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 

Abstract—The paper presents a novel 5 dofs (3T-2R) 
parallel mechanism. The mechanism is characterized by large 
singularity-free workspace and particularly large rotational 
capability which makes it suitable for 5 face-machining and 
similar applications. Having all its prismatic actuators along x 
direction, the x-motion is independent from other dofs-only 
limited by prismatic actuators’ strokes- constituting another 
major advantageous feature. Besides, an analytical direct 
geometric model can be easily established which is a rare 
feature in parallel robots. The paper introduces the novel 
mechanism with its inverse and direct geometric models as 
well as its kinematic models (forward and inverse Jacobians). 
Also, it discusses its singularity analysis and presents sample 
workspace plots evaluated based on isotropic performance 
regarding velocity and static force.       

I. INTRODUCTION 

To cope up with actual industrial needs, a research trend 
towards the synthesis of lower mobility parallel mechanisms 
has been noticed in the last decades. In fact, having a 5 dofs 
(3T-2R) mechanism is sufficient for the majority of 
industrial applications, such as machining, drilling, laser and 
water-jet cutting, etc. -even fewer number of dofs in others 
might be sufficient. These 5 dofs in general can be obtained 
either in one parallel architecture, via hybridization (parallel-
series mechanisms), or through implementing right-hand 
left-hand paradigm.   

Hybridization [1-2] is not a recommendable choice as it 
increases the moving mass (due to having additional 
actuators on the platform) and thus impacting dynamical 
performance as well as the global precision and stiffness of 
the robot.   

On the other hand, right-hand left-hand paradigm might 
be more recommended and favored over hybridization, 
especially if 4 dofs are embedded in one parallel module 
(right-hand) and the remaining 1 dof is provided by separate 
left-hand mechanism: as for instance the suggested use of   
ARROW mechanism (3T-1R) studied in [3] with a turntable 
to provide the 2nd rotational dof. Other machines already 
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exist such as the VERNE machine of [4] (parallel module 
(3T) + (2R) turntable (series)) and the SPKM 165 of [5] 
((2T-1R) parallel module + (1T-1R) table (series)). But 
unfortunately these [4-5] have rather limited workspace. In 
addition, such mechanisms are usually less flexible and 
might introduce challenges regarding control and motion 
planning. This is not to mention calibration related issues. 
Thus, in some applications the best solution would be to 
have 5 dofs (3T-2R) parallel mechanism as one structure.     

In literature, there are numerous synthesis and studies on 
5 dofs (3T-2R) robots such as in [6-10] and many others...   
However, most of these available mechanisms are either 
characterized by limited workspace especially regarding 
tilting capacity, presence of singularities, and/or complexity 
of design especially from manufacturability point of view. 
For example, although the regularity of the mechanisms in 
[6] is interesting simplifying their analyses, it unfortunately 
leads to reduced stiffness and precision as not all the 
kinematic chains cooperate in counteracting the load, and the 
precision along each axis is rather controlled by individual 
kinematic chain and individual actuator’s resolution. 
Besides, having prismatic joints along different directions 
reduces workspace and makes them less practical from 
industrial point of view. The mechanism in [8] provides 5 
dofs (3T-2R) using redundant parallel module formed by 
two folding five-bar linkages set on two rotatable links and 
connected to the platform via universal joints and a 7th 
actuator can be added in series to provide the 6th dof (3rd 
rotational dof) if needed. The direct geometrical model can 
be analytically derived which is interesting, but still the 
rotational capabilities and workspace are limited and 
dependent on position, not to mention that having the 
platform held by two universal joints is a drawback as the 
stiffness might be reduced. Regarding [9], the mechanism is 
undeniably interesting as it is characterized by large tilting 
capacity. This not to mention that having the actuators along 
one direction increases the workspace along this direction. 
Moreover, having an analytical forward geometric model is 
an additional bonus. But maybe the only drawback in this 
mechanism is the presence of cable-pulley or gear 
mechanism which can impact the robot’s performance 
regarding precision and stiffness.            

