 − y5 x5 − x4 x2 − (x4+x5)

2

]T
,

αc =
[
y3 − y5 y3 − y6 x6 − x5 x3 − (x5+x6)

2

]T
.

(21)

Based on the proposed velocity controller designed in (14),
the corresponding controllers for different task functions are
expressed as follows.

For the first task function αa, the velocity controller is
va,1 = −[J†

a(Kaα̃a − α̇a,d)](1:2,1),

va,2 = −[J†
a(Kaα̃a − α̇a,d)](3:4,1)

−[(I − J†
aJa)J

†
b (Kbα̃b − α̇b,d)](1:2,1),

va,3 = −[J†
a(Kaα̃a − α̇a,d)](5:6,1)

−[(I − J†
aJa)J

†
c (Kcα̃c − α̇c,d)](1:2,1), (22)

For the second task function αb, the velocity controller is
vb,2 = −[J†

a(Kaα̃a − α̇a,d)](3:4,1)

−[(I − J†
bJb)J

†
b (Kbα̃b − α̇b,d)](1:2,1),

vb,4 = −[J†
b (Kbα̃b − α̇b,d)](3:4,1),

vb,5 = −[J†
b (Kbα̃b − α̇b,d)](5:6,1)

−[(I − J†
bJb)J

†
c (Kcα̃c − α̇c,d)](3:4,1), (23)

For the third task function αc, the velocity controller is
vc,3 = −[J†

a(Kaα̃a − α̇a,d)](5:6,1)

−[(I − J†
aJa)J

†
c (Kcα̃c − α̇c,d)](1:2,1),

vc,5 = −[J†
b (Kbα̃b − α̇b,d)](5:6,1),

−[(I − J†
bJb)J

†
c (Kcα̃c − α̇c,d)](3:4,1),

vc,6 = −[J†
c (Kcα̃c − α̇c,d)](5:6,1), (24)

Based on the proposed controller (22-24), a desired forma-
tion for this case will be achieved, provided that the following
conditions are satisfied:

λmin(Ka) >
1

2γ
(∥R2Ka∥+ ∥R4Ka∥),

λmin(R1Kb) >
1

2
(∥R2Ka∥+ 2),

λmin(R3Kc) >
1

4
(2 ∥R4Ka∥+ ∥R5Kb∥2). (25)

Stability analysis: Consider a Lyapunov function consist-
ing of the errors for the three task functions

V =
γ

2
∥α̃a∥2 +

1

2
∥α̃b∥2 +

1

2
∥α̃c∥2 , (26)

where γ is a positive constant.

The time derivative of (26) is
V̇ = γα̃T

a

·
α̃a + α̃T

b

·
α̃b + α̃T

c

·
α̃c

= γα̃T
a (α̇a − α̇a,d) + α̃T

b (α̇b − α̇b,d) (27)
+α̃T

c (α̇c − α̇c,d).

Based on the proposed controllers for different task func-
tions in (22-24), we can rewrite them in matrix form as

va = −J†
a(Kaα̃a − α̇a,d)

−E1[(I − J†
aJa)J

†
b (Kbα̃b − α̇b,d)]

−E5[(I − J†
aJa)J

†
c (Kcα̃c − α̇c,d)], (28)

vb = −E2[J
†
b (Kbα̃b − α̇b,d)]

−E4[J
†
a(Kaα̃a − α̇a,d)]

−E3[(I − J†
aJa)J

†
b (Kbα̃b − α̇b,d)]

−E6[(I − J†
bJb)J

†
c (Kcα̃c − α̇c,d)], (29)



vc = −E3[(I − J†
aJa)J

†
c (Kcα̃c − α̇c,d)]

−E7[(I − J†
bJb)J

†
c (Kcα̃c − α̇c,d)]

−E8[J
†
c (Kcα̃c − α̇c,d)]

−E9[J
†
a(Kaα̃a − α̇a,d)]

−E10[J
†
b (Kbα̃b − α̇b,d)], (30)

where E1 to E10 are matrices with 0 and 1 elements, which
are used to extract components from the controller related to
a particular robot.

Due to the selection of same task functions for each
triangle, it is not difficult to obtain

(I − J†
aJa)J

†
b = (I − J†

aJa)J
†
b (31)

= (I − J†
aJa)J

†
c = 0,

α̇a,d = α̇b,d = α̇c,d = 0. (32)
Combining (4), (28-31) and the fact that J†

i Ji = I, i =
a, b, c gives

α̇a = Java = −Kaα̃a, (33)
α̇b = −R1Kbα̃b −R2Kaα̃a, (34)
α̇c = −R3Kcα̃c −R4Kaα̃a −R5Kbα̃b, (35)

where R1 to R5 are constant matrices obtained by multiply-
ing different Jacobian and E matrices. Using (33-35) in (27)
and applying Young’s inequality, it can be established that

∥R2Ka∥ ∥α̃b∥ ∥α̃a∥ ≤ ∥R2Ka∥
2

(∥α̃a∥2 + ∥α̃b∥2),

∥R4Ka∥ ∥α̃c∥ ∥α̃a∥ ≤ ∥R4Ka∥
2

(∥α̃c∥2 + ∥α̃a∥2),

∥R5Kb∥ ∥α̃c∥ ∥α̃b∥ ≤ ∥α̃b∥2 +
∥R5Kb∥2

4
∥α̃c∥2 .(36)

Based on (36), the expression in (27) becomes

V̇ ≤ −[γλmin(Ka)−
1

2
(∥R2Ka∥+ ∥R4Ka∥)] ∥α̃a∥2 (37)

−[λmin(R1Kb)−
1

2
(∥R2Ka∥+ 2)] ∥α̃b∥2

−[λmin(R3Kc)−
1

4
(2 ∥R4Ka∥+ ∥R5Kb∥2)] ∥α̃c∥2 .

