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Abstract— For efficient and safe locomotion the gaits of
legged robots should vary with the type of terrain. Hence,
terrain surface classification is an important problem for
this class of mobile robots. Prior research has developed
approaches to proprioceptive terrain classification for both
wheeled and limbed robots that use sensor measurements
dependent upon the dynamics of the robot, which ultimately
requires the classification system to be trained at a large
number of operating conditions (e.g., vehicle speeds and loads).
This research develops an approach to terrain identification
based on pressure images generated through direct surface
contact using a robot skin constructed around a high-resolution
pressure sensing array. Terrain signatures for classification
are formulated from the magnitude frequency responses of
the pressure images. The methodology is used to train and
test a classifier using dynamically measured pressure images
from a one-legged hopping robot. Experimental tests yield high
classification accuracies, which are independent with respect
to changing robot dynamics (i.e., different leg gaits). The
findings of this paper suggest the methodology can be extended
to autonomous field robots, providing the robot with crucial
information about the environment that can be used to aid
stability over rough terrains and enhance motion planning over
varying terrains.

I. INTRODUCTION

A robot’s locomotion stability and operating efficiency
depend on the device’s control strategy, leg gait, and the
operating environment. Previous research with legged robots
has developed a variety of stable leg gaits [1], [2], [3]. A
robot’s performance however, can be heavily dependent on
the type of terrain the robot is traversing [4], [5]. As a
result of this terrain dependence, it is important to develop
methodologies that enable a limbed robot to recognize new
terrain surfaces as they are encountered.

Proprioceptive terrain classification has been accomplished
in wheeled vehicles and electric powered wheelchairs pri-
marily by using vibration sensors [6], [7], [8]. For AQUA,
a RHex-type legged robot, proprioceptive classification has
been performed by using robot leg angles and corresponding
leg motor driving currents [9]. Even more recently, the
leg motor currents in conjunction with dynamic models for
the X-RHex Lite (XRL) robot have been used for surface
identification [10]. However, a limitation of each of the above
proprioceptive classification methods is that the terrain sig-
natures used for classification are heavily dependent on the

vehicle operating conditions such as the speed and load since
the measurements are a function of the vehicle’s vibration
dynamics. (This is discussed in some detail for wheeled
robots in [11].) Hence, robust terrain classification requires
training for a wide variety of operating conditions, which
is a time consuming process and increases classification
computational times.

This paper introduces a new proprioceptive method for
terrain identification on limbed robots that is largely indepen-
dent of the vehicle operating condition since it uses sensors
that come into direct intermittent contact with the terrain
surface. Based on a model of human skin, a robot skin is con-
structed using a high-resolution pressure sensing array. This
robot skin is called Pressure Sensitive Robot Skin (PreSRS,
pronounced ”pressures”). A classification methodology is
developed using the magnitude spatial frequency response of
the pressure images obtained using PreSRS. An experiment
applying PreSRS to a one-legged robot, the FAMU-FSU
Hopper, demonstrates high classification accuracy can be
achieved on four common terrain types.

The paper is organized as follows: Section II details
how biological inspiration dictated the methodology used
to design PreSRS. Section III describes how PreSRS was
integrated onto the FAMU-FSU Hopper. Section IV presents
the results from dynamic terrain classification experiments
on the hopping robot. The results provide strong evidence
that the classification approach based on PreSRS images is
not dependent upon the vehicle’s operating conditions (e.g.,
leg gait). Section V concludes the paper and presents future
work.

II. PRESRS:
PRESSURE SENSITIVE ROBOT SKIN

Touch is mediated in human skin using four types of nerve
receptors named Merkel, Ruffini, Pacini, and Meissner [12].
Nerve ending clusters respond to static and dynamic skin
deformation events by sending the form, texture, location,
and/or pressure intensity information of the contacting sur-
face to the brain [13]. These qualities of human skin inspired
the development of PreSRS using a high-resolution pressure
sensing array, the TekScan R© #5051 sensor.
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Fig. 1. (a) The TekScan R© high-resolution #5051 pressure sensing array
attached to the Evolution R© data acquisition device [14]. A penny placed
on the sensing array provides a size reference. (b) A schematic of PreSRS
referencing its multiple layers of compliant material to human skin layers,
which posses similar mechanical properties.