This paper presents a novel 5 dofs (3T-2R) parallel 
mechanism in the attempt to resolve the major problematics 
emphasized in the above argument. The mechanism in its 
current version implements rack-pinion sub-mechanism 
(which might indicate similar problems to [9]) to facilitate 
the study only, but this in fact can be replaced by any rigid 
linear-to-rotational motion transformation mechanism 
having no singularity in the required rotational range. Also, 
compared to that suggested in [9], it has fewer actuators and 
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hence lower costs (motors’ costs form a very large 
proportion of the overall robot’s cost). The mechanism is 
characterized by large workspace and tilting capacity, 
improved kinetostatic performance and relatively high 
expected dynamic capabilities.  The paper introduces the 
mechanism in (II) with its geometric parameters. The inverse 
geometric model (IGM) and direct geometric model (DGM) 
are established in sections (III) and (IV) respectively; while 
in section (V) the kinematic models and singularities are 
discussed.  Section (VI) then presents sample workspace 
plots evaluated using isotropic velocity and force based 
index (same as that used in [3]). The paper is concluded in 
section (VII) with conclusions and perspectives for future 
work.        

II. THE NEW MECHANISM AND ITS GEOMETRIC ELEMENTS 

 The graph diagram of the mechanism with a simplified 
functional CAD are shown in Fig. 1 and Fig. 2, respectively. 
Fig. 3 shows the dimensions of the platform and the two 
moving frames. The functioning of the mechanism is 
straightforward. Chains (III) through (V) cooperate to 
position the segment 54B B  which is always vertical thanks 
to the constraining parallelograms (II) and (III); these 
parallelograms do not allow any rotation about any axis 
perpendicular to the z-axis of the base frame. Then, chains 
(I) and (II) together control the two rotational dofs z  about 

the z-axis of the base frame and y  about the y-axis of the 

frame  fM  (tool frame). This is done thanks to the rack-

pinion mechanism shown in Fig.2-3, which by fixing the 
distance between 1 2B B  with respect to parallelogram 

vertical axis  54B B  and rotating it controls the 1st rotation 

(i.e. z ). As for y  it is controlled by moving the rack 

which turns the pinion an angle proportional to the relative 
displacement between  4 5B B  and 1B . Thus, the TCP 

position and the tool orientation are controlled. 

  It is worth mentioning that we have used a rack-pinion 
here for simplicity of the analysis, but in general it can be 
replaced by any rigid linear-to-rotational motion 
transformation system having no singularities within the 
required range of rotation for y  which is between -45° and 

+45°; this allows avoiding precision and stiffness problems 
due to backlashes in rack pinion mechanism as previously 
highlighted. The mechanism tilting capacities are between   -
90° and +90° regarding z  and  between -45° and +45° 

regarding y  which are enough for 5-face machining 

applications...Moreover, the x-motion is independent of the 
other dofs and only restricted by available stroke for the 
linear actuators. 

Regarding technical issues, it is worth mentioning that 
the limitation of commercial spherical joints can be 
overcome by replacing each with three concurrent 
perpendicular revolute joints. 

Finally, we introduce the geometric parameters of the 
mechanisms as follows: 

  

Figure 1.  Simplified graph diagram of the 5 dofs (3T-2R) parallel 
mechanism. P,S,U: stand for prsimatic, spherical and universal joints 

respectively. Gray box signifies that the joint is actuated while underlining 
means that the joint is equipped with a position sensor. 

 

Figure 2.  Simplified CAD for clarification purpose only. The base frame 
axes x,y, and z are shown on the drawing together with point notations. 

 

Figure 3.  Plaftorm dimensions and moving frames: (Mi) and (Mf).  



  

  ( 1...5)iL i  : length of i-th arm with 1 2L L , and 

3 4L L . 

    T T
,  1...5i i i i i i ix y z q y z i  A : with 

1 2 1yy y L  , 3 4 2yy y L  , 5 0y  , 1 2 1zzz L  , 

3 4 0z z  , and 5 2zz L  . 

  T
=  ( 1...5)i bi bi bix y z i B : coordinates of iB  in the 

base frame. Note that  Tm m m
N N Nx y zmN  is the 

coordinates of an arbitrary point N  with respect to moving 
frame  m  with ,  i fm M M .  Note that regarding the 

parallelogram arms, the points iA  and iB  are those along 
the imaginary mid-axes.  