According to the conditions (25), it is not difficult to get
that V̇ is negative definite, which implies that V ∈ L∞.
Therefore, Barbalat’s Lemma is utilized to conclude that
αa → αa,d, αb → αb,d, and αc → αc,d as t → ∞.

C. Each robot is subject to not more than three task functions

Fig. 2 represents those parts of overall formation where
a single robot is shared by three different groups. The task
functions for this case are still defined as that in (21). Based
on the priority assignment described in the previous section,
the combined controllers in matrix form for this case are
given as follows.

va = −J†
a(Kaα̃a − α̇a,d) (38)

−E6[(I − J†
aJa)J

†
b (Kbα̃b − α̇b,d)]

−E5[(I − J†
abJab)J

†
c (Kcα̃c − α̇c,d)],

vb = −E11[J
†
b (Kbα̃b − α̇b,d)] (39)

−E10[J
†
a(Kaα̃a − α̇a,d)]

−E7[(I − J†
aJa)J

†
b (Kbα̃b − α̇b,d)]

−E1[(I − J†
abJab)J

†
c (Kcα̃c − α̇c,d)],

vc = −E2[J
†
c (Kcα̃c − α̇c,d)] (40)

−E9[J
†
a(Kaα̃a − α̇a,d)]

−E4[(I − J†
aJa)J

†
b (Kbα̃b − α̇b,d)]

−E3[(I − J†
abJab)J

†
c (Kcα̃c − α̇c,d)],

Based on the proposed controller (38-40), the sufficient
conditions for achieving a desired formation for this case are

λmin(Ka) >
1

2β
(∥R5Ka∥+ ∥R7Ka∥),

λmin(R4Kb) >
1

2
∥R5Ka∥ ,

λmin(R6Kc) >
1

2
∥R7Ka∥ . (41)

Stability analysis: Consider a Lyapunov function consist-
ing of the errors in the three task functions

V =
β

2
∥α̃a∥2 +

1

2
∥α̃b∥2 +

1

2
∥α̃c∥2 , (42)

where β is a positive constant.
The time derivative of (42) is written as

V̇ = βα̃T
a

·
α̃a + α̃T

b

·
α̃b + α̃T

c

·
α̃c

= βα̃T
a (α̇a − α̇a,d) + α̃T

b (α̇b − α̇b,d)

+α̃T
c (α̇c − α̇c,d). (43)

Similar to equation (31), the null projector terms are zero.
Thus, it follows from (4) using (38-40) that

α̇a = Java = −Kaα̃a, (44)
α̇b = −R4Kbα̃b −R5Kaα̃a, (45)
α̇c = −R6Kcα̃c −R7Kaα̃a, (46)

where R6 and R7 are constant matrices obtained by multi-
plying different Jacobian and E matrices.

Submitting (44-46) into (43) gives

V̇ ≤ −[βλmin(Ka)−
1

2
(∥R5Ka∥+ ∥R7Ka∥)] ∥α̃a∥2

−[λmin(R4Kb)−
1

2
∥R5Ka∥] ∥α̃b∥2

−[λmin(R6Kc)−
1

2
∥R7Ka∥] ∥α̃c∥2 , (47)

where Young’s Inequality is utilized to upper bound the
product terms. Therefore, it follows from the conditions (41)
that V ∈ L∞ which implies that αa → αa,d, αb → αb,d, and
αc → αc,d as t → ∞ by using Barbalat’s Lemma.

Remark 2: The above analysis addresses all the three
cases on how a robot can appear in the triangular formation.
Considering the fact that the proposed method is distributed,
we can infer that the effect of a robot control action is limited
to itself and its neighbors. Combining this fact with our
analysis that stability is achievable in all the three cases, we
can claim that the proposed method exhibits stability for a
larger number of robots.

V. SIMULATION RESULTS

In the simulation, a random population of robots is gen-
erated with random initial starting positions. According to
Algorithm 1, the selection of neighbors is done and the
proposed distributed controller in (11) is executed which
results in a global triangular formation for the team of robots.
The desired value of all local task functions was set to
αd = [ 0.866 0.866 1 0 ]T to achieve formation with
a unit equilateral triangle as its basic building block.
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Fig. 3: Formation control for 6 robots. Asteriks represent initial
positions while dots represent final positions.
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Fig. 4: Triangular and diamond formation for a team of 21 and 9
robots, respectively. Asteriks represent initial positions while dots
represent final positions.

Fig. 3 shows a team of 6 robots and corresponding control
inputs required to converge towards a triangular formation.
Fig. 4(a) shows the scalability of the proposed method as
formations with a large number of robots are achieved. The
application of proposed method to other repetitive formation
structures is demonstrated by applying it to a team of 9
robots to achieve a diamond formation as shown in Fig.
4(b). One advantage of the proposed method is integration
of different behaviors as shown in Fig. 5, where formation
behavior is combined with a target seeking behavior with
formation control being the higher priority task.

VI. CONCLUSIONS

In this work, a new implementation of NSB for formation
control of multi-robot systems has been presented. Based
on the desired formation, neighbors are assigned and small
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Fig. 5: Formation behavior combined with target seeking behavior.
Asteriks represent initial positions while dots represent final posi-
tions. ’x’ represents the target position which is at the right top
corner of the figure.

groups of robots are made which perform local tasks. To
resolve the contradictions for robots getting control actions
from more than one group, NSB is implemented individually
for that particular robot. Stability analysis and simulations
for triangular formation are provided to verify and evaluate
the proposed method.
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