The sensing array, shown in Fig. 1(a), consists of 1936
individual piezoelectric based pressure sensors, evenly ar-
ranged in a 44 sensor × 44 sensor grid. The sensing array
effectively measures pressure distribution across a 55.88 mm
× 55.88 mm area within a 0-138 kPa range. Sensor readings
are acquisitioned with the Evolution R© device, also displayed
in Fig. 1(a), at a 100 Hz sampling rate [14]. Measurements
are saved as 8-bit 44 pixel × 44 pixel images I, and I(i, j)
represents the pixel corresponding to the individual sensor
with grid indexes (i, j).

Human skin consists of the three layers displayed in
Fig. 1(b): the (lower) subcutaneous layer, the (middle) dermis
layer, and the (outer) epidermis layer.

As illustrated with the PreSRS schematic in Fig. 1(b), the
subcutaneous and epidermis skin layers were emulated using
sheets of compliant material (each >3 mm thick). Human
skin is a non-homogenous viscoelastic material, possessing
mechanical properties that vary between individuals and skin
location [15], [16]. The subcutaneous layer has a desired
compliant property of conforming the skin to surfaces, al-
lowing many nerve endings to make contact. A felt type
material was found to have this property.

Fig. 1(b) correlates the high-resolution sensing array to
the dermis layer of human skin where the nerve receptors
reside. The sensor pitch value of 1.27 mm (i.e., the distance
between sensors) closely matches human nerve pitch (i.e.,
the distance between nerves), which can be approximately
1.00 mm in finger tips [17].

The protective nature of the epidermal human skin layer
was replicated with a hard silicon-rubber covering (>1 mm
thick), as shown in Fig. 1(b). The silicon-rubber material
has a high stiffness; therefore it deforms negligibly under
compression and is resistant to puncture damage.

Altogether, PreSRS is approximately 10 mm thick. Each
PreSRS layer was bonded together with 3M

TM
Super 77 spray

adhesive.

III. PRESRS ON A ONE-LEGGED HOPPING ROBOT

Fig. 2(a) displays the FAMU-FSU Hopper, which can be
modeled as a Spring Loaded-Inverted Pendulum (SLIP). The
robot has two operating phases, as illustrated in Fig. 2(b):
a stance phase, in which the hopper is in contact with a
surface, and a flight phase [18].

Fig. 2. (a) The one-legged hopping robot, the FAMU-FSU Hopper, used
with PreSRS. (b) Illustration of the robot’s stance and flight phases.

Stance phase control uses an Active Energy Removal
(AER) protocol that changes the robot leg length during a
stance as described by,

ζ(t) = ζo − ζdev sin(ωt+ φ), (1)

where ζo corresponds to the robot rest leg length, ζdev
depicts the amplitude of recirculation, and the two control
parameters ω and φ set the desired frequency and phase of
recirculation, respectfully. The AER protocol was designed
to allow the hopper to robustly run over large obstacles (up
to 20% of the robot leg length) [4].

During the flight phase, the controller sets the next robot
leg touchdown angle βTDn+1 using the governing equation,

βTDn+1 = βLOn + c(βTDn − βTDdes ), (2)
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where βTDn is the previous leg touchdown angle, βLOn is the
previous leg liftoff angle, c is a weighted parameter, and βTDdes
is the desired touchdown angle.

The four control parameters ω, φ, c, and βTDdes mandate leg
gaits Gi(ω, φ, c, βTDdes ). Parameters φ and c are stabilizing
factors, and parameters ω and βTDdes institute the robot’s
forward velocity and hop height [4], [18].

Fig. 3. A sectioned and labeled CAD model of the biologically inspired
foot built to accommodate PreSRS on the FAMU-FSU Hopper.

The surface area of the original hopper foot was too small
to accommodate PreSRS, which has a 55.88 mm × 55.88
mm sensing area (44 pixel × 44 pixel). Hence, a new robot
foot was designed featuring an elliptical base with cross-
sectional dimensions of 48.3 mm × 52.1 mm (38 pixel
× 41 pixel), as illustrated in Fig. 3. Taking design cues
from human ankle biology, enables this new foot to capture
consistent high-quality pressure measurements.