 Note that point 5B  is along the vertical line passing 

through 3 4B B ,  and it is not coincident with them in 
practice (it is practically not feasible as it causes collisions), 
however for simplifying the modelling, we assume that 

3 4 5B B B   and we compensate the real vertical offset 

4 5|| ||realBB  in the z-ordinate of  point 5A . This also means 
that the triple spherical joint shown in Fig. 2 (which is 
intended as simple clarifying CAD drawing) can also be 
replaced (practically) by double spherical joint or its 
equivalent (connecting the lower rods of parallelograms (III) 
and (IV) to platform) and a third spherical joint or universal 
joint for connecting chain (V) to the platform: so the 
technical difficulty of realization of a triple spherical joint 
can be overcome.    

  T
x y zP : is the TCP position. The robot’s pose is 

 T

z yx y z  x with z  the rotation about the z-

axis of the moving frame  iM  and y  is the rotation angle 

about the y-axis of the moving frame ( )fM .  Denote 

 T

z y θ .   

 Denote by  T

1 5q qq   the actuated joints’ 

positions vector and by  T

1 5q qq    the joints’ 

velocities vector. 

 xe , ye , and ze : are the unit vectors along x, y and z axes 

of the base frame, respectively. 

 Denote by     T
cos sin 0z z he  the unit vector 

along x-axis of frame  iM  and by  

    T
sin cos 0z z  fe   the unit vector along y-axis 

of  iM  and  fM .  

 Denote v P  ,   z y θ   , and  TT Tx v θ .  

 Denote    z fΩ e e  and  3 11  zeΩ 0 , then 

w Ω θ (angular velocity of the tool (blue color) expressed 

in the base frame) and 1 1w Ω θ  (angular velocity of 1st 
part of platform (green color) and of the rack expressed in 
the base frame). 

 zR , and yR   are the rotation matrices about z, and y axes 

respectively. We also define:  z yR R R  the rotation matrix 

of the tool frame  fM  with respect to the base frame. 

 Platform parameters ( a , b , c , pr  and pt ) are shown on 

Fig. 3. 

III. THE INVERSE GEOMETRIC MODEL (IGM) 

After having defined the mechanism’s geometric 
elements, it is time to establish the IGM.  

The robot’s pose x  is known, so we proceed by getting 
the points C  and D (contact point between rack and 
pinion) as follows: 

   fMC P R C  (1)  

and 
 pr  zD C e  (2) 

where fMC , and pr  are known (refer to Fig. 3).  As we 

have now C , it is easy to get points 3 5,...,B B  by: 

3 3 3 44 55 , where       i i i iM M M M
zB B B C R B B B B  (3) 

It is important to recall here that point 5B  is practically 

on the vertical line passing through 43B B  but not 
coincident with them (to avoid collisions in practical case) as 
shown clearly in Fig. 2-3, but for simplifying the modelling 
we considered them coincident by compensating the real 
vertical offset in the z-ordinate of point 5A  (as we already 
explained in the previous section). 

Now to get the point 1 2B B , we use the following 
relation: 

  1 2 pp y
c rr     h zB B D e e  (4) 

As we have obtained all the points iB , we use the 

following relation to get iA : 

 2 2 ,  1...5i i iL i  AB  (5) 

Relation (5) gives: 

  22 2)( , 1...5i i bi i bi i bi iq x x L y z z iy         (6) 

We choose the assembly mode to satisfy: 
 x ,  1...5i i biq x i    (7) 

The solution is then: 

  22 2)( , 1...5i i bi i bi i bi iq x x L y z z iy         (8) 



  

Hence, the IGM of the new mechanism has been 
established.     

IV. THE DIRECT GEOMETRIC MODEL (DGM) 

The direct geometric model DGM is most often difficult 
to establish analytically for parallel robots. However, in our 
case it is quite simple. In fact, we have all the coordinates of 
points ,  1...5iA i  , so we get first the coordinates 

3 4 5 B B B , then 1 2B B . Due to space limitation, we 
will describe it briefly. Consider the following system of 
equations:  

 
3 3

4 4

2 2
3

2 2
3 4 5

2 2

4

5 5 5

,  where 

L

L

L

 


 
 

A

B B BA B

A

B

B

 (9) 

Solving the intersection of the three spheres described by 
(9) , we get in general two possible solutions, call them 1

3
sB  

and 2
3
sB . Then, the z-ordinate of the point 1 2B B  is 

known and it is given by (refer to Fig.3): 
  1 2 3b b bz z z c b     (10) 

Hence, we have two possible z-ordinates 1
1

s
bz  and 2

1
s
bz  

corresponding to 1
3
sB  and 2

3
sB  respectively. We also have: 

 
2 2

1
1 1 1

2 2

22
2

2
,  where  

L

L

  


B

B

A
B B

A
 (11) 

Again, substituting  (10) in (11), we get in general two 
solutions corresponding to each value of 1bz , we call them 

11 12
1 1,s sB B  (corresponding to 1

1
s
bz ) and 21 22

1 1,s sB B  

(corresponding to 2
1

s
bz ). Thus, we have in general a set of 

four solutions, denote it by  1 2 3 4, , , S S S S  with 

1 11
1 3 1,s sS B B , 1

2
12

3 1,s sS B B  , 2
3

21
3 1,s sS B B ,  and 

2
4

22
3 1,s sS B B . Among them, a unique solution which 

satisfies the assembly mode (condition (7)) exists and as a 
result we have all the points ,  1...5iB i  . Consider then 

the vector η  which is the projection of 3 1B B  in the xy-

plane, i.e.: 

    T T
3 1 3 1

0x y    zzη B B eB B e  (12) 

Then, we have zR  knowing: 

    2 ;,atan y xz       (13) 

We then get: 

 3 3z

p zr e

  
  

iMC B R B C

D C
 (14) 

The matrix  z yR R R  is then computed where yR  is 

known after getting y  via the following relation: 

 
  T

1 p

y
p

c r

r





hz eDB e
 (15) 

The TCP position is given by: 

  T
x y z   fMP C R C  (16) 

The pose is then given by  T

z yx y z  x and 

the DGM is therefore established. 

V.       THE JACOBIANS  

In order to study singularities and evaluate the 
performance of the robot, we need to establish the Jacobian 
matrix J  or the inverse Jacobian matrix mJ .   Thus, we 

need to get the relation between q  and 

 T

z yx y z  x     where z  and y  are the 

angular velocities about the two perpendicular directions ze  

and fe  (note that in this case geometric inverse and 

forward Jacobians are essentially the same as their 
corresponding analytical notions; for discussion on this 
matter refer to [11]).    

So, we proceed by differentiating (5) with respect to time 
to get: 

 T T ,  1...5
i ii i i i i  A BA B v A B v  (17) 

We have: 
 ,  1...5

i iq i  A xv e  (18) 

It remains to get 
iB

v  in terms of x .  For 1,  2i  , we have: 

 

  



1 1

1

3 3 1

3 3

    

   ,  1,2

:  3 3 identity matrix  

... :  pre-cross product matrix

i i i

i

i i



       


  
        




 

B Dv v w DB v w PD w DB

v PD Ωθ DB Ω θ

I PD Ωθ DB Ω

I

N N

x

 

   (19) 

Regarding 
4 53

 BB Bv v v , we have for 3,4,5i  : 

   
1

1

1

3 3    

i i i

i

       

    

B Cv v w CB v w PC w CB

I PC Ω CB Ω x
 (20) 

Regrouping (17) in a matrix form and using (18) through 
(20), we get: 

 q xJ q J x   (21) 

The matrix qJ  is given by: 

 
   T

1 5
Tdiag ,..., ,dim 5 5,

,  1...5i i i i

   


  

q x x qJ n e n e J

n A B
 (22) 

As for xJ , it is as follows: 



  

 

  
  
  
  
  

 

T T
1 1 1

T

1

2 2
T

2

3 3 3

4

1

T T
1

T T
1

T T
5

4 4

5 15

dim 5 5

     
     
  
    

 
   
 
      


 

x

x

n n PD Ω DB Ω

n n PD Ω DB Ω

J n n PC Ω CB Ω

n n PC Ω CB Ω

n n PC Ω CB Ω

J

 (23) 

When -1
qJ  exists (  det 0qJ ), the inverse Jacobian mJ  

(  mq J x  ) is given by: 

  -1 ,  dim 5 5  m q x mJ J J J  (24) 

Similarly, when -1
xJ  exists, the forward Jacobian J  

( x J q  ) is given by: 

  -1 -1 ,  dim 5 5   m x qJ J J J J  (25)  

So far, we have established the forward and inverse 
Jacobian matrices J  and mJ , after establishing the 

matrices qJ  and xJ . In what follows, we discuss the series 

and parallel type singularities of the mechanism at hand.  