The human ankle allows the foot to remain stationary
relative to the ground during a step; compressing the vis-
coelastic adipose tissue beneath the heel, dissipating energy
and shock, and conforming the skin to the contacting surface
[19], [20]. These biological qualities are replicated with a
mechanically compliant ball joint connecting the foot to the
hopper leg. Mechanical compliance is governed with the
compression spring of Fig. 3. The connection allows the foot
to pitch, yaw, and roll as the robot leg progresses through
a step. The compliant layers composing PreSRS, shown in
Fig. 1(b), compress at impact, which both absorb impact
shock and maximize the contact area between the high-
resolution pressure array and terrain.

Both the ankle and skin compliances contribute to the
dynamic behavior exhibited by the hopper foot during a step,
as illustrated in Fig. 4 with high-speed frame shots. As seen
in Fig. 4, the foot base flattens, conforming to the surface,
and remains stationary relative to the ground over the entirety

Fig. 4. High-speed video frame shots of the newly designed hopper foot;
(Start of Stance) immediately after impacting a surface; (Mid Stance) half
way through a step; (End of Stance) the instant before the foot looses contact
with the surface.

of the step period, as the robot leg pivots about the ball joint
of Fig. 3 from touchdown angle βTDn to liftoff angle βLOn .

IV. TERRAIN CLASSIFICATION

Previous terrain classification techniques that use data
influenced by the robot dynamics have shown to be effective
(achieving accuracies above 90%), so long as the robot
operates in the same manner (i.e., leg gait Gi) that is used to
train the classifier [8], [9], [10]. Changing operating modes,
however, changes the dynamic behavior of the robot, which
changes the terrain sensor data. As a result, classifiers for
these systems have to be trained with data from multiple
operating conditions.

A key motivation for developing PreSRS was to accu-
rately identify terrains regardless of the system operating
conditions. PreSRS was designed to capture terrain features
through direct contact and not via the robot dynamics. There-
fore, a classifier trained with pressure images associated with
hopper leg gait Gi should accurately identify terrain samples
collected from gait Gj , where i 6= j.

It follows from the discussion in Section III, that for fixed
stabilizing factors φ and c, a hopper leg gait Gi(ω, φ, c,
βTDdes ) can be defined with the two control parameters ω and
βTDdes . Three distinct leg gaits were used in this experiment,
G1( 6.0 rad/sec, 0.27 rad), G2(6.5 rad/sec, 0.42 rad), and
G3(7.0 rad/sec, 0.57 rad); each successive gait differed by
increasing the control parameters ω and βTDdes .

Dynamic pressure images were collected using PreSRS
and the FAMU-FSU Hopper on four terrain types: smooth
pine wood planks, standard flooring carpet, semi-moist clay
dirt, and thick Spanish style grass. The circular (2.8 m
diameter) track housed the terrains with barriers around the
inside and outside perimeter.

Table I displays the average forward velocity of the robot
per leg gait Gi on each tested terrain. It should be noted that
the robot operated at a greater speed on the grass terrain
when compared to the velocities seen on the three other
tested terrain types. The compliant nature of the grass used
in this experiment may have tuned the hopper effective leg
stiffness. Related research has shown that tuning leg stiffness
on a RHex type robot can improve locomotion performance
[21]. The variant forward velocities between terrains, shown
in Table I, underscores the importance of a robot knowing
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Fig. 5. Example pressure images for each test terrain captured with PreSRS
on the FAMU-FSU Hopper. The images contain 38 pixels × 41 pixels,
which correlates to a 48.3 mm × 52.1 mm sensing area.

the terrain so that the leg gait parameters can be adjusted
accordingly.

TABLE I
HOPPER FORWARD VELOCITIES

Average Velocities [m/sec]

Gait Wood Carpet Clay Grass

G1 0.40 0.43 0.38 0.81

G2 0.64 0.63 0.61 1.11

G3 0.99 0.97 0.84 1.49

The multiple images per terrain type and per leg gait
recorded with PreSRS were allocated into three data sets S1,

S2, and S3, corresponding to hopper leg gaits G1, G2, and
G3, respectfully. Over 300 pressure images I were collected
per leg gait Gi, for a total of 961 images. The bottom 6
rows and first 3 columns of image sets S1, S2, and S3 were
cropped to fit the new hopper foot dimensions 48.3 mm ×
52.1 mm or 38 pixels × 41 pixels, corresponding to 1558
individual sensors.