A. Series Type Singularities 

Series-type singularity occurs when qJ  becomes rank 

deficient i.e. when  det 0qJ ; in such a case the end-

effector might be fixed ( x 0 ), but the actuators are 
capable of infinitesimal motion ( q 0 ). This means: 

     Tdet 0 1,...,5 ;  0
o oo i ii      q x xJ n e n e  (26) 

Relation (26) shows that series singularity occurs when 
there is a completely stretched arm (arm in the yz plane) 
which implies that singularity if exists (corresponding pose 
is accessible), it will be on the boundary of the geometrically 
accessible region and thus forms no problem. 

B. Parallel Type Singularities   

As for parallel-type singularities, these occur when the 
matrix xJ  becomes rank deficient; in such a case the 
actuators can be fixed ( q 0 ), but still the end-effector is 
capable of infinitesimal motion ( x 0 ).   We will do linear 
operations on xJ  to facilitate the study. The first operation is 
a change of the TCP to be confounded with C (this does not 
change the rank since it is mathematically described as 
adding linear combinations of some columns to a certain 
column)(1), and thus we obtain the following matrix: 

 
(1) Adding     TT

1 5
T z zPC e PC en n (linear combinations of 

first three columns) to 4th column of xJ  and adding  

    TT
1 5

T f fPC e PC en n  to 5th column of xJ .  

 

  
  

 
 
 

T T
1 1 1

T T
1

T T
1

T T
1

T T
5 1

T T T
1 1 1
T T

1

2 2 2

3 3 3

4 4 4

5 5

2 2 2

3

4 4

5

T

T T
3

T T

T T
5

   0

0

0

p y p

p y p

r r

r r

a

a

a




  
 
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Regarding the parameters a  and pr , refer to Fig. 3. To 

simplify the rank study of M , we make another linear 

operation by adding  5

TT T
1a af fn e n e  to 4th 

column of M  which gives us the simplified matrix: 
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Then, it is sufficient to study the rank of the following two 
sub-matrices of N : 
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The matrix N (equivalently M  and xJ ) is singular when 

any of the two matrices 1N  or 2N  is singular (rank 

deficient). The matrix 1N  is of full rank as long as the three 

arms, namely (III), (IV) and (V), are not coplanar, which is 
guaranteed within the geometrically accessible space 
excluding its boundary. Actually, the matrix 1N  

(equivalently xJ ) may become rank deficient only in one 

case; this is when all the aforementioned arms are in one 
plane which cannot be -due to the  assembly mode 
(condition (7))- except the yz-plane and hence parallel-type 
singularity confounded with serial-type singularity which 
cannot occur except at boundary of the geometrically 
accessible workspace-provided that the corresponding  pose 
is geometrically accessible. Regarding the rank of 2N , 

computing and simplifying its determinant, we get: 
 

       
   

1 2 1 22

1 2 1 2

det
x y y xf h f hp y x y y x

p y x y y x

e e e ea r n n n n

a r n n n n





 

  

N
(30) 



  

Note that xvect  and yvect  mean x and y ordinates of vector 

vect  respectively. We have 0p ya r   , 

 45 ; 45y       (i.e.   / 4pra  ). Then, the only 

case where 2N (equivalently xJ )  is singular is when 

 1 2 1 2 0x y y xn n n n  , meaning that when the projections 

of arms (I) and (II) in the xy plane are collinear which is not 
possible except when both arms are in the yz-plane and thus 
a parallel-type singularity coincident with a series-type 
singularity. Again, such a situation cannot occur except on 
the boundary of the geometrically accessible workspace-if 
the corresponding pose is geometrically accessible in the 
first place. 
 
So, in brief, in this section we have proved that both types 
of singularities if to exist they are necessarily on the 
boundary of the geometrically accessible workspace-
provided that the corresponding poses are geometrically 
reachable-and thus form no problem. Also, any parallel-
type singularity if present, it exists confounded with a 
series-type singularity. As a result, we guarantee the 
absence of singularities of all types within the geometrically 
accessible workspace excluding its boundary. 