Examples of pressure images for each terrain type, taken
when the robot was operating with leg gait G2 are shown
in the second column of Fig. 5 in grayscale, where brighter
pixels depict higher intensity values. As shown in Fig. 5,
the fact that terrain samples captured using PreSRS can be
visually distinguished, suggest strong evidence that a high
accuracy classifier can be developed.

The Evolution R© acquisition device, displayed in Fig. 1(a),
records sensor data at 100 Hz. The stance time (i.e., the
amount of time the hopper keeps contact with a surface)
was approximately 140 msec for each leg gait Gi. The
classification results described in this section were obtained
by using the middle (i.e., the 7th) recorded pressure image
for classification purposes.

It has been shown in [8], [22] that the magnitude frequency
response of the spatial domain terrain sample constitutes
signatures unique to the terrain type. Hence, it can be used
to define feature vectors for use with a classifier.

Feature vectors sets F1, F2 and F3 ∈ Rn, where n =
1025, corresponding to terrain data collected at each leg gait
G1, G2, and G3 respectively, are computed as follows: The
rows of the 2D pressure images I are first aligned and padded
with zeroes to obtain X ∈ RN , such that

X = vec(I), (3)

where vec(·) is the standard row algining operator, and N =
2048. The Fast Fourier Transform (FFT) is used to compute
the (spatial) Discrete Fourier Transform Y ∈ CN , given by

Y(k + 1) =

N−1∑
`=0

X(`+ 1)e−j2πk`/N , (4)

k = 0, 1, . . . , N − 1,

where Y(i) denotes the ith element of the vector Y. Next,
let Z ∈ RN denote the vector containing the magnitudes of
the elements of Y such that

Z(i) = abs(Y(i)), i = 1, 2, . . . , N. (5)

Since the elements of Z are mirrored, only the first half of
the elements are placed in a feature vector F ∈ Rn, where
n = N/2 + 1 = 1025.

Example magnitude frequency responses (i.e., feature vec-
tors Fi) on the each tested surface type are shown in Fig. 6.
A key characteristic shared by feature vectors F1, F2, and
F3 in Fig. 6, is that in each plot the magnitude spikes occur
at the same frequency intervals (48.3 cycle/mm) but with
different intensities on each terrain. This frequency interval
is an artifact of the piecewise row aligning operation of
(3). Spike magnitude differences between terrain types create
distinguishing metrics for a classifier to identify.
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Fig. 6. Sample magnitude frequency response feature vectors Fi ∈ Rn,
where n = 1025, for each of the four tested terrains. Each of the plots
contains the three feature vectors F1, F2, and F3 corresponding to leg
gaits G1, G2, and G3 for comparison.

Another aspect of Fig. 6, is that the plots seem to contain
only one feature vector signature; in fact there are three
separate feature signatures in each plot correlating to F1,
F2, and F3, respectfully. The feature vectors for each terrain
type, show almost indistinguishable profiles. These finding
indicate that the pressure based terrain signatures, captured
using PreSRS, are indifferent to changes in robot leg gaits.

A Parzen Windows Estimation (PWE) classifier, which is
described in [23] in the context of terrain classification, was
trained with 20 randomly selected feature vectors, per terrain
type (80 total), from set F2. The 20 feature vectors were split
into two sets: 13 for a training set T ∈ Rp×n, where p = 52,
and 7 for a validation set V ∈ Rq×n, where q = 28.

Principal Component Analysis (PCA) was applied dur-
ing training to determine a reduced feature space h; this
process is discussed in [23]. Using PCA to train the PWE
classifier reduces the feature dimensions from n = 1025
to h = 51. As a result, terrain identification computation
times are approximately 0.245 msec when implemented on
a 2.67 GHz Intel R© Core

TM
2 Duo CPU. Training produces

a transformation matrix U ∈ Rh×n for reducing the input
feature vector space and a matrix P ∈ Rh×(p+q) that has
columns that are reduced order feature vectors resulting from
the training.

The surface classification accuracies achieved on the
FAMU-FSU Hopper are displayed in Table II. The trained
PWE classifier was used to identify feature vectors F1,
F2 /∈ P, and F3 by first reducing the order to Q ∈ Rh using
Q = UF. Then the PWE compares Q with the columns of
P and provides the terrain type most associated with the
sample.

As a result, the PWE classifier identified pressure images
from each robot leg gait with accuracies over 98% (the
highest accuracy being 99.3%). The last row in Table II
displays the overall (e.g., average) classification accuracy
of the PWE classifier (i.e., the accuracy of identifying 861
terrain samples). Although the results are not displayed in
this paper, the PWE classifier produced similar accuracies
when trained with terrain samples collected at gaits G1 and
G3. The identification attributes of the PWE classifier trained
at gait G2, the intermittent gait, displayed the best results.

TABLE II
CLASSIFICATION ACCURACIES

Tested Gait Accuracy

G1 99.3%

G2 99.1%

G3 98.6%

Overall 99.0%

These findings insinuate that a PWE classifier trained
with 20 pressure images, per terrain type using any leg
gait Gi produces near perfect identification accuracies when
identifying terrains from any leg gait Gj , where i 6= j.
Hence, PreSRS demonstrates the desired quality of capturing
terrain signatures independent of the robot dynamics.

Although not detailed in the paper, additional experiments
have shown that the classification procedure is also load
independent. Due to the nature of the sensing array whose
output is proportional to the applied load, the effects of
a change in load from the load during training can be
accommodated by simply using a scaling factor. This method
holds if the training load is known and the modified load of
the vehicle is also known.

V. CONCLUSION

This paper describes the development and demonstration
of a proprioceptive approach to surface classification that
relies on high-resolution pressure images measured with a
robot skin, called Pressure Sensitive Robot Skin (PreSRS).
PreSRS was constructed using human skin as a template.
The dermis layer consisted of a high-resolution pressure
sensing array, which has a pressure sensor density similar
to that of human skin. The compliant nature of human
skin was replicated using a felt type fabric, which emulates
the subcutaneous and epidermis layers. An outer layer of
hard silicon-rubber protected PreSRS against puncturing or
tearing.

A robot foot was developed for the FAMU-FSU Hopper,
enabling the robot skin to have maximal contact with the
terrain surface during the stance phases of motion. For
a given gait, surface classification was accomplished by
extracting pressure images for training and classification at a
fixed stance time (i.e., the time after the foot initially impacts
the ground). This proved to be highly effective.
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Gait-independent terrain classification was demonstrated
using the one-legged robot on four distinct terrains, operating
under three leg gaits G1, G2, and G3 of increasing velocity.
Even though the PWE classifier was trained with data only
from the intermediate gait G2, it was able to identify pressure
images recorded at all leg gaits, achieving a near perfect
(99.0%) overall accuracy. This approach enables tremendous
simplification of the training process in comparison to exist-
ing proprioceptive approaches since the classifier requires
terrain measurements from just one operating condition,
instead of many.

The surface classification approach is based on the ob-
servation from [8], [11] that the magnitude of the spatial
frequency response of a surface constitutes a terrain signa-
ture. Principal Component Analysis was used to reduce the
feature vector dimensions to achieve fast classification times.
The classifier used in this research was a Parzen Windows
Estimator (PWE).

However, as discussed in [23], no one classifier tends to
have the overall best performance. Hence, two classification
algorithms: Maximum Likelihood Estimation (MLE) and
Support Vector Machines (SVM), were investigated; in addi-
tion to feature vectors derived from: 2D magnitude frequency
response and Gray-Level Co-occurrence Matrix (GLCM)
texture attributes [24]. All combinations of feature vector
and classifier types produced similarly high accuracies and
low computational times. 1D magnitude frequency response
feature vectors and the PWE classifier were chosen due
to these methods being the most practical to implement in
regards to online terrain classification, which is one of the
next steps for this research.

In the future, this work will enable autonomous running
robots to modify their leg gaits in real-time to reflect changes
in the environment; improving speed, stability, and efficiency
of running in natural settings and enhancing the accuracy of
motion planning. In addition, this approach can be applied
to help the end effectors of robot manipulators to identify
surface types.
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