VI. WORKSPACE ANALYSIS 

In this section, we present sample workspace analysis 
based on isotropic force-velocity performance index FVI  
introduced in [3] that the reader may refer to. The index is 
defined as follows: 

 min ,w w

wl wl

v f
FVI

v f

 
  

 
 (31) 

The terms wv  and wf  are the worst speed and the worst 

force (2) respectively, whereas wlv  and wlf  are the desired 
lower bounds for the worst speed and worst force   
respectively. Actually, wv  is nothing except the largest 
isotropic speed (radius of the largest sphere included in the 
zonotope of the operational velocities), and wf  is similarly 
the largest isotropic force (radius of largest sphere included 
in the operational force zonotope (refer to footnote (2))). In 
case of non-redundant robot, the pseudo-inverse is replaced 
by the usual matrix inverse.  Actually, this index has been 
developed to overcome the loss of significance of singular 
values and based-upon indices (such as condition number, 
manipulability index, etc.) in case of redundant robots, but it 
is applicable to all types of robots and holds a concrete 
physical significance quantifying the maximal attainable 

 
(2) wf  is calculated considering minimum norm torque vector solution 

of T mf J τ  i.e. considering the joint torques vector τ  satisfying 

  T
Tnull  mJ τ 0  and thus having: T T *

mJ fτ J f  with  *
mJ J  the 

pseudo-inverse of mJ  (case of redundancy) and f  the operational force 

vector. Note to have physical significance and consistency of wf  , the 

matrix mJ  must be homogeneous. 

speed and maximal static force that can be supported by the 
end-effector regardless of direction. Furthermore, it serves as 
well as a singularity measure (closeness to singularity when 

0FVI  )(3), although this latter significance is not our 
major concern or focus here as detailed analytical singularity 
analysis has been done in the previous section.   

Since we have mixed dofs (translation and rotation), it is 
mandatory to homogenize mJ  using a suitable technique 

before evaluating the index at each pose. Then, we consider 
the homogeneous inverse Jacobian matrix 1mw mJ J W  

and its pseudo-inverse wJ  (in case of redundancy) or its 

inverse (i.e. the homogenized forward Jacobian 
-1 w mJ W J W J ) as in our case here (non-redundancy). 

Matrix W  is the weighing or homogenization matrix and it 

is chosen here to be  diag 1,1,1, , pa tW (the choice of the 

homogenization matrix is arbitrary with the condition that 
the weighing/homogenization matrix should assure that the 
initial (non-homogenized) and the corresponding 
homogenized matrices are of same rank where W  is a 
square matrix: in our case we use the characteristic lengths 
technique). We then have: 
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where 
imwrj  and 

iwcj  are the i-th row vector and i-th 

column vector of  mwJ  and wJ  respectively. 

In the figures that follow, we present the sample 
workspace plots and evaluation for the following geometric 
parameters (non-optimized parameters): 1 ,  1..5iL m i   , 

1 2 0.5y yL L m  , 1 0.3zL m , 2 0.5zL m , 0.1a m ,  

0.0875b m , 0.125c m ,  0.025pr m , 0.075p mt  , 

0.0175c mt  ,  and 0.2lt m . Note that ct  and lt  are the 
minimum offsets from the sliders’ planes in case of zero 
rotation and full range of rotations, respectively. 

Regarding the workspace plots, we have evaluated the 
yz-regions for zero orientation ( 0z y    ) on one hand 

and for full range rotations (i.e.  90 ; 90z       and 

 45 ; 45y      ) on the other hand; this is since the 

inverse Jacobian is independent of x position. In case of full 
range orientation, we evaluated the index FVI  for 

 90 ,60 , 45 ,30 ,0z         and  45 ,30 ,0y      being 

frequently used orientations for the sake of reducing 
computation time, and the worst value of FVI (the lowest 
 

(3) Note that when 0wv  , it means approaching a series-type 

singularity, while having 0wf  , it means approaching a parallel-type 

singularity.  



  

value) has been associated with the corresponding  ,y z  

position.  We have done the study on homogenized inverse 
Jacobian matrix mwJ  (see Fig. 4-5) and a study considering 
only translational motion by considering the translational 
parts (4) of mJ  and J , called mpJ  and pJ  respectively, 

which is the most interesting for us (regarding translational 
speed capability and pure static force capacity: see Fig. 6-7) 
as former study on mwJ  can change with the chosen 
homogenization matrix W  and its only importance is 
mainly as singularity performance measure (there is no real 
physical significance of  studying the norm of 5 dimensional 
velocity vector composed by linear translation of a point and 
tangential velocity of another point with respect to the TCP; 
this is always the case when having mixed dofs irrespective 
of the index used).  Note that considering translational 
performances only implies redundancy (3 dofs (3T) and 5 
actuators, i.e. mpJ  and pJ  are not square matrices). Note 

that the case of studying translational motion only implies 
that the angular velocity is controlled to be zero and there 
are no torques applied on the platform-i.e. we only have pure 
forces at the TCP).  Also, it is worth mentioning that if 
singular values are significant regarding mwJ  being a square 

matrix, singular values of mpJ  and pJ  are no more 

significant regarding output performance capabilities as 
explained in [12]. 

In all the plots, we have set maxwlv q   and maxwlf   as 
to compare the isotropic velocity and force output 
performances of the mechanism relative to the maximal 
performances in velocity and force of the individual actuator 
(all actuators are considered identical). Note also that in the 
figures, the red solid lines show the collision limits with the 
sliders’ planes, while the dashed black box is the projection 
of the robot’s frame on the yz plane. The red lines are offset 
from vertical black dashed lines by ct  in case of zero 

rotation and by lt  in case of full rotation.   

Finally, to conclude up the section, it is clear that the 
mechanism has large singularity-free workspace considering 
zero rotation and full rotational capabilities. As a matter of 
fact, if we consider the ratio of the yz accessible region (with 
or without rotation) to the area of the black dashed box-
representing the frame of the robot, this ratio is clearly high.  

Besides, the kinetostatic performances are quite 
interesting (remember that these represent capabilities that 
can be achieved in all directions). It would even be more 
improved and its performance more enhanced after properly 
optimizing this mechanism which is not our concern here. 
Additionally, the workspace is convex; such convexity is 
important regarding trajectory planning where each two 
points can be joined by a straight line trajectory. 

 
(4)  In this case mwJ  and wJ  in relation (32) are respectively replaced by 

 , 1:3:mp mJ J  i.e. first three columns of  mJ  and (1: 3,:)p JJ  i.e. 

first three rows of -1 mJ J  (non-redundant robot) and  m
*J J  (pseudo-

inverse of mJ  in case of redundancy).  

 

Figure 4.  Geometrically accessible workspace for zero rotation: evaluated 
using index FVI(Jmw).   

 

Figure 5.  Geometrically accessible workspace with full rotational range: 
evaluated using FVI(Jmw).   

 

Figure 6.   Geometrically accessible workspace for zero rotation: 
evaluated using index FVIP (the P indicates study of positional parts of 

inverse Jacobian Jm and forward Jacobian J matrices). 



  

 

Figure 7.  Geometrically accessible workspace with full rotational range: 
evaluated using index FVIP (the P indicates study of positional parts of 

inverse Jacobian Jm and forward Jacobian J matrices).  

VII. CONCLUSION AND PERSPECTIVES 

In this paper, we have introduced a novel 5 dofs (3T-2R) 
parallel mechanism that has the following characteristics: 

 The functioning of the mechanism is simple.  

 It admits an analytical direct geometric model DGM that 
is a rare feature to find regarding parallel manipulators and 
can be very helpful regarding control issues. 

 It has independent motion along x-direction only 
restricted by available stroke for prismatic joints.  

 Parallel type singularities if to exist, they are coincident 
with series-type singularities and cannot occur except at the 
geometrically accessible workspace boundary (provided that 
corresponding poses are geometrically achievable). Thus, in 
any case they do not form any problem. 

 It has large singularity-free cross-sectional workspace 
with or without rotation. Also, its isotropic kinetostatic 
performance is quite interesting and it is expected to be 
improved even more after optimization. This has been 
clarified by the preliminary analysis of workspace for non-
optimized set of geometric parameters.   

 High stiffness having all the limbs sharing in the load 
support along all directions.  

 Having spherical joints at the arms’ extremities puts these 
arms under tension/compression forces which improves 
accuracy due to reduced deformation in the arms.  

It is important to mention that this mechanism is a 
starting point, as other versions based on this one and with 
better performance are being thought of and may be the 
subject for future publications. We also emphasize that in 
this mechanism, the use of rack-pinion is meant to simplify 
the modelling and the preliminary presentation of the 
mechanism, but in the realistic case it would be replaced by 

more rigid linear-to-rotational motion transformation 
mechanism.   